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Abstract. The longstanding problem of automatic table interpretation
still illudes us. Its solution would not only be an aid to table processing
applications such as large volume table conversion, but would also be
an aid in solving related problems such as information extraction and
semi-structured data management. In this paper, we offer a conceptual
modeling solution for the common special case in which so-called sib-
ling pages are available. The sibling pages we consider are pages on the
hidden web, commonly generated from underlying databases. We com-
pare them to identify and connect nonvarying components (category la-
bels) and varying components (data values). We tested our solution using
more than 2,000 tables in source pages from three different domains—car
advertisements, molecular biology, and geopolitical information. Exper-
imental results show that the system can successfully identify sibling
tables, generate structure patterns, interpret tables using the generated
patterns, and automatically adjust the structure patterns, if necessary,
as it processes a sequence of hidden-web pages. For these activities, the
system was able to achieve an overall F-measure of 94.5%.

1 Introduction

The World Wide Web serves as a powerful resource for every community. Much
of this online information, indeed, the vast majority, is stored in databases on the
so-called hidden web.1 Hidden-web information is usually only accessible to users
through search forms and is typically presented to them in tables. Automatically
understanding hidden-web pages is a challenging task. In this paper, we introduce
a domain independent, web-site independent, unsupervised way to automatically
interpret tables from hidden-web pages.

Tables present information in a simplified and compact way in rows and
columns. Data in one row/column usually belongs to the same category or pro-
vides values for the same concept. The labels of a row/column describe this
category or concept.

Although a table with a simple row and column structure is common, tables
can be much more complex. Figure 1 shows an example. Tables may be nested
� Supported in part by the National Science Foundation under Grant #0414644.
1 There are more than 500 billion hidden-web pages. The surface web, which is indexed

by common search engines only constitutes less than 1% of the World Wide Web.
The hidden web is several orders of magnitude larger than the surface web [10].
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Fig. 1. A Sample Table from WormBase (http://www.wormbase.org).

or conjoined as are the tables in Figure 1. Labels may span across several cells to
give a general description as do Identification and Location in Table 4 of Figure 1.
Although labels commonly appear on the top or left, table designers occasionally
place labels on the right side of a table. In long tables, labels sometimes appear
at the end of a table or in the middle of a table, every few rows, in order to help
a reader find the correspondence between labels and data. Sometimes tables are
rearranged to fit the space available. Label-value pairs may appear in multiple
columns across a page or in multiple rows placed below one another down a
page. These complexities make automatic table interpretation challenging.

In this paper, we introduce a conceptual-modeling-based table interpreta-
tion system. We use a conceptual-modeling language to model both the in-
put tables and the output interpretations as suggested in [5]. When we do, the
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(a) (b)

Fig. 2. Conceptual Model Instances for (a) An Input HTML Table and (b) An Output
Interpretation.

table-interpretation problem becomes a problem of transforming one populated
conceptual-model instance to another.

Figure 2(a) shows the model instance for an HTML page containing one
or more tables. Each HTML table has a unique Table ID (e.g. the table num-
bers in Figure 1), and a unique Path in terms of the page’s DOM tree (e.g.
/html/table[4]/tbody/tr[1]/td[2]/table[1]/tbody/tr[6]/td[2]2). The tags <table>
and </table> delimit HTML tables in a web document. An HTML Table has
one or more Rows (delimited by <tr> tags); each Row has a Row#. A Row has
one or more Cells (delimited by <td> or <th> tags); each Cell has a Cell#.
Each Cell contains Content and may contain other HTML Tables. The Content
is the content of a cell, not between <table> and </table> tags. The Content
may consist of HTML tags, images, and strings. Using Figure 1 as an example,
Table 4 has three Rows, starting with Identification, Location, and Function. In
the first Row are two Cells. The Content of the first Cell is the string “Identi-
fication”, and the content of the second Cell is an HTML Table, Table 5, which
has seven Rows and fourteen Cells, two of which contain tables, Table 6 and
Table 7.

