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Abstract

Automatic recognition and formalization of
constraints from free-form service requests is
a challenging problem. Its resolution would go
a long way toward allowing users to make re-
quests using free-form, natural-language-like
specifications. In this paper, we address
this challenge by offering an ontology-based,
semantic-data-modeling approach to recog-
nize constraints in free-form service requests.
We encode domain information such as possi-
ble constraints and instances within a domain
ontology in terms of object sets, relationship
sets among these object sets, and operations
over values in object sets and relationship sets.
Our system recognizes the constraints in a ser-
vice request by finding the domain ontology
that best matches the request and then by
using relationships and operations relevant to
the request in the matched ontology to gener-
ate the service-request constraints. In exper-
iments conducted with our prototype imple-
mentation, our system achieved an average of
96% recall and 99% precision.

1 Introduction

Allowing users to specify service requests using fully
free-form specifications is likely, if successful, to en-
hance their ability to obtain needed services. Consider,
for example, the free-form request for an appointment
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with a dermatologist in Figure 1: “I want to see a der-
matologist between the 5th and the 10th, at 1:00 PM
or after. The dermatologist should be within 5 miles
of my home and must accept my IHC insurance.” To
handle this request, a system must somehow recognize
the constraints involved and transform them to a for-
mal specification such as the one in Figure 2. If the
system can recognize the constraints in Figure 1 and
represent them in a predicate-calculus formalism like
the one in Figure 2, then servicing this request be-
comes a matter of instantiating the free variables, the
xi’s, such that the constraints are satisfied.

This paper proposes a particular way to recognize
constraints from free-form service requests such as
the request in Figure 1. Rather than use traditional
natural language approaches that depend on syntax
analysis (e.g. [8]) or statistical analysis (e.g. [11]),
this paper introduces an ontological approach that de-
pends on the long-standing notion of a semantic data
model. In our ontology-based approach, a domain on-
tology encodes information such as applicable object
sets, potential constraints over these object sets, and
recognizers for instances of these object sets and con-
straints. The system recognizes the constraints in a
service request by two-fold process. (1) It matches
a free-form service request against a collection of on-
tologies that belong to different domains to find the
ontology that matches best. (2) It then selects from
the given and implied constraints in the matched on-
tology those that are relevant to the service request to
generate the constraints.

The semantic data model of our approach charac-
terizes the type of service requests our system is ca-
pable of handling. Specifically, our approach handles
service requests whose objective is to instantiate an
object set of interest in the domain ontology with a
single value such that all applicable constraints are
satisfied. The objective of the appointment request
in Figure 1, for example, is to instantiate the variable
x0 with a value of type Appointment such that con-
straints on Date, Time, Distance, and Insurance are
satisfied. This type of service covers a wide range of



I want to see a dermatologist between the 5th and the 10th, at 1:00 PM or after. The
dermatologist should be within 5 miles of my home and must accept my IHC insurance.

Figure 1: A free-form appointment request.

//I want to see a dermatologist
Appointment(x0) iswithDermatologist(x1) ∧Appointment(x0) is for Person(x2)∧Dermatologist(x1)has Name(x3) ∧ Person(x2)hasName(x4)
//between the 5th and the 10th
∧Appointment(x0) is on Date(x5) ∧DateBetween(x5, “the 5th”, “the 10th”)
//at 1:00 PM or after
∧Appointment(x0) is at T ime(x6) ∧ TimeAtOrAfter(x6, “1:00 PM”)
//within 5 miles from my home
∧Dermatologist(x1) is atAddress(x7) ∧ Person(x2) is at Address(x8)∧DistanceLessThanOrEqual(DistanceBetweenAddresses(x7, x8), “5”)
//accept my IHC insurance
∧Dermatologist(x1) accepts Insurance(x9) ∧ InsuranceEqual(x9, “IHC”)

Figure 2: The predicate-calculus formalism for the appointment request in Figure 1.

everyday service requests. Examples include schedul-
ing appointments, buying and selling products, renting
apartments, renting cars, making hotel reservations,
setting up meetings, and many more.1

Further, our initial work is for handling free-form
service requests with conjunctive constraints. There-
fore, our system in its current state does not handle
service requests with negated constraints such as “not
at 1:00 PM,” disjunctive constraints such as “at 10:00
AM or after 3:00 PM,” and conditional constraints
such as “if the appointment can be next week, sched-
ule me with Dr. Carter; otherwise with Dr. Jones.”
Conjunctive requests are common, are a restriction to
which users can likely adjust, and may be sufficiently
useful by themselves. In any case, they represent a
fundamental starting point from which our approach
may be extended to cover other types of constraints.

Our ontology-based approach also has the interest-
ing advantage of being fully declarative. The algo-
rithms to find the ontology that matches best, gener-
ate constraints, and produce a formal representation
for the constraints are fixed. They work across do-
mains with no need for recoding or reconfiguration.
As a consequence, to produce formal representations
for service requests belonging to a new domain, it is
sufficient to specify the domain ontology—no coding
is necessary.

The paper makes the following contributions. First,
it proposes an ontological approach to recognize and
formalize constraints in free-form service requests.
Second, it makes a significant step toward allowing
users to invoke services by specifying them using only

1We intend the word “service” to be thought of in accor-
dance with its typical meaning—“an act of assistance or ben-
efit.” Technically, we define a very special type of service (as
described herein). We do not intend our services to be thought
of in other technical ways such as registering services with a bro-
ker so that they can be found by expressing their functionality
in terms of inputs, outputs, and capabilities.

free-form specifications. Third, the proposed ontologi-
cal approach allows service providers to define services
belonging to a domain by only specifying knowledge (a
domain ontology) not behavior (algorithms and code).

