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ABSTRACT
Optical character recognition (OCR) produces transcriptions
of document images. These transcriptions often contain
incorrectly recognized characters which we must avoid or
correct downstream. An ability to both identify OCR er-
rors and extract information from OCR output would al-
low us to extract and index only correct information and
to post-process specific parts of the OCR output with tar-
geted resources (e.g. re-OCR using specialized dictionar-
ies). We present a general approach to OCR error detection
that uses a hidden Markov model trained to simultaneously
detect OCR errors and extract information. We evaluate
this approach in two information extraction settings and on
semi-structured text from two machine-printed family his-
tory documents. We show this joint approach to OCR error
detection to be an improvement over two alternative ap-
proaches, one based on dictionary matching and the other
using a hidden Markov model trained only to detect OCR
errors. In particular, we report an average of 8% increase in
macro-averaged F-measure between the dictionary approach
and our best HMM. Our contribution is to show how an
OCR error detection approach based on a word model can
be improved by joining this task with an information extrac-
tion task, and that an improvement in OCR error detection
is achieved regardless of the information extraction task.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Language parsing and understanding ; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing

General Terms
Algorithms, Experimentation, Performance
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information extraction, optical character recognition, OCR,
semi-structured text, error detection, hidden Markov model
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1. INTRODUCTION
From scanned images of historical documents to document

images taken by modern smart phone applications, there is
much information found in images of text that would be
more useful if extracted accurately. A typical approach to
extracting information from document images is to first run
a third-party OCR engine. Valuable information can then
be extracted from OCR text if we either omit or correct the
errors produced by the OCR engine. In either case, we avoid
the situation of consuming inaccurate data—a situation that
sometimes may be worse than extracting no information at
all (e.g. in knowledge engineering to construct dictionaries,
gazetteers and name authorities). The processes of omitting
and correcting errors both rely on the important step of
error detection. However OCR error detection has rarely
been looked at closely outside of one process: automatic
OCR error correction. We argue that there is value in doing
OCR error detection separately from error correction for the
sake of modularity, flexibility, and targeted analysis.

With this in mind, we address the challenge of OCR er-
ror detection in the context of extracting information from
OCR text. The joint task of OCR error detection and infor-
mation extraction (IE) is itself a valuable combination for
the following reasons. If we wish to manually correct the
OCR errors, classifying sections of text using IE will allow
us to be more discriminating in what parts of the text to
devote our resources to. For example, if we wish to index
text for a search engine for finding named entities in histori-
cal documents, we may not need to correct any OCR output
except for the names to be indexed. Alternately, if we wish
to correct OCR errors automatically or to re-OCR the text,
we can do so more accurately using dictionaries and other
resources customized for the semantic categories assigned to
the extracted text.

There is previous research connecting OCR with infor-
mation extraction, including [16] and [11] who demonstrate
that the quality of information extraction is reduced in the
presence of OCR errors. Work involving the extraction of
named entities from OCR output include [12, 8].

Our joint learning of OCR error detection and information
extraction is an instance of multi-task learning [4, 3]. We
are not aware of any existing research taking a multi-task
learning approach to OCR error detection.

Traditionally, there are two main ways to detect word er-
rors in OCR text: dictionary lookup and character n-gram



matching [10, 9]. Most recent approaches to OCR error
detection are part of an error correction process. Chen et
al. [6] describe a method for identifying erroneous words
that relies on the OCR engine’s estimation of low confidence
characters and lack of a dictionary match, followed by other
steps that are dependent on their generating and testing re-
placements words from partial matches in a lexicon. They
report a verification (error detection) accuracy of 92.41%.
Pal, Chaudhuri, and Kundu [14, 5] detect OCR errors in
a highly inflectional Indian language, Bangla, in two steps.
Words containing characters that could not be recognized
by the OCR engine are immediately considered erroneous.
They then actively detect other errors by matching word
roots and suffixes to entries in corresponding dictionaries
and then checking for grammatical agreement between the
matched roots and suffixes. They do not report error detec-
tion accuracies.

In the present research we combine the task of detecting
word-level OCR errors with the task of extracting informa-
tion from historical documents. We show that this joint
approach identifies OCR errors well in text taken from two
family history books (achieving 96% overall accuracy in er-
ror detection, averaged over four experiments), that it is
an improvement over two related approaches, and that im-
provement occurs for two different IE tasks, namely field
segmentation and named entity recognition.

The rest of this paper is organized as follows. In Section 2,
we describe our corpus of historical text and how we used it
in our experiments. In Section 3, we present the methods we
used to detect OCR errors, including a dictionary matching
approach and three variations of a hidden Markov model.
In Section 4, we report and compare the results of each
method applied to our corpus. Finally, in Section 5, we
draw conclusions and list future work.