As Figure 2(b) shows, to interpret an HTML table is to properly associate
table category labels with table data values, as the set of label-value pairs of the
table. The Path for a table’s interpretation is its path in an HTML page. We
model the label-value pairs according to Wang notation [14]. The Wang Notation
for a table is a set of Label-Value Pairs. Each Label-Value Pair contains one La-
bel and one Value. Each Label has one or more Label Sequences, one to describe
each Dimension. A Label Sequence is a sequence of Label Components ordered
by their Sequence #’s. As an example, consider the value, 342 aa, that appears

2 Each table has a unique path; each path does not necessary lead to an HTML table
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Fig. 3. A Second Sample Table from WormBase.

in Table 7 of Figure 1. Table 7 is two-dimensional, as are many, if not most
HTML tables. The first dimension has the label sequence Identification.Gene
model(s).Amino Acids where the sequence #’s of the label sequence designate
identification as the first label component, Gene model(s) as the second, and
Amino Acids as the third. The second dimension has the label sequence Identi-
fication.Gene model(s).1 3

Although automatic table interpretation can be complex, if we have another
page, such as the one in Figure 3, that has essentially the same structure, the
system might be able to obtain enough information about the structure to make

3 If a table has multiple records (usually multiple rows) and if the records do not have
labels, we add record numbers. The table under Identification.Gene model(s), for
example, has two records (two rows), but no row labels. We therefore label the first
record 1 and the second record 2.
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automatic interpretation possible. We call pages that are from the same web site
and have similar structures sibling pages.4 The two pages in Figures 1 and 3 are
sibling pages. They have the same basic structure, with the same top banners
that appear in all the pages from this web site, with the same table title (Gene
Summary for some particular gene), and a table that contains information about
the gene. Corresponding tables in sibling pages are called sibling tables. If we
compare the two large tables in the main part of the sibling pages, we can see
that the first columns of each table are exactly the same. If we look at the cells
under the Identification label in the two tables, both contain another table with
two columns. In both cases, the first column contains identical labels IDs, NCBI
KOGs, ..., Putative ortholog(s). Further, the tables under Identification.IDs also
have identical header rows. The data rows, however, vary considerably. Generally
speaking, we can look for commonalities in sibling tables to find labels and look
for variations to find data values.

Given that we can find most of the label and data cells in this way, our
next task is to infer the general structure pattern of the web site and of the
individual tables embedded within pages of the web site. With respect to iden-
tified labels, we look below or to the right for value associations; we may also
need to look above or to the left. In Figure 1, the values for Identification.Gene
model(s).Amino Acids are below, and the values for Identification.Species are to
the right.

In addition to discovering the structure pattern for a web site, we can also dy-
namically adjust the pattern as we interpret the tables on each retrieved pages.
If the system encounters a table that varies from the pattern by having an addi-
tional or missing label, the system can change the pattern by either adding the
new label and marking it optional or marking the missing label optional. For
example, if we had not seen the extra Swissprot column in the sibling table of
Table 7 in Figure 3 in our initial pair of sibling pages, the system can add Swis-
sprot as a new label and mark it as optional. The basic label-value association
pattern is still the same.

By way of comparison with related work, we note that recent surveys [5,
17] describe the vast amount of research that has been done in table processing
and illustrate the challenges of the table interpretation problem. We focus in this
paper, however, only HTML tables. A number of HTML table extraction systems
use machine learning to recognize tables in web pages (e.g. [3, 15]). Drawbacks of
machine learning approaches, however, are that they need training data, and they
need to be retrained for tables from different web sites. Other table interpretation
systems work based on some simple assumptions and heuristics (e.g. [2, 6]). These
simple assumptions (labels are either the first row or the first column) are easily
broken in complex tables. More sophisticated table interpretation techniques
have appeared in recent papers [8, 9, 11]. None of this research makes use of

4 Hidden-web pages are usually generated dynamically from a pre-defined templates
in response to submitted queries. Therefore hidden-web pages usually have sibling
pages.
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sibling tables, but is complementary to our work and could potentially be used
in conjunction with our work in future efforts to improve results for certain cases.