We present our contributions as follows. Section 2
introduces domain knowledge. It describes the explic-
itly given domain knowledge encoded in terms of a
domain ontology (Subsections 2.1 and 2.2) and the
knowledge implied by a domain ontology (Subsec-
tion 2.3). Section 3 shows how to match a free-form
service request to a domain ontology and obtain the
ontology that matches best. Section 4 explains how to
use the matched ontology to produce formal represen-
tations. It shows how to identify the parts of the best
matching domain ontology that are relevant to a ser-
vice request (Subsection 4.1) and how to identify any
needed operations (Subsection 4.2). It then shows how
to use the ontology, including both given and implied
relationships sets and operations, to generate predi-
cates (Subsection 4.3). In Section 5 we evaluate our
approach. In Section 6 we compare our approach to
other related work, and in Section 7 we give concluding
remarks and directions for future work.

2 Domain Knowledge

In this section we describe the knowledge our system
needs to generate a formal representation for a service
request in terms of a domain ontology. First, the sys-
tem requires explicit knowledge of basic concepts re-
lated to the service request. This explicit knowledge is
encoded in terms of a domain ontology, which consists
of two major components: (1) a semantic data model
declaring sets of objects, sets of relationships, and con-
straints over the object and relationship sets (Subsec-
tion 2.1) and (2) instance semantics declaring recog-
nizers for object set data values as well as operations
applicable to these data values (Subsection 2.2). Sec-
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Figure 3: Semantic-data-model view of a domain on-
tology for appointments (partial).

ond, the system includes implicit knowledge—implied
object sets, relationship sets, and constraints, which
are based on knowledge explicitly given in the domain
ontology (Subsection 2.3).

2.1 Semantic Data Model

A semantic data model specifies named sets of objects,
which we call object sets, named sets of relationships
among object sets, which we call relationship sets, and
constraints over object and relationship sets. Figure 3
shows a small part of a semantic data model represen-
tation of a domain ontology for scheduling an appoint-
ment. The semantic data model consists of object-
set concepts such as Date, Time, and Service Provider
that can be used to schedule appointments with service
providers such as doctors and auto mechanics. The se-
mantic data model has two types of object sets, those
that are lexical (enclosed in dashed rectangles) and
those that are nonlexical concepts (enclosed in solid
rectangles). An object set is lexical if its instances are
indistinguishable from their representations. Time is
an example of a lexical object set because its instances
(e.g. “10:00 a.m.” and “2:00 p.m.”) represent them-
selves. An object set is nonlexical if its instances are
object identifiers, which represent real-world objects.
Dermatologist is an example of a nonlexical object set
because its instances are identifiers such as, say, “D1”,
which represents a particular person in the real world
who is a dermatologist. Each object set maps to a one-
place predicate. For instance, the predicate Date(x )
is derived from the object set Date in Figure 3. The
variable x in the predicate Date(x ) represents a place
holder.

We designate the main object set in a semantic data
model by marking it with “–> •” in the upper right
corner. This notation,“–> •”, denotes that when an

ontology is used to satisfy a service request, the main
object set becomes (“->”) an object (“•”). We des-
ignate Appointment in Figure 3 as the main object
set because this domain ontology is for making ap-
pointments. The system satisfies a service request by
instantiating the main object set with a single value.

Figure 3 also shows relationship sets among object
sets, represented by connecting lines, such as Appoint-
ment is on Date. The arrow connections represent
functional relationship sets, from domain to range, and
non-arrow connections represent many-many relation-
ship sets. For example, Service Provider has Name is
functional from Service Provider to Name (i.e. a ser-
vice provider has only one name), and Service Provider
provides Service is many-many (i.e. a service provider
can provide many services and a service can be pro-
vided by many service providers). A small circle near
the connection between an object set O and a rela-
tionship set R represents optional, so that an instance
of O need not participate in a relationship in R. For
example, the small circle on the Appointment side of
the relationship set Appointment has Duration states
that an instance of Appointment may or may not re-
late to an instance of Duration (i.e. there need not be
a specified duration for an appointment). Each rela-
tionship set of arty n (n ≥ 2) maps to an n-place pred-
icate. For instance, Appointment(x0) is with Service
Provider(x1) is a two-place predicate derived from the
relationship set Appointment is with Service Provider
in Figure 3.

Constraints over unary predicates (object sets)
and n-ary predicates (relationship sets) are closed
predicate-calculus formulas. Referential integrity
holds; thus, for example, for our ontology in Figure 3
we have ∀x∀y(Doctor(x ) accepts Insurance(y) ⇒ Doc-
tor(x ) ∧ Insurance(y)). Each functional constraint
from an object set O to some other object set over
a binary2 relationship set R has the form ∀x(O(x )
⇒ ∃≤1yR(x, y)). For instance, ∀x (Service Provider(x )
⇒ ∃≤1y(Service Provider(x ) has Name(y))) is the
functional constraint for the relationship set from Ser-
vice Provider to Name. Each constraint for a manda-
tory object set O for a binary relationship set R has
the form ∀x(O(x ) ⇒ ∃≥1yR(x, y)). For instance,
∀x (Service Provider(x ) ⇒ ∃≥1y(Service Provider(x )
has Name(y))) is the mandatory constraint for Service
Provider in the Service Provider has Name relation-
ship set.

A triangle in an ontology diagram (see Figure 3)
denotes generalization/specialization. The general-
ization object set connects to the apex of the tri-
angle, and specialization object sets connect to its
base. For each generalization/specialization, we write
the constraint ∀x(S1(x ) ∨ ... ∨ Sn(x ) ⇒ G(x )),
where G is the generalization object set and S1, ...,

2The definition of the constraints for binary relationship sets
can easily be extended to n-ary relationship sets for n > 2.



