
Demonstration: A Robust Web Data-Extraction Technique
With High Recall and Precision

D.M. Campbell, Y. Ding, D.W. Embley, K. Hewett, D.L. Jackman,
S.S. Jeffries, Y.S. Jiang, D. Lewis, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,

A.L. Peacock, D.J. Seer, R.D. Smith, S.H. Yau, M. Xu, and L. Xu

Brigham Young University
Provo, Utah 84602, U.S.A.

Contact Author: liddle@byu.edu

Abstract
Our demo shows how to extract and structure data found in data-rich, unstructured, multiple-record Web
documents. Users may either apply pre-built extraction applications or build and apply their own. The
demo is significant because it (1) attacks an important data-centric problem and (2) uses database
technology to produce good results with minimal effort.

Introduction

Over the past two years, we have experimented successfully with extracting data

from data-rich, unstructured, multiple-record Web documents. Successful applications

have included car ads and job ads [ECLS98], obituaries [ECN+98,ECJ+99], real estate,

precious gems, computer monitors, games, musical instruments, stocks, and personals

[Hom00].

We have made our extraction technology available on the Web [Hom00]. Both a

“High-Level Data-Extraction Demo” (see Figure 1) and a “Detailed Data-Extraction

Demo” (see Figure 2) are available. The two demos are the same, except that the detailed

demo allows users to view intermediate steps and results.

Our approach to Web data extraction consists of the following five steps.

1. We begin with an HTML document that contains unstructured chunks of text for an

application of interest. (The text box in Figure 3 shows a rendered HTML document

for car ads – each car ad is an unstructured text chunk. The text box in Figure 4,

which contains the HTML source for this document, represents the kind of input we

process in our demo.)

2. For an application of interest we develop a conceptual-model instance, which we call

an application ontology. An application ontology describes the application’s objects

and the relationships and cardinality constraints among objects. Each object set in the

ontology has a description of its lexical values and its context keywords, which aid in

matching lexical constants identified in a document with object sets in the application

ontology. (The text box in Figure 5 shows the first few lines of an application

ontology for car advertisements.)

3. The system parses the application ontology to generate a database scheme and to

generate matching rules for constants and keywords. (The “Database Scheme” box in

Figure 6 shows the generated scheme for the cars application ontology.)

4. A record extractor automatically separates an unstructured Web document into

individual record-size chunks, cleans the chunks of markup-language tags, and

presents them as individual unstructured record text for further processing. ([EJN99]

explains how the system accomplishes these tasks.)

5. A recognizer automatically applies the matching rules generated by the parser to the

cleaned, unstructured records to extract data. The extraction algorithms use

proximity heuristics to correlate extracted keywords with extracted constants and use

cardinality constraints of the application ontology to construct records. The system

places the extracted results in a database, which can then be queried using SQL.

(Figure 6 shows a sample query and the results returned for the HTML source in

Figures 3 and 4.)

To make our approach general and robust across new and changing Web pages, we fix in

advance: the parser, the Web record extractor, the keyword recognizer, the constant

recognizer, the database scheme generator, and the record data generator. To switch from

one application domain to another, we simply switch to a different application ontology.

We build a new one when we encounter a domain for which no application ontology

exists.

To measure the success of our data-extraction work, we compute recall and

precision ratios for each attribute for each application. We achieved recall ratios in the

range of 90% and precision ratios near 98% for both car ads and job ads [ECLS98]. For

obituaries, a much more complex challenge, recall ratios ranged from 70% to 100%, and

precision ratios ranged from 93% to 100% (except for names of relatives, which dropped

to 71%) [ECJ+98]. When challenged to apply our obituary ontology without change to

world-wide obituaries from Ireland, Sri Lanka, New Zealand, and India, these results

continued to hold, although there was some drop-off caused by cultural localizations that

could be corrected within our framework.

Demo Description

Our demo lets a user click on one of the three rectangles in Figure 1 to view an

HTML document (see Figures 3 and 4), to view an application ontology (see Figure 5),

and to view a populated database (see Figure 6). Clicking on one of the nine internal

rectangles in Figure 2 lets a demo user view intermediate results such as cleaned

unstructured records or potential attribute-value pairs before heuristic processing.