Other researchers have also tried to take advantage of sibling pages to deter-
mine page structure. RoadRunner [4] compares two HTML pages from one web
site and analyzes the similarities and dissimilarities between them in order to
generate extraction wrappers. It discovers data fields by string mismatches and
discovers iterators and optionals by tag mismatches. EXALG [1] uses equiva-
lence classes (sets of items that occur with the same frequency in sibling pages)
and differentiating roles to generate extraction templates for the sibling pages.
DEPTA [18] compares different records in a page instead of sibling pages and
tries to find the extraction template for the record. Our system fundamentally
differs from these approaches. These approaches focus on finding data fields.
They do not discover labels or try to associate data and labels. Our system
focuses on table interpretation. It looks for a table pattern in addition to data
fields. Furthermore, Our system also tries to find the general structure pattern
for the entire web site. It dynamically adjusts the structure pattern as it encoun-
ters new, yet-unseen structures.

We call our system TISP (Table Interpretation with Sibling Pages). We
present the details of TISP and our contribution to table interpretation by sibling
page comparison in the remainder of the paper as follows. Section 2 provides the
details about how TISP analyzes a source page to find tables and match them
with tables in sibling pages. Section 3 explains how TISP infers the general
structure patterns of a web site and therefore how it interprets the tables from
the site. In Section 4, we report the results of experiments we conducted involv-
ing sites for car advertisements, molecular biology, and geopolitical information,
which we found on the hidden web. In Section 5, we make concluding remarks.

2 Sibling Table Recognition

After obtaining a source document, TISP first parses the source code and lo-
cates all HTML components enclosed by <table> and </table> tags (tagged
tables). When tagged tables are nested inside of one another, TISP finds them
and unnests them. In Figure 1, there are several levels of nesting in the large
rectangular table. The first level is a table with two columns. The first column
contains Identification, Location, and Function, and the second column contains
some complex structures. Figure 1 shows only the first three rows of this table—
one row for Identification, one for Location, and one for Function. (For the pur-
pose of being explicit in this paper, we assume that these three rows are the only
rows in this table.) The second column of the large rectangular table in Figure 1
contains three second-level nested tables, the first starting with IDs, the second
with Genetic Position, and the third with Mutant Phenotype. In the right most
cell of the first row is another table. There are also two third level nested tables.

We treat each tagged table as an individual table and assign a Table ID to it.
If the table is nested, we replace the table in the upper level with its ID number.
By so doing, we are able to remove nested tables from upper level tables. As a
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Tree1 Tree2

Fig. 4. DOM Trees for Table 7 in Figure 1 and its Sibling Table in Figure 3.

result, TISP decomposes the page in Figure 1 into a set of tables, each with an
ID and a path.

To compare and match tables, we first transform each HTML table into a
DOM tree. It is easy to transform our input in Figure 2(a) to a DOM tree,
indeed the conceptual-model instance abstractly models a DOM tree for the
tables within an HTML page. Tree1 in Figure 4 shows the DOM tree for Table 7
in Figure 1, and Tree2 in Figure 4 shows the DOM tree for its corresponding
table in Figure 3.

Tai [12] gives a well acknowledged formal definition of the concept of a tree
mapping for labeled ordered rooted trees. Let T be a labeled ordered rooted tree
and let T [i ] be the ith node in level order of tree T. A mapping from tree T to
tree T ′ is defined as a triple (M, T, T ′), where M is a set of ordered pairs (i,
j ), where i is from T and j is from T ′, satisfying the following conditions for all
(i1, j1), (i2, j2) ∈ M, where i1 and i2 are two nodes from T and j1 and j2 are
two nodes from T ′:

(1) i1 = i2 iff j1 = j2;
(2) T [i1] comes before T [i2] iff T ′[j1] comes before T ′[j2] in level order;
(3) T [i1] is an ancestor of T [i2] iff T ′[j1] is an ancestor of T ′[j2].
According to this definition, each node appears at most once in a mapping

and the order between sibling nodes and the hierarchical relation between nodes
are preserved. The best match between two trees is a mapping with the maximum
number of ordered pairs.