Sn are the specialization object sets. If the general-
ization/specialization has mutual-exclusion constraint
(represented by the “+” in the triangle in Figure 3),
we also write the constraints ∀x(Si(x ) ⇒ ¬Sj(x ))
for 1 ≤ i, j ≤ n, i 6= j. In Figure 3, for exam-
ple, the constraint ∀x(Dermatologist(x ) ∨ Pediatri-
cian(x ) ⇒ Doctor(x )) states that dermatologists and
pediatricians are specializations of doctors, and the
constraints ∀x(Dermatologist(x ) ⇒ ¬Pediatrician(x ))
and ∀x(Pediatrician(x ) ⇒ ¬Dermatologist(x )) state
that dermatologists and pediatricians are mutually ex-
clusive.

Every connection between an object set and a re-
lationship set is a role. A role designates the set of
objects of an object set that participate in a relation-
ship set. If we wish to name the role, we place the role
name near the connection between its object set and
its relationship set. For instance, the role Person Ad-
dress in Figure 3 appears near the connection between
the object set Address and the relationship set Person
is at Address. A named role is a specialization of the
object set to which it connects. Person Address thus
represents the subset of addresses that associate with
persons.

2.2 Data Frames

Each object set (including each named role) in a do-
main ontology has an associated data frame [6], which
describes instances for the object set. Data frames
capture the information about object-set instances in
terms of their external and internal representation,
their context keywords or phrases that may indicate
their presence, operations that convert between inter-
nal and external representations, and other manipula-
tion operations that can apply to instances of the ob-
ject set along with context keywords or phrases that
indicate the applicability of an operation and operands
in an operation. Figure 4 shows sample (partial) data
frames for Time, Date, Address, Person Address, Der-
matologist, Appointment, Insurance, and Distance.

As Figure 4 shows, we use regular expressions to
capture external textual representations. The Time
data frame, for example, captures instances that end
with “AM” or “PM” (e.g. “2:00 PM” and “9:30
a.m.”). A data frame’s context keywords/phrases are
also regular expressions. For example, the Distance
data frame in Figure 4 includes context keywords such
as “miles” or “kilometers”. In the context of one of
these keywords, if a number appears, it is likely that
this number is a distance. A nonlexical object set
such as Dermatologist has only context keywords or
phrases. Figure 4 shows that the Dermatologist data
frame includes a regular expression, which includes
keywords and phrases that could indicate the presence
of an instance of a dermatologist.

The operations in data frames manipulate object-
set instances. For example, the operation Distance-

Time

...

text representation:

([2-9]|1[012]?):([0-5]\d)\s*[aApP]\.?[mM]\.?|...

TimeAtOrAfter(t1: Time, t2: Time)

returns (Boolean)

context keywords/phrases:

(at\s+)?{t2}\s+or\s+after|...

TimeEqual(t1: Time, t2: Time)

returns (Boolean)

context keywords/phrases: (at\s+)?{t2}

...

Date

...

text representation:

...|(the\s+)?([1-9]|[12]\d|3[01])\s*(th|...)|...

DateBetween(x1: Date, x2: Date, x3: Date)

returns (Boolean)

context keywords/phrases:

between\s+{x2}\s+and\s+{x3}|...

...

Address

...

DistanceBetweenAddresses(a1: Address, a2: Address)

returns (Distance)

...

Person Address

...

context keywords/phrases:

(my\s+)?home|(my\s+)?house|where\s+I\s+live|...

...

Dermatologist

internal representation: object id

context keywords/phrases:

[Dd]ermatologist|skin\s+doctor|...

...

Appointment

internal representation: object id

context keywords/phrases:

appointment|want\s+to\s+see\s+an?|...

...

Insurance

...

text representation: IHC|DMBA|...

context keywords/Phrases:

insurance|medical\s+insurance|...

InsuranceEqual(i1: Insurance, i2: Insurance)

returns (Boolean)

context keywords/phrases: {i2}

...

Distance

internal representation: real

text representation: \d+(\.\d+)?|(\.\d+)

context keywords/phrases: miles?|kilometers?|...

DistanceLessThanOrEqual(d1: Distance, d2: Distance)

returns (Boolean)

context keywords/phrases: (within|...)\s+{d2}|...

...

Figure 4: Some sample data frames. (The “...” in the
textual-representation part of the Time data frame in-
dicates that there are other representations of Time
such as military time. In general the presence of el-
lipses show omissions needed to complete the data
frames.)



Between(a1 : Address, a2 : Address) computes the
distance between its two address arguments a1 and
a2. Boolean operations represent possible general con-
straints in the domain. For instance, the Boolean op-
eration TimeAtOrAfter(t1 : Time, t2 : Time) in the
Time data frame returns true if time t1 is the same
as or comes after time t2.

The context keywords/phrases for an operation in-
dicate the possible applicability of the operation. The
context keywords/phrases are regular expressions that
include keywords or phrases and possibly expandable
expressions represented by operand names enclosed in
braces. The system expands these expressions by find-
ing the types of their operands and substituting the
textual representations in the data frames of the types
for these expressions. The advantage of marking these
expandable expressions with operands is that when
context keywords/phrases for an operation match sub-
strings in a service request, the system can record
which values are for which operands. For instance, the
context keywords/phrases associated with the opera-
tion DateBetween in Figure 4 has the regular expres-
sion between\s+{x2}\s+and\s+{x3}, which includes
the expandable expressions {x2} and {x3}. As Fig-
ure 4 shows, the operands of these two expressions are
of type Date. When this regular expression matches a
substring in a request such as “make the appointment
between the 10th and the 15th,” the system can record
that the first date value (“the 10th”) is for x2 and the
second date value (“the 15th”) is for x3.