2. DATA AND EXPERIMENTAL SETUP
Our corpus1 consists of entries from the lists of children in

family descriptions. We have taken these list entries (or child
records) from two family history books: The Ely Ancestry
published in 1902 [1], and The Barber Genealogy published
in 1908 [17]. Almost all of these child records contain the
child’s birth order, name, and birth date; most contain ad-
ditional information. Figure 1 shows an example page from
each book and Figure 2 shows images and OCR output for
one record from each book.

We manually extracted and labeled 300 records from each
book. Then we divided each of these two sets of records
evenly into training, development test, and blind test sets,
for a total of six sets of 100 records each. Table 1 gives
other statistics for these six sets of records. We selected
the records from consecutive pages from the middle of each
books. We did not omit any child records from this con-
tiguous sequence of pages, however we did manually remove
text outside of child records and line breaks from any record
that spanned multiple text lines. When evaluating our ap-

1All the data used in this paper is available by email from
the author and from our wiki https://facwiki.cs.byu.
edu/Ancestrycorp/index.php/Main_Page under the head-
ing “Family History Children Lists”.

Figure 2: Example records with OCR errors taken
from Ely (a) and Barber (b), including correspond-
ing image and OCR output.

Table 1: Statistics computed over the manually-
labeled word tokens in the training, development
test, and blind test sets of each book. Each of the
six rows above represents 100 records.

proaches to OCR error detection, we performed parameter
estimation using the training sets, we selected variations of
each approach (e.g. hyper-parameters) based on their rela-
tive performance on the development test sets, and we com-
puted final evaluation metrics for the selected approaches
using the blind test sets. We ran each approach once on
each blind test set after choosing hyper-parameters for each
book. For example, one hyper-parameter for the HMMs was
the decision to use the state transition model during Viterbi
decoding or not. We report results using a blind test set
to reduce the chance that our reported accuracies are de-
pendent on over-tuning our system to a particular test set
during development and hyper-parameter selection.

We labeled the three sets of records for each book using
the following three labeling schemes: error, field-error, and
entity-error. We trained each approach on one of these la-
beling schemes. Figure 3 and Figure 4 illustrate the three
labeling schemes as an XML file format and as an aligned di-
agram, respectively. In error labeling, we marked each word
token with a boolean flag (e or n) indicating whether it con-
tains an OCR error or not. During both development testing
and final testing, we computed evaluation metrics by com-
paring the automatically predicted error labels of each word
token against the manually labeled word tokens for each of
the four error -labeled test sets. The approaches trained on
the other two labeling schemes produce compound labels.
We therefore had to separate the error portion of these la-
bels from the semantic portion during evaluation. We rep-
resent the information extraction tasks using the semantic
portion of these other two labeling schemes, described next.

In field-error labeling, we marked each word token with a
pair containing both the error flag (described above) and a



Figure 1: An example page of each of the two family history books from which we took text for our corpus.

Figure 3: An example record from the Barber portion of our corpus labeled in an XML style with each
labeling scheme: “Error” (a), “Field-Error” (b), and “Entity-Error” (c).



Figure 4: The example record from Figure 3 after tokenization with word tokens and corresponding labels
aligned.

Table 2: The complete set of labels used in annotat-
ing the text in each book for each scheme.

label for the field segment of the child record that the token
falls within. For example, both the “b.”, and the year that
follows, belong to the birthDate field. This labeling scheme
is similar to that applied to the Cora bibliography data set
which is used in a number of field segmentation papers (e.g.
[7]). In this paper, we refer to extracting fields, including
the determination of field segment boundaries and labels, as
“field segmentation”, consistent with the language used by
[2] and [7].

In entity-error labeling, we marked each word token with
both the error flag and a label for the kind of named entity it
belongs to if part of a noun phrase, or its part-of-speech tag if
not part of a noun phrase. For example, we labeled a “b.” as
a verb and the following year as a date. This labeling scheme
is similar to that used in named entity recognition tasks
plus the addition of three parts of speech (verb, preposition,
and conjunction) to maintain a uniform labeling granularity
throughout each record.

To give the reader a better sense of how our two labeling

schemes differ, here are some consequences. A consequence
of entity labeling is that a name will be labeled as a name
regardless of what relationship or field it is part of, whether
the name belongs to the person whom the record is about or
to that person’s spouse, child, parent, etc. (This is also true
for the other entity types.) Therefore in entity labeling, it is
possible to model names using all the available given names
and surnames found in the data, potentially leading to a
simpler emission model of the HMM. In other words, there
are fewer states in the HMM with potentially less overlap
in their vocabulary. With field labeling on the other hand,
these names would be given different labels depending on
the field they are found in. Also, the words nearby within
the same field would be given the same label. For example,
the verb, “m.”, next to a spouse name would also be labeled
as spouse. This could lead to a simpler transition model in
the sense that there are more self-transitions (from a state to
itself) and fewer transitions between states. This is not nec-
essarily advantageous when using HMMs which are known
to not model field length well using self-transitions. (See
Section 4 for specific consequences.)