We use a simple tree matching algorithm introduced in [16] which was first
proposed to compare two computer programs in software engineering. It cal-
culates the similarity of two trees by finding the best match through dynamic
programming with complexity O(n1n2), where n1 is the size (number of nodes)
of T and n2 is the size of T ′. This algorithm counts the matches of all possible
combination pairs of nodes from the same level, one from each tree, and finds
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the pairs with maximum matches. The simple tree match algorithm returns the
number of these maximum matched pairs. The highlighted part in Tree1 in Fig-
ure 4 shows the matched nodes for Tree1 with respect to Tree2 in Figure 4. The
highlighted nodes indicate a match.

In our research, we use the results of the simple tree matching algorithm for
three tasks: (1) we filter out those HTML tables that are only for layout; (2) we
identify the corresponding tables (sibling tables) from sibling pages; and (3) we
match nodes in a sibling-table pair.

We call the maximum number of matched nodes among the two trees the
match score. For each table in one source page, we obtain match scores and thus
a ranking for all tables in a sibling page. Sibling tables should have a one to
one correspondence. Based on the match score, we use the Gale-Shapley stable
marriage algorithm [7] to pair potential sibling tables one to one.

For a pair of potential sibling tables, we calculate the sibling table match
percentage, 100 times the match score divided by the number of nodes of the
smaller tree. The match percentage between the two trees in Figure 4, for ex-
ample, is 19 (match score) divided by 27 (tree size of Tree2), which, expressed
as a percentage, is 70.4%.

We classify potential sibling tables into three categories: (1) exact match
or near exact match; (2) false match; and (3) sibling-table match. We use two
threshold boundaries to classify potential sibling tables: a higher threshold be-
tween exact or near exact match and sibling-table match, and a lower threshold
between sibling-table match and false match. Usually a large gap exists between
the range of exact or near exact match percentages and the range of sibling-
table match percentages, as well as between the range of sibling-table match
percentages and the range of false match percentages. Using active learning
with boostrap selective sampling [13], we first set initial thresholds by empirical
observation (90% for the higher threshold and 20% for the lower threshold); then
TISP dynamically adjusts the two thresholds as needed during the classification
process as more sibling pages are considered.

In our example, Tables 1, 2, and 3 have match percentages of 100% with
their sibling tables. The match percentages for Tables 4, 5, 6 and 7, and their
corresponding sibling tables, are 66.7%, 58.8%, 69.2%, and 70.4% respectively.
Our example has no false matches. A false match usually happens when a table
does not have a corresponding table in the sibling page. In this case, we save the
table. When more sibling pages are compared, we might find a matching table
for this saved table.

3 Structure Patterns

The structure pattern of a table tells us how to transform the information con-
tained in the model instances in Figure 2(a) to the model instance in Figure 2(b),
and thus how to interpret a table.
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Pattern 1:
<table>(<tbody>)?

<tr>(< (td|th) > {L})n

(<tr>(< (td|th) > {V })n )+

Pattern 2:
<table>(<tbody>)?

( < tr >< (td|th) > {L}(< (td|th) > {V })n )+

Pattern 3:
<table>(<tbody>)?

<tr>(< (td|th) > {L})n

( < tr >< (td|th) > {L}(< (td|th) > {V })(n−1) )+

Fig. 5. Some Basic Pre-defined Pattern Templates.