2.3 Implied Knowledge

Object sets, relationship sets, and constraints that can
be computed from the domain ontology constitute the
implied knowledge. For example, the system can de-
rive a relationship set between Appointment and Name
from the given relationship sets Appointment is with
Service Provider and Service Provider has Name. The
system can also determine that Name mandatorily
depends on Appointment from the given constraints
∀x(Appointment(x ) ⇒ ∃≥1y(Appointment(x ) is with
Service Provider(y))) and ∀x(Service Provider(x )⇒
∃≥1z (Service Provider(x ) has Name(z ))), where the
former states that Service Provider is mandatory
for Appointment and the latter states that Name
is mandatory for Service Provider. Further, the
system can determine that Name functionally de-
pends on Appointment from the given constraints
∀x(Appointment(x ) ⇒ ∃≤1y(Appointment(x ) is with
Service Provider(y))) and ∀x(Service Provider(x ) ⇒
∃≤1z (Service Provider(x ) has Name(z ))). As ad-
ditional examples, there are many implied general-
ization/specialization constraints derivable from the
constraints in Figure 3. For instance, the system
can derive the implied constraint ∀x(Dermatologist(x )
⇒ Service Provider(x )) by transitivity from the
following given constraints: ∀x(Dermatologist(x )

⇒ Doctor(x )), ∀x(Doctor(x ) ⇒ Medical Service
Provider(x )), and ∀x(Medical Service Provider(x ) ⇒
Service Provider(x )).

The connections between operands of an opera-
tion in a data frame and the relationship sets of a
semantic data model may be implicit. Consider, for
example, the operation DistanceBetweenAddresses in
the Address data frame, which computes the distance
between two addresses. It is not explicitly given
in the domain ontology, Figures 3 and 4, whether
this operation computes the distance given two
service-provider addresses, two person addresses, or a
service-provider address and a person address. The
system, however, can reason that for an appointment,
if there is a constraint on distance, then it must
be between a service-provider address and a person
address. The system reasons as follows. The con-
straints ∀x(Appointment(x ) ⇒ ∃≤1y(Appointment(x )
is with Service Provider(y))) and ∀x(Appointment(x )
⇒ ∃≥1y(Appointment(x ) is with Service Provider(y)))
allow the system to infer the implicit constraint
∀x(Appointment(x ) ⇒ ∃1y(Appointment(x ) is
with Service Provider(y))), which states that for
any appointment there exists exactly one service
provider. The system can derive from the constraints
∀x(Service Provider(x ) ⇒ ∃≤1y(Service Provider(x )
is at Address(y))) and ∀x(Service Provider(x )
⇒ ∃≥1y(Service Provider(x ) is at Address(y))) the
constraint ∀x(Service Provider(x ) ⇒ ∃1y(Service
Provider(x ) is at Address(y))), which states that
there is exactly one address for a service provider.
Given these two derived constraints, since there is at
most one service-provider address for an appointment,
the system can certainly exclude the possibility that
DistanceBetweenAddresses computes distances be-
tween two addresses of service providers when it makes
an appointment. Likewise, the system can exclude the
possibility that DistanceBetweenAddresses computes
the distance between addresses of persons. Thus,
the system can infer that the two operands a1 and
a2 of the operation DistanceBetweenAddresses must
obtain their values from addresses in the relationship
sets Service Provider is at Address and Person is at
Address.

3 Domain Ontology Recognition

In our ontology-based approach, the objective of the
domain ontology recognition process is to find a do-
main ontology that best matches a service request.
The process takes a set of available ontologies belong-
ing to different domains and a service request as input
and returns a marked-up domain ontology that best
matches the service request as output.

For each domain ontology, the system applies all
the recognizers in the data frames of every object set
in the domain ontology to the service request. It marks
every object set whose recognizers match a substring
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(a) Matched (X) object sets in the semantic data model in Fig-
ure 3.

XDistance
XTimeAtOrAfter(t1: Time, “1:00 PM”)
XDateBetween(x1: Date, “the 5th”, “the 10th”)
XDistanceLessThanOrEqual(d1: Distance, “5”)
XInsuranceEqual(i1: Insurance, “IHC”)

(b) Matched (X) object sets and operations in the data frames
in Figure 4.

Figure 5: Output of the recognition process—the
marked-up domain ontology.

in the service request and every operation whose ap-
plicability recognizers match a substring in the service
request. The result of the matching is a set of marked-
up domain ontologies.3

When the recognition process executes for the do-
main ontology in Figures 3 and 4 and the appoint-
ment request in Figure 1, it produces as output the
marked-up ontology in Figure 5. Figure 5(a) shows the
matched (X) object sets in the semantic data model
in Figure 3, and Figure 5(b) shows the matched (X)
operations and the additional object sets from Fig-
ure 4. The recognizers in the data frame in Figure 4
for Dermatologist recognize the context keyword “der-
matologist” in the service request in Figure 1, and
therefore Dermatologist is marked (X). Likewise, as
Figure 4 makes evident, recognizers in the Date data
frame recognize “between the 5th and the 10th”; in
the Time data frame recognize “at 1:00 PM or after”;
in the Distance data frame recognize “within 5 miles”;
in the Appointment data frame recognize “want to see
a”; in the Insurance data frame recognize the context
keyword “insurance” and the constant value “IHC”;

3To scale this part of the ontology recognition process to
a large set of ontologies, we would need to use some form of
indexing or do some light-weight filtering to reduce the large set
of ontologies to a small set of candidate ontologies.

and in the Person Address data frame recognize the
context phrase “my home”. Therefore these object
sets are marked. Although not included in Figure 4,
we assume that the recognizer for context keywords
in the Insurance Salesperson data frame would recog-
nize “insurance”. Therefore Insurance Salesperson is
marked.

Given the data frames in Figure 4, additional
matched operations and object sets may have been
expected. For example, the context keywords/phrases
for the operation TimeEqual in the Time data frame
would match “at 1:00 PM” and the Cost data frame
may have recognizers that match “within 5”. We elim-
inate these matches, however, based on a subsump-
tion heuristic. This heuristic uses the positions of
the matched substrings in a service request to deter-
mine whether a matched substring subsumes another
matched substring. The system does not mark an ob-
ject set or an operation if its matched substring is prop-
erly subsumed by another matched substring. We as-
sume that there is only one match for a string and that
the subsuming substring is a better match. Thus, al-
though the context keywords/phrases for the operation
TimeEqual would recognize “at 1:00 PM”, the system
would not mark the operation TimeEqual because it
matches with only the substring “at 1:00 PM”, which
is subsumed by the substring “at 1:00 PM or after”,
matched by the operation TimeAtOrAfter.