The pull-down list in Figure 3 (or Figure 4) lets a user select one of 13 stored

HTML documents, and the pull-down list in Figure 5 lets a user select one of 11

application ontologies. After choosing an application ontology and an HTML document,

a user can click on the “Process the Ontology” button (see Figure 5) to process the chosen

application ontology against the chosen HTML document. The results are stored in a

relational database against which a user can pose any SQL query (see Figure 6).

An interesting feature of the demo lets users (1) modify a prespecified application

ontology, (2) create a new application ontology, or (3) load their own previously created

application ontology. The demo also lets users (1) modify HTML pages, (2) load HTML

pages from the Web, or (3) load HTML pages stored in their own directory. These

capabilities let users apply an ontology to any HTML page of their choosing (even one

that is “not appropriate”), modify ontologies to see how they behave, or experiment with

their own ontologies.

Our experience in teaching others to use the demo tells us: (1) a new user can

begin to do something interesting with a given application ontology in five to ten

minutes; (2) we can teach people the syntax and semantics of our ontology-specification

language in an hour or two (assuming they understand regular expressions); and (3) users

can create interesting ontologies with reasonably good recall and precision ratios in about

thirty hours. Indeed, students created several of our demonstration ontologies as a class

project in two to three dozen hours of work.

Significance

Our demo addresses the important problem of automatic data extraction. Further,

it is particularly significant for database researchers because of its database approach.

Important Problem. People want to know! And so do government agencies,

information providers, search-and-retrieval companies, and business-intelligence

professionals. But they’ re swamped with volumes of unstructured data churned out from

search engines, corporate Intranets, news feeds, and the increasing global Internet. They

want critical information extracted automatically, organized effectively, and presented

smartly in personalized information views.

The challenges are huge. Critical information is difficult to locate. Once located,

its incompatible formats make it difficult to use effectively. Large volumes of

unstructured text must be digested into an easy-to-use, organized, uniform format to

support querying, focused searching, and personalized information products.

A Database Approach. Some researchers have argued for a machine-learning

approach to data extraction. But our experience with the demo indicates that we can

produce handcrafted ontologies that are robust across new and evolving pages with no

more human effort than it typically takes to label a training set for machine learning.

Further, handcrafted ontologies normally yield higher recall and precision. We are not

arguing that machine learning has no place in this technology (it does), but we are

arguing, and trying to show with our demo, that database technology can and should play

a greater role in resolving these massive information challenges.

Our demo begins to show some possible ways to address these challenges. We apply

concepts in conceptual modeling, first-order constraints over database schemes, and

knowledge-base ontologies to drive us forward. These long-standing database

technologies can provide mechanisms to represent knowledge, store information, and

give symbols specific meaning in a particular context. Database technologies can be

leveraged to guide, combine, and interpret raw units of information and provide the basis

for information extraction, integration, analysis, and presentation.

Cited References of our Work

[ECJ+99] D.W. Embley, D.M. Campbell, Y. Jiang, S.W. Liddle, D.W. Lonsdale,Y.-

K. Ng, R.D. Smith. Conceptual-Model-Based Data Extraction from

Multiple-Record Web Pages. Data & Knowledge Engineering, 31(3):227-

251, November 1999.

[ECLS98] D.W. Embley, D.M. Campbell, RD. Smith, S.W. Liddle. Ontology-

based Extraction and Structuring of Information from Data-Rich

Unstructured Documents. In Proceedings of the 7th International

Conference on Information and Knowledge Management (CIKM’98),

52-59, Washington D.C., November 1998.

[ECN+99] D.W. Embley, D.M. Campbell, Y. Jiang, Y.-K. Ng, R.D. Smith, S.W.

 Liddle, and D.W. Quass. A Conceptual-Modeling Approach to

Extracting Data from the Web. In Proceedings of the 17th International

 Conference on Conceptual Modeling (ER’98), 78-91, Singapore,

 November 1998.

[EJN99] D.W. Embley, Y.S. Jiang, and Y.-K. Ng. Record-Boundary Discovery in

Web Documents. In Proceedings of the 1999 ACM SIGMOD

International Conference on Management of Data (SIGMOD’99),

467-478, Philadelphia, Pennsylvania, June 1999.

[Hom00] Home Page for BYU Data Extraction Group, 2000.

URL: http://www.deg.byu.edu

Figure 1. High-Level Demo.

Figure 2. Detailed Demo.

Figure 3. Rendered HTML Source.

Figure 4. HTML Source.

Figure 5. Application Ontology.

Figure 6. Database Scheme, SQL Query, and Results.