3.1 Pattern Templates

We use regular expression to describe table structure pattern templates. If we
traverse a DOM tree, which is ordered and labeled, in a preorder traversal, we can
layout the tree labels textually and linearly. We can then use regular-expression
like notation to represent the table structure patterns (see Figure 5). In both
templates and generated patterns we use standard notation: ? (optional), + (one
or more repetitions), and | (alternative). In templates, we augment the notation
as follows. A variable (e.g. n) or an expression (e.g. n-1) can replace a symbol
to designate a specific number of repetitions, which is unknown but fixed for the
expression as it is applied. A pair of braces { } indicates a leaf node. A capital
letter L is a position holder for a label and a capital letter V is a position holder
for value. The part in a box is an atomic pattern which we use for combinational
structural patterns in Section 3.4.

Figure 5 shows three basic pre-defined pattern templates. Pattern 1 is for
tables with n labels in the first row and with n values in each of the rest of the
rows. The association between labels and values is column-wise; the label at the
top of the column is the label for all the values in each column.

Pattern 2 is for tables with labels in the left-most column and values in the
rest of the columns. Each row has a label followed by n values. The label-value
association is row-wise; each label labels all values in the row.

Pattern 3 is for two-dimensional tables with labels on both the top and the
left. Each value in this kind of table associates with both the row header label
and the column header label.

3.2 Pattern Generation

To check whether a table matches any pre-defined pattern template, TISP tests
each template until it finds a match. When we search for a matching template,
we only consider leaf nodes and seek matches for labels and mismatches for
values. Variations, however, exist and we must allow for them. In tables, labels
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<table>
<tr> <td>Gene Model <td>Status <td>Nucleotides(coding/transcript)

<td>Protein <td>Amino Acids
(<tr><td>VGene Model<td>VStatus <td>VNucleotides(coding/transcript)

<td>VProtein <td>VAmino Acids)
+

Fig. 6. Structure Pattern for Table 7 in Figure 1.

or values are usually grouped. We are seeking for a structure pattern instead
of classifying individual cells. Sometimes we find a matched node, but all other
nodes in the group are mismatched nodes and agree with a certain pattern (e.g.
the highlighted record node in the second subtree in Tree1 in Figure 4.), TISP
should ignore the disagreement and assume the mismatched node is a node of
value too. Specifically, we calculate a template match percentage between a pre-
defined pattern template and a matched result, 100 times the number of leaf
nodes that agree with a pattern template divided by total number of leaf nodes
in the tree. We calculate the template match percentage between a table and
each pre-defined structure template. A match must satisfy two conditions: (1)
it must be the highest match percentage, and (2) the match percentage must
be greater than a threshold. Similar to the way we determine thresholds for
sibling table matches, we determine this template match percentage threshold
using active learning with boostrap selective sampling, with an initial threshold
of 80%.

Consider the mapped result in Figure 4 as an example. The highlighted nodes
are matched nodes in Tree1. Comparing the template match percentage for this
mapped result for the three pattern templates in Figure 5, we obtain 93.3%,
53.3%, and 80% respectively. Pattern 1 has the highest match percentage, and
it is greater than the threshold. Therefore we choose Pattern 1.

We now impose the chosen pattern, ignoring matches and mismatches. Note
that for the Tree1 in Figure 4, the first branch matches the part in Pattern 1 in
the first box and the second and the third branch, each match the part in the
second box, where n is 5. For Pattern 1, when n=1, we have a one-dimensional
table; and when n>1, we have a two-dimensional table for which we must gen-
erate record numbers.

After TISP matches a table with a pre-defined pattern template, it generates
a specific structure pattern for the table by substituting the actual labels for
each L and by substituting a placeholder VL for each value. The subscript L for
a value V designates the label-value pair for each record in a table. Figure 6
shows the specific structure pattern for Table 7 in Figure 1.

3.3 Pattern Usage

With a structure pattern for a specific table, we can interpret the table and all its
sibling tables. The path gives the location of the table, and the generated pattern
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gives the label-value pairs. The pattern must match exactly in the sense that
each label string encountered must be identical to the pattern’s corresponding
label string. Any failure is reported to TISP. (In Section 3.5, we explain how
TISP reacts to a failure notification.)