To choose the marked-up domain ontology that
best matches the service request, the system ranks
them. In our approach, the system grants rank val-
ues for each marked-up domain ontology based on the
marked object sets. The marked main object set of the
marked-up ontology has the highest weight for obvi-
ous reasons. Marked mandatory object sets contribute
with the next highest weight because they represent
the necessary requirements to establish the main con-
cept. Marked optional object sets contribute with
lower weights because they are not necessary for es-
tablishing the main concept.4 To continue with our
running example, we assume that the system selects
our appointment ontology as the best matched ontol-
ogy for the service request in Figure 1.

4 Formal Representation Generation

A formal representation of a free-form service request
is a predicate-calculus formula. The system gener-
ates the predicates of a formal representation for a
free-form service request only from the given and im-
plied knowledge. It cannot generate predicates for con-

4The actual weights that we used in our experiments were 3
for the main object set, 2 for each object set that mandatorily
depends on the main object set, and 1 for each optional object
set with respect to the main object set. Our system was able to
uniquely select the right ontology using these weights. However,
more sophisticated weights and heuristics may be necessary as
the number of ontologies and the overlap among these ontologies
increase.



straints in a service request that refer to object sets, re-
lationship sets, constraints, or operations beyond this
knowledge. For instance, if the appointment ontology
designer leaves out the Insurance object set, any con-
straint in a service request about insurance such as
“must accept my IHC insurance” will be ignored.

The input to the formal representation generation
process is a marked-up ontology. The output is a
predicate-calculus formula. Not all knowledge in a
marked-up ontology is relevant. Irrelevant knowledge
should be pruned away. Otherwise, the system will
generate an overconstrained predicate-calculus for-
mula. The system, therefore, should find the sub-
ontology including object sets, relationship sets, and
operations that are relevant to the service request. We
call this sub-ontology the service request view. In Sub-
sections 4.1 and 4.2, we explain how the system gen-
erates the components of the service request view. In
Subsection 4.3, we show how the system uses the ser-
vice request view to generate the formal representa-
tion.

4.1 Relevant Object Set and Relationship Set
Identification

In this section, we explain how the system uses the
explicit and implicit knowledge in a marked-up ontol-
ogy to find the object sets and the relationship sets
that are relevant for a service request. In general, the
relevant object sets and relationship sets are:

1. the main object set (the object set marked with
“–> •”) because we must establish an object in
this object set to satisfy the service request;

2. the object sets that mandatorily depend on the
main object set either directly or transitively be-
cause they are the essential requirements to es-
tablish an object in the main object set;

3. the marked optional object sets because they rep-
resent additional, user-chosen requirements on the
requested service; and

4. the relationship sets that connect these object
sets.

All other object sets and relationship sets are pruned
away.

The system obtains the object sets that mandatorily
depend on the main object set from the given and im-
plied relationship sets that involve the main object set
and from the given and implied constraints for these
relationship sets. In our running example, the given
relationship set Appointment is with Service Provider
shows that Service Provider is related to Appoint-
ment, and the given constraint ∀x (Appointment(x )
⇒ ∃≥1y(Appointment(x ) is with Service Provider(y)))
shows that Service Provider is mandatory. Further,
as we discussed in Subsection 2.3, there is an implied

relationship set between Appointment and service-
provider Name, and an implied constraint for this im-
plied relationship set that makes Name mandatorily
depend on Appointment. Likewise, the system can in-
fer that Date, Time, Person, service-provider Address,
and person Name are all mandatory.

The object set Duration optionally depends on the
main object set because of the absence of the con-
straint ∀x (Appointment(x ) ⇒ ∃≥1y(Appointment(x )
has Duration(y))), which allows the object set Dura-
tion to be optional. Since Duration is not marked,
the system does not include it as a relevant concept
for the service request. Likewise, since the object sets
Service, Price, and Description are optional with re-
spect to the main object set and unmarked, the system
does not included them. Although Person Address op-
tionally depends on the main object set Appointment,
the system keeps it because it is marked.

To determine what the system keeps in a general-
ization/specialization (is-a) hierarchy, the system con-
siders the constraints imposed by the main object set
on an is-a hierarchy and the constraints that the hi-
erarchy imposes on its object sets. If the constraints
imposed by the main object set on the is-a hierarchy
allow only one instance of a marked specialization and
the marked specializations are mutually exclusive, the
system keeps only one marked specialization. The rea-
son is that the instance in this case can be in only one
marked specialization.

Referring to our example, the implied constraint
∀x (Appointment(x ) ⇒ ∃1y(Appointment(x ) is with
Service Provider(y))) requires exactly one instance
value in the is-a hierarchy to be associated with an
appointment. Further, the implied mutual exclusion
constraint between the marked specializations, Der-
matologist and Insurance Salesperson, allows the sys-
tem to infer that the single instance must belong to
only one of these marked specializations. To deter-
mine which one of the marked specializations, the sys-
tem ranks them. Each marked specialization receives a
rank value according to: (1) the number of strings in a
service request matched by the data frame recognizers
of the specialization, (2) the number of the marked ob-
ject sets directly related to the specialization, and (3)
the distance between the locations of the strings in the
service request matched by the specialization and the
locations of the strings in the service request matched
by the main object set. For the first criterion for
our example, Dermatologist matches with more strings
(two occurrences of “dermatologist”) than does Insur-
ance Salesperson (matches with the single string “in-
surance”). For the second criterion, both the marked
specializations relate to one marked object set, In-
surance. (Observe that since Dermatologist in Fig-
ure 5 is a Doctor, it inherits all the relationship sets
in which Doctor is involved, and thus Dermatologist is
connected to Insurance.) For the third criterion, the
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Figure 6: The relevant object sets and relationship sets
for the appointment in Figure 1.

location of the first occurrence of “dermatologist” in
the service request is closer to the location of the string
“want to see a”, matched by the main object set than is
the location of the string “insurance”, matched by In-
surance Salesperson. Thus, the system keeps only the
marked specialization Dermatologist in the is-a hierar-
chy. The system removes all the other specializations
and collapses the is-a hierarchy. Figure 6 shows the
resulting relevant object sets and relationship sets for
the appointment request in Figure 1.