Our approaches label sequences of atomic segments of
text—word tokens—which we first separated from each other.
In tokenizing the text, we separated numerals from other
text and treated punctuation characters as separate tokens.
When hand-labeling the data, we gave each punctuation
character the same label as the token immediately preced-
ing it in all cases. We did not read in whitespace except in
detecting boundaries between tokens. We also did not hand
label missing words, e.g. punctuation characters missed by
the OCR engine. There were only a few cases of missing
word tokens in this corpus. The complete set of field and
entity labels for each book appear in Table 2.

There is a common concern with using small training sets,
especially in the case of numerals (e.g. years and child or-
der numbers). To mitigate data sparseness due to a limited
training set in learning HMM parameters, and to make it
less burdensome to specify numeral patterns in the dictio-
naries, we replaced all digits in our corpus with a single digit
(“8”). Doing this improved accuracies by about 2% on the
development test sets of both books. Replacing only certain
subsets of digits (e.g. all digits except for “0” or all but “1”)
further improved accuracies only for the Barber book, but
by less than a percent. To maintain consistency and sim-
plicity, we chose to conflate all digits in both books for all



experiments reported below.

The goal of our experiments was to determine which of our
approaches produced the highest macro-averaged F-measure
for the task of OCR error detection on unseen text in the
two documents in our corpus. To compute macro-averaged
F-measure, we first computed the F-measure for each label
(in this case, error and non-error). Then we computed the
standard mean of these two F-measure values. So, macro-

averaged F-measure = F1(e)+F1(n)
2

. The F-measure, F1(x),
for each label x is the harmonic mean of precision, P (x),

and recall, R(x), for that label. P (x) = C(x)
B(x)

, R(x) = C(x)
A(x)

,

F1(x) = 2PR
P+R

. Here, A(x) = the number of words with ac-

tual label x, B(x) = the number of words with predicted
label x, and C(x) = the number of words with both pre-
dicted label x and actual label x.

We chose to use a macro-average because we are most con-
cerned about the precision and recall in predicting the error
label and because the proportion of words with OCR errors
is relatively small in our corpus, as quantified in Table 1. If
we had used a micro-average over the two labels, the per-
formance metrics would have been dominated by the more
frequent non-error label.

3. APPROACHES

3.1 Dictionary
It is common to use lists of real words to detect spelling

and OCR errors [10] [14]. OCR engines themselves often use
dictionaries to improve their recognition rate. In construct-
ing our dictionary approach to OCR error detection, we as-
sembled lists of words from various sources that matched
our language and domain. Our dictionaries include given
names (18,000 instances), surnames (150,000 instances), ini-
tials (capital letters A through W), person titles (10 in-
stances including“Mr”and“Jr”), days of the week (16 names
and abbreviations), months (26 names and abbreviations),
and common English words. For the common English word
list, we selected one list from the ten produced by Keith
Vertanen.2 Vertanen produced the 10 lists by taking can-
didate words from 10 source corpora and then filtering the
candidates 10 different times, each time using a different
vote threshold. He gave each source corpus one vote. Us-
ing each of the 10 lists, we tested performance on the er-
ror -labeled training set and found that wlist match1 (the
complete union of all ten source lists) performed best. This
list contains 1.7 million entries including most of the person
and place names in our corpus such as “Muskegon”, “Kala-
mazoo”, “Mosher”, and “Burnham”. We checked for matches
in all our dictionaries in a case-insensitive manner.

We constructed two other dictionaries whose entries we
selected individually for our OCR data: a list of numeral
patterns (1-, 2-, and 4-digit numerals) and a list punctuation
characters (. , ; + ”). We evaluated performance as we
added each numeral pattern and each punctuation character
found in the training data one at a time. The tokens whose
inclusion improved performance on the training data, we
kept in the list; the others, we removed. We conducted

2Token from http://www.keithv.com/software/wlist/

the selection process for the general English words list, the
punctuations, and the numeral patterns independently for
each of the two books. This process selected the same lists
for both books.

3.2 Hidden Markov Models
The hidden Markov model [15] or HMM is a statisti-

cal model for labeling sequences, e.g. for applying part-
of-speech labels to sequences of words. It has traditionally
been used in many tasks such as speech recognition [15],
information extraction [2], and genomics [18]. HMMs can
model sequences of continuous- or discrete-valued observa-
tions. Here we apply it to the task of predicting OCR errors
from discrete-valued observations (the tokens in the OCR
output) with and without joining it to an information ex-
traction task.

We perform two operations on the HMMs: training and
execution. During training we used maximum likelihood es-
timation to compute the parameters (or probability distribu-
tions) of the HMM from the manually labeled word tokens
in the child records in our two training sets. The learned
probability distributions include both the state-state tran-
sition parameters and state-word emission parameters, as
usual. During training we used a one-to-one correspondence
between the states in the HMM and the labels manually as-
signed to the word tokens in the training data. (These labels
are shown in Table 2.) Therefore, each HMM contains one
state for each type of label found in its training data—the
HMM will be incapable of predicting a label that does not
appear in