When the pattern matches exactly, TISP can generate the label sequence
and value for each label-value pair and thus can provide an interpretation for the
table. For our example, the chosen pattern is Pattern 1 with + (which allows for
multiple rows of values in the table). Thus, TISP needs to add another dimension
and add row numbers. Since the table is inside of other tables, TISP recursively
searches for the tables in the upper levels of nesting and collects all needed labels.

3.4 Pattern Combinations

It is possible that TISP cannot match any pre-defined template. In this case,
it looks for pattern combinations. Using Figure 7 as an example, assume that
TISP matches all the cells in the first and third column, but none in the second
and forth column. Comparing the template match percentage for this mapped
result for the three pattern templates in Figure 5, we obtain 50%, 75%, and
68.8% respectively. None of them is greater than the threshold, 80%. The first
two columns, however, match Pattern 2 perfectly, as do the last two columns.

Fig. 7. An Example for Pattern Combination from MutDB.

In many cases, tables can be more complicated. Most complex tables do not
match to only one pre-defined pattern template, but do match to a combination
of several of them. Patterns can be combined row-wise or column-wise. In a row-
wise combination, one pattern template can appear after another, but only the
first pattern template has the header: < table > (< tbody >)?. Therefore, a row-
wise combined structure pattern has a few rows matching one template and other
rows matching another template. In a column-wise combination, we combine
different atomic patterns. If a pattern template has two atomic patterns, both
patterns must appear in the combined pattern, in the same order, but they can
be interleaved with other atomic patterns. If one atomic pattern appears after
another atomic pattern from a different pattern template, the < tr > tag at the
beginning is removed. Figure 8 shows two examples of pattern combinations.
Example 1 combines Pattern 2 and Pattern 1 row-wise. Example 2 combines
Pattern 2 with itself column-wise. This second pattern matches the table in
Figure 7, where n = m = 1, and the plus (+) is 4.



12 Cui Tao et al.

Example 1:
< table > (< tbody >)?

(< tr >< (td|th) >{L}(< (td|th) > {V })n)+

< tr > (< (td|th) > {L})m(< tr > (< (td|th) > {V })m)+

Example 2:
< table > (< tbody >)?

(< tr >< (td|th) >{L}(< (td|th) > {V })n< (td|th) >{L}(< (td|th) > {V })m)+

Fig. 8. Two Examples of Pattern Combinations.

The initial search for combinations is similar to the search for single patterns.
TISP checks patterns until it finds mismatches, it then checks to see whether
the mismatched part matches with some other pattern. TISP first searches row-
wise for rows of labels and then uses these rows as delimiters to divide the
table into several groups. If it cannot find any row of labels, it repeats the
same process column-wise. TISP then tries to match each sub group with a pre-
defined template. This process repeats recursively until all sub-groups match
with a template.

For the example in Figure 7, TISP is unable to find any rows of labels, but
finds two columns of labels, the first and third column. It then divides the table
into two groups using these two columns and tries to match each group with
a pre-defined template. It matches each group with Pattern 2. Therefore, this
table matches column-wise with two combinations of Pattern 2 .

3.5 Dynamic Pattern Adjustment

Given a structure pattern for a table, we know where the table is in the source
document (its path), the location of the labels and values, and the association
between labels and values. When TISP encounters a new sibling page, it tries to
locate each sibling table following the path, and then to interpret it by matching
it with the sibling table structure pattern. If the new table matches the structure
pattern regular expression perfectly, we successfully interpret this table. Other-
wise, we might need to do some pattern adjustment. There are two ways to
adjust a structure pattern: (1) adjust the path to locate a table, and (2) adjust
the generated structure pattern regular expression.