When the constraints imposed by the main object
set allow only one marked specialization, but mutual-
exclusion constraints in the is-a hierarchy do not force
the single instance to be in only one marked special-
ization, it is possible that the single instance could
belong to one or more of the marked specializations.
For this case we find the least upper bound object set
OLUB in the is-a hierarchy to which instances of all
marked specializations belong. We then prune away
all unmarked specializations in the is-a hierarchy, col-
lapse all specializations to OLUB , and replace the root
object set with OLUB . In doing so, we also keep all
relationship sets that lead from object sets in the is-a
hierarchy that are not pruned away to other marked
object sets. These other marked object sets are re-
lated mandatorily or optionally to OLUB depending
on given or implied constraints.

When the constraints imposed by the main object
set allow more than one marked specialization, we find
the least upper bound object set OLUB for the marked
specializations. We then prune away all the other spe-
cializations from the is-a hierarchy and collapse the
is-a hierarchy as described for the previous case.

Finally, if there is no marked specialization in an
is-a hierarchy but an element in the is-a hierarchy is
mandatory, we keep the root of the is-a hierarchy and
prune away all its specializations. We also keep all

relationship sets that lead to marked object sets, if any,
and optionally connect them to the root. If an element
in the is-a hierarchy is not mandatory, we discard the
entire hierarchy and all connected relationship sets.

4.2 Relevant Operation Identification

The operations relevant to a service request are the
Boolean operations whose applicability recognizers
match strings in the service request and operations on
which operands of these Boolean operations may de-
pend for values. For our appointment example, the
Boolean operations in Figure 5(b) are the relevant
Boolean operations.

The system needs to bind the operands of the oper-
ations that, as of yet, are not instantiated to value
sources. Value sources can be the relevant object
sets for the service request or operations in the data
frames that compute values for the operands. In our
running example, the operation DateBetween has the
uninstantiated operand x1 of type Date. Since Date
is involved in one relationship set Appointment is on
Date, the system binds x1 to this relationship set yield-
ing the constraints Appointment(x0 ) is on Date(x1 )
∧ DateBetween(x1, “the 5th”, “the 10th”).5 Simi-
larly, the system binds the uninstantiated operands
t1 in TimeAtOrAfter to yield the constraint Appoint-
ment(x0 ) is at Time(t1 ) ∧ TimeAtOrAfter(t1, “1:00
PM ”) and the uninstantiated operand i1 in Insur-
anceEqual to yield the constraint Dermatologist(x3 )
accepts Insurance(i1 ) ∧ InsuranceEqual(i1, “IHC”).

The operand d1 of the operation Distance-
LessThanOrEqual is of type Distance, which is not
involved in any given relevant object set in Figure 6.
The system, therefore, must find an operation that
depends on the relevant object sets and computes val-
ues for this input parameter. If the system cannot
find such an operation, the operation is ignored. The
operand d1 can potentially be computed by the op-
eration DistanceBetweenAddresses, which depends on
the relevant object set Address. The system, therefore,
binds d1 to the operation DistanceBetweenAddresses.
As we discussed in Subsection 2.3, the system can in-
fer from constraints on the relationship sets on which
the operation DistanceBetweenAddresses depends that
the address values a1 and a2 come respectively from
the Address object sets in Dermatologist is at Address
and Person is at Address.

Figure 7 shows the relevant operations for the ap-
pointment request in Figure 1. Each input parameter
is either instantiated with a value or bound to an op-
eration that yields a value or to a (possibly unknown
but nevertheless specific) value in an object set.

5Note that it is important here to be able to assign val-
ues recognized by expandable expressions to their respective
operands.



• Appointment(x0) is at Date(x1) ∧ DateBetween(x1, “the 5th”, “the 10th”)
• Appointment(x0) is at Time(t1 ) ∧ TimeAtOrAfter(t1, “1:00 PM ”)
• Dermatologist(x3) is at Address(a1 ) ∧ Person(x2) is at Address(a2 )
∧ DistanceLessThanOrEqual(DistanceBetweenAddresses(a1, a2 ), “5”)

• Dermatologist(x3) accepts Insurance(i1 ) ∧ InsuranceEqual(i1, “IHC”)

Figure 7: The relevant operations for the appointment request in Figure 1.

4.3 Predicate-Calculus Formula Generation

The system conjoins the predicates generated as de-
scribed in Subsection 4.1 and Subsection 4.2 to gen-
erate the formal representation for a free-form service
request. For our running example, the system con-
joins the predicates for each relationship set in Fig-
ure 6 with the formulas in Figure 7 to produce the
formal representation for the service request in Fig-
ure 1. After renaming variables, we have exactly the
predicate-calculus formula in Figure 2.

We point out that the algorithms to identify the
relevant object sets, relationship sets, and the oper-
ations work on general ontological knowledge. The
algorithms consider whether object sets are marked or
not, and they consider constraints over relationships
and among operations in data frames. The knowledge
the algorithms consider is independent of a specific do-
main. As a significant consequence, these algorithms
are fixed and work across domains with no need to
recode them.

5 Performance Analysis

We conducted experiments to evaluate our system.
The objective was to evaluate the system performance
in finding the predicates of a formal representation for
a free-form service request and values for predicate ar-
guments. We tested the system on service requests
belonging to the following domains: scheduling ap-
pointments with medical doctors, purchasing cars, and
renting apartments.

We asked subjects from Brigham Young Univer-
sity to make free-form, natural-language-like service
requests belonging to these domains using their own
words. The subjects ranged from savvy computer
users and online shoppers to users with limited com-
puter skills. We provided the subjects with no in-
formation about the structure of the underlying do-
main ontologies or the recognizers or operations in the
data frames. We asked the subjects to make service
requests with only conjunctive constraints and posi-
tive literals—the type of constraints that our system
is capable of recognizing. To avoid technical terms
(e.g. “conjunctive” and “positive literals”), we pro-
vided users with illustrative examples to use for for-
mulating their requests. Figure 8 shows the instruc-
tions we provided for subjects to write appointment
requests for medical doctors.

Table 1 shows the number of service requests and
the number of included predicates and values in these

Requests Predicates Arguments
Appointment 10 126 34
Car Purchase 15 315 98
Apt. Rental 6 107 38
Totals 31 548 170

Table 1: Number of service requests, predicates, and
arguments.

Recall Precision
Appointment predicates 0.978 1.000

arguments 0.941 1.000
Car Purchase predicates 0.998 0.999

arguments 0.979 0.997
Apt. Rental predicates 0.968 1.000

arguments 0.921 1.000
All predicates 0.981 0.999

arguments 0.947 0.999

Table 2: Recall and precision.

requests for each of the three domains. We received
a total of 31 requests, which included a total of 548
constraints and a total of 170 constant values. We
reviewed all service requests we received, manually ex-
tracted the included constraints and constant values
in each service request, assigned each constant value
to its respective operand, manually generated a for-
mal representation for each request, and stored it in a
format similar to the way the system records results.
We then fed each service request to the system, which
created the formal representation for the request, com-
pared this formal representation against the manually
generated request, and automatically computed the re-
call and precision.

Table 2 shows the performance of the system in find-
ing predicates and constant values in terms of the re-
call and precision for each one of the three domains
along with the overall recall and precision. The sys-
tem performed surprisingly well.

As Table 2 shows, the recall for predicates was high
for all three domains. The recall numbers for con-
stant values was a little lower, but nevertheless quite
high. The system did not recognize these variations of
date for appointments: “any Monday of this month”
and “most days of the week”, these features for cars:
“power doors and windows” and “v6” (the engine size),
and these features for apartments: “a nook”, “dryer
hookups”, and “extra storage”. Therefore, the recall
for constant values in the appointments, cars, and
apartments rental domains dropped off from 100%.
Further, missing these constant values caused the sys-



Assume that you want make an appointment with some doctor. Assume further that you have software that 
can schedule the appointment by allowing you to specify your appointment using natural language 
(English). Use your own words to write an appointment request for some doctor (use only one of these 
doctor specialties: dermatologist, pediatrician, dentist, gynecologist, and neurologist). You can specify 
constraints on the requested appointment such as date, time, how far are you willing to go, type of 
insurance that the doctor should accept, and so forth.  
 
In your request, please do not include alternative-choice constraints such as “I want the appointment at 
10:00 AM or after 3:00 PM” or negated constraints such as “the appointment should not be at 9:00 AM.”  
 

Figure 8: Instructions for subjects for the appointments domain.

tem to miss the constraints over these values caus-
ing the recall for predicates in the appointments, cars,
and apartments rental to be lower than they otherwise
would have been.

We can fix these recall problems by providing better
recognizers that can better cover the space of possible
values for the object sets. We recognize, however, that
this may not always be easy. In [7], for example, the
authors describe an automaton with 1,223 states and
21,006 arcs to correctly recognize strings representing a
date. Although not always easy to obtain full coverage,
it is possible, with reasonable effort, to obtain near
full coverage. The advantage gained may very well be
worth the effort.

The precision was near 100% for both predicates
and arguments. When the system selects the right on-
tology for a service request, the system almost cannot
obtain irrelevant constraints because our ontology is
narrowly focussed on the service. The only way the
system can produce an irrelevant predicate is when
the system incorrectly marks an operation or an ob-
ject set based on the appearance of some constant
value or a context keyword/phrase and the ontolog-
ical knowledge is not enough to enable the system to
prune it away. Consider, for example, this constraint
“I want a Toyota with a cheap price, 2000 would be
great ...”, which was taken from one of the requests
and for which our system incorrectly generated the
constraint, PriceEqual(p1 : Price, “2000”). The ap-
pearance of the contextual keyword “price” close to
the number 2000 makes our system recognize 2000 as a
price value rather than a year value. The type of ambi-
guity in this constraint is not easy to handle (perhaps
not even easy for humans) because it is not so clear
whether the subject meant the price to be 2000 or the
year to be 2000.6

6 Related Work

Some researchers in the natural language processing
community work on systems that transform natural
language to a formal specification such as predicate
calculus, as we do here. These systems, called logic

6Note that the “a” that would usually have appeared in front
of “2000” really is missing. If it had been there, our system
would have correctly extracted the “2000” as a year.

form generation or transformation systems [5, 4, 10],
use parsers to parse a syntactically correct sentence
and identify its constituents such as nouns, verbs, and
adjectives. Each constituent defines a predicate. The
syntactic structure of a parsed sentence defines the
relationships among the constituents, which are cap-
tured through shared arguments among the predicates.
Based on reported results in [5, 4, 10] and in [13], which
compares the performance of three other approaches,
these systems are able to achieve a recall within the
interval [78%, 90%] and a precision within [81%, 87%]
at the predicate level, and a recall within [65%, 77%]
and a precision within [72%, 77%] at the argument
level.