Although sibling pages usually have the same base structure, some variations
might exist. Some sibling pages might have additional or missing tables. Thus,
sometimes, following the path, we cannot locate the sibling table for which we
are looking. In this case, TISP searches for tables at the same level of nesting,
looking for one that matches the pattern. If TISP finds one, it obtains the path
and adds it as an alternative. Thus, for future sibling pages, TISP can (in fact,
always does) check all alternative paths before searching for another alternative
path. If TISP finds no matching table, it simply continues its processing with
the next table.

We adjust a table pattern when we encounter a variation of an existing table.
There might be additional or missing labels in the encountered variation. In this
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<table>
<tr> <td>Gene Model <td>Status <td>Nucleotides(coding/transcript)

<td>Protein (<td>Swissprot)? <td>Amino Acids
(<tr><td>VGene Model<td>VStatus <td>VNucleotides(coding/transcript)

<td>VProtein (<td>VSwissprot)? <td>VAmino Acids)
+

Fig. 9. Structure Pattern for the Table in Figure 3.

case, we need to adjust the structure pattern regular expression, to add the new
optional label or to mark the missing label as optional. Consider the table that
starts with Gene Model in Figure 3 (the sibling table of Table 7 in Figure 1) as
an example. The table matches the pattern in Figure 6 until we encounter the
label Swissprot. If we skip Swissprot, the next label Amino Acids matches the
structure pattern. In this case, we treat Swissprot as an additional label, and we
add it as an optional label as Figure 9 shows.

4 Experimental Results

We tested TISP for three different fields: car advertisements for commercial
data, molecular biology for scientific data, and interesting information about
U.S. states and about countries for geopolitical data. Most of the source pages
were collected from popular and well-known web sites such as cars.com, NCBI
database, Wormbase, MTB database, the CIA World Factbook, and the U.S.
Geological Survey. We tested more than 2,000 tables found in 275 sibling pages
in 35 web sites. For each web site, we randomly chose two sibling pages for initial
pattern generation. For the initial two sibling pages, we tested (1) whether TISP
was able to recognize HTML data tables and discard HTML tables used only for
layout, (2) whether it was able to pair all sibling tables correctly, and (3) whether
it was able to recognize the correct pattern template or pattern combination.
For the rest of sibling pages from the same web site, we tested (1) whether
TISP was able to interpret tables using the recognized structure patterns, (2)
whether it correctly detected the need for dynamic adjustment, and (3) whether
it recognized new structure patterns correctly.

We collected 75 sibling pages from 15 different web sites in the car-advertise-
ments domain for a total of 780 HTML tables.5 TISP correctly discarded all
uses of tables for layout and successfully paired all sibling tables. There were
no nested tables in this domain. Most of the web sites contained only one table
pattern, except for one site that had three different patterns. Two web sites
contained tables with structure combinations. TISP successfully interpreted all
tables from the generated patterns. No adjustment were needed, neither for any
path nor for any label.

5 The sibling pages in this domain are usually very regular. Indeed, we found no table
variations in any of the sites we considered. We, therefore, only tested five pages per
site.
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We collected 100 sibling pages from 10 different web sites in the molecu-
lar biology domain for a total of 862 HTML tables. Among these tables, TISP
falsely classified three pairs of layout tables as data tables. TISP, however, suc-
cessfully eliminated these false sibling pairs during pattern generation because
it was unable to find a matching pattern. No false patterns were generated.
TISP was able to recognize 28 of 29 structure patterns. TISP missed one pat-
tern because the table contained too many empty cells. If it had considered
empty cells as mismatches, TISP would have correctly recognize this pattern.
As TISP processed additional sibling pages, it found 5 additional sibling tables
and correctly interpreted all but one of them. The failure was caused by labels
that varied across sibling tables causing them, in some cases, to look like values.
There were 5 path adjustments and 12 label adjustments—all of them correct.
One table was interpreted only partially correctly because TISP considered the
irrelevant information To Top as a header.

For the geopolitical information domain, we tested 100 sibling pages from
10 different web sites with 884 HTML tables. TISP correctly paired 100% of all
data tables and correctly discarded all layout tables. For initial pattern gener-
ation, TISP was able to recognize all 22 structure patterns. As TISP processed
additional sibling pages, it found one additional sibling table and correctly inter-
preted it. There were no path adjustments, but there were 22 label adjustments—
all of them correct. For two sets of sibling tables, TISP recognized the correct
patterns, but failed to recognize some implicit information that affects the mean-
ing of the tables. Therefore it interpreted the tables only partially correctly (i.e
its label components were only partially correct).

For measuring the overall accuracy of TISP, we computed precision (P),
recall (R), and an F-measure (F = 2PR/(P+R)). In its table recognition step,
TISP correctly discarded 155 of 158 layout tables and discarded no data tables.
It therefore achieved an F-measure of 99.0% (98.1% recall and 100% precision).
TISP later discarded these three layout tables in its pattern generation step,
but it also rejected two data tables, being unable to find any pattern for them.
It thus achieved an F-measure of 99.4% (100% recall and 98.8% precision). For
table interpretation, TISP correctly recognized 69 of 74 structure patterns. It
therefore achieved a recall of 93.2%. Of the 72 structure patterns it detected, 69
were correct. It therefore achieved a precision of 95.8%. Overall the F-measure
for table interpretation was 94.5% for the sites we tested.

We discuss the time performance of TISP in two phases: (1) initial pattern
generation from a pair of sibling pages and (2) interpretation of the tables in
the rest of the sibling pages. The time for pattern generation given a pair of
sibling pages consists of: (1) the time to read and parse the two pages and
locate all the HTML tables, (2) the time for sibling table comparisons, and (3)
the time to select from pre-defined structure templates and generate a pattern.
The complexity of parsing and locating HTML tables is O(n), where n is the
number of HTML tags. The simple tree matching algorithm has time complexity
O(m1m2), where m1 and m2 are the numbers of nodes of the two sibling trees.
To find the best match for each HTML table, we need to compare each table
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with all the HTML tables in its sibling page. The time complexity is O(km1m2),
where k is the number of HTML tables in the sibling page. The time complexity
for finding the correct pattern for each matched sibling table is O(pl), where
p is the number of pattern templates and l is the number of leaf nodes in the
HTML table. If pattern combinations are involved, the complexity of template
discovery increases multiplicatively since for each subgroup we must consider
every template and find the best match. We conducted the experiment on a
Pentium 4 computer running at 3.2 GHz. The typical actual time needed for the
pattern generation for a pair of sibling pages was below or about one second.
The actual time reached a maximum of 15 seconds for a complicated web site
where pages had more than 20 tables.

The time for table interpretation for a single sibling web page when no ad-
justment is necessary consists of: (1) the time for locating each table and (2)
the time for processing the table with a pattern. The complexity of locating a
table is O(p), where p is the number of path possibilities leading to the table.
Each path possibility is itself logarithmic with respect to the number of nodes
in the DOM tree for the pages. The complexity of matching a located table with
the corresponding pattern is O(el), where e is the number of pattern entries (an
entry could be either a pattern label or a pattern value) of the pattern and l is
the number of leaf nodes in the HTML table’s DOM tree. The time to do adjust-
ments ranges from the time to do a simple label adjustment, which is constant,
to the time required to re-evaluate all sibling tables, which is the same as the
time for initial pattern generation. Overall, the typical actual time needed for
interpreting tables in one page was below one second. The actual time reached
a maximum of 19 seconds for a complicated web page with several tables and
several adjustments.

5 Concluding Remarks

In this paper we introduced TISP, which provides a way to automatically inter-
pret tables in hidden-web pages—pages which are almost always sibling pages.
By comparing data tables in sibling pages, TISP is able to find the location
of table labels and data entries, and pair them to infer the general pattern for
all sibling tables from the same site. Our experiments using source pages from
three different domains—car advertisements, molecular biology, and geopolitical
information—indicate that TISP can succeed in properly interpreting tables in
sibling pages. TISP achieved an F-measure for sibling table interpretation of
94.5%.
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