For many years, researchers in the database commu-
nity have also worked on generating constraints from
natural language queries. Older approaches, surveyed
in [3], parse their input using either syntactic parsers
or sematic parsers to produce parse trees. The main
difference between syntactic and semantic parsing is
that the grammar categories for semantic parsing di-
rectly correspond to database elements such as table
names and attributes names rather than syntactic con-
cepts such as noun phrases. In both cases, the parse
tree is used to generate a database query with the help
of mapping rules that specify how each element in the
parse tree maps to an element in the database query.

Newer approaches build on these older approaches
by introducing additional techniques that improve re-
sults. The approach proposed in [8] uses a dependency
parser to determine how the words in a sentence de-
pend on each other. A query is parsed to create the
parse tree, which captures the dependencies between
the query tokens, and then each node in the parse tree
is classified according to XQuery components (e.g. a
return clause). If the system cannot classify some
node in the parse tree, it asks a user to rephrase the
query. The where clause constraints are created based
on patterns that appear in a dependency tree. For in-
stance, the appearance of the pattern “〈variable〉 +
〈constant〉”—i.e. a variable followed by a constant
value—maps to the constraint “variable = constant”
in where clause. Experiments reported in [8] show
that this approach is able to achieve 95.1% precision
and 97.6% recall. These results are for queries that are



correctly parsed and whose resulting parse-tree nodes
are correctly classified. With respect to all queries,
however, the reported recall and precision were respec-
tively 90.1% and 83%.

The PRECISE system, proposed first in [12] and
later enhanced with a semantic model to correct some
parser errors [11], uses a statistical parser and lex-
icons, consisting of names of relations, attributes,
and values of the attributes as well as wh-designators
(what, which, where, who, and when designators) at-
tached to the attributes. A natural language query
is parsed with respect to the lexicon that matches
each main word in the query to one or more data-
base elements (table name, attribute name, value, and
wh-designator). The system then constructs attribute-
value mappings, which are validated by the relation-
ships produced by the parser. The where clause in
the generated SQL query is a conjunction of attributes
with mapped values along with join conditions that re-
flect the join paths among tables. The reported results
for experiments on three domains show that PRECISE
is able to achieve 100% precision and a recall within
the interval [∼75%, ∼93%] for “semantically tractable
queries.” Like our proposed system, PRECISE exten-
sively exploits the schema of the database. Since nei-
ther system generates constraints beyond its schema,
precision tends to be high. Improper constraints can
only be generated by false positives within the purview
of the database schema.

The approach described in [9] is quite close to our
approach. It uses a semantic model of an underlying
database, which is a graph that consists of nodes rep-
resenting database relations and attributes and edges
representing connections among relations. Keywords
or keyword phrases are attached as labels to nodes and
operators (standard operators such as “<”, “>”, or
“=”). Operators are attached to the attributes if these
operators apply to values of the attributes. The sys-
tem matches a natural language query to the keywords
attached to semantic-model elements and uses a sta-
tistical approach (n-grams) to disambiguate matches.
As with our approach, this approach does not seem
to require syntactically correct queries. No empirical
results are reported in [9], and therefore it is hard to
assess its performance.

All these approaches, except [9], expect syntacti-
cally correct sentences. We do not. Further, generally
speaking, our approach performed with better recall
and precision. We believe that our approach has two
important novelties that contribute to its performance.
First, the semantic data model captures the relation-
ships among objects and constraints over these objects
in the domain, and therefore we avoid precision errors
introduced when parsers try to determine relationships
among constituent parts of the input. Further, as an
added benefit of our particular service-oriented para-
digm, the semantic data model allows the system to

derive relationships that are necessary for satisfying a
service request even though the service request does
not specify them at all. Second, the semantics asso-
ciated with the object sets through data frames allow
our approach to capture constraints through opera-
tions in these data frames. This means that once a
constraint in a service request is recognized by the ap-
plicability recognizers of an operation, then this con-
straint is correctly formalized by means of this opera-
tion. Our approach, however, does require designers of
service-request ontologies to produce a proper seman-
tic data model that appropriately covers the scope of
the service and to produce recognizers in data frames
that correctly recognize appropriate value and key-
word instances. We believe, however, that because of
the narrow focus of a particular service, this task is as
easy (and possibly easier) than producing required lex-
icons, parsers, and similar components for alternative
approaches.

7 Conclusions and Future Work

We proposed an ontology-based approach for recogniz-
ing constraints in a free-form, fully unconstrained ser-
vice requests and formally representing them in terms
of predicate calculus formulas. We tested our proposed
approach and found that it achieved a recall averag-
ing 98.1% for predicates and 94.7% for arguments, and
achieved a precision of near 100% for both predicates
and arguments. Thus, we believe that our approach is
likely to be a valuable alternative in situations where
(1) the input is a free-form service request with con-
junctive constraints, (2) the request provides enough
of a hint to allow our system to find a matching do-
main ontology, and (3) the request can be satisfied by
inserting a single object in an object set of interest in
a domain ontology and then by inserting other manda-
tory and optional objects required for the request.

As future work, we plan to integrate the work re-
ported here with other work we have done [1] to pro-
duce the overall system we have envisioned [2]. The
system we have envisioned transforms a service request
into a predicate-calculus formula as explained here. It
uses the predicate-calculus formula to create a query
to a databases associated with the domain ontology
from which the formula was generated to instantiate as
many variables of the formula as possible. The system
then discovers the variables in the predicate-calculus
formula that are yet to be instantiated and interacts
with a user to obtain values for these variables. When
all the variables are instantiated, the system checks
whether the constraints of the formula are satisfied.
Constraint satisfaction can yield too many solutions or
no solution. As reported in [1], the system controls the
potential overload on users when there are too many
solutions by returning the best-m solutions rather than
all of them or offers users the best-m near solutions
when there is no solution. When a user chooses one of



the suggested solutions or near solutions, the system
completes the service request by inserting an object of
interest (e.g. an appointment) in the main object set
of the domain ontology and by inserting other manda-
tory and optional objects and relationships and thus
satisfies the service request.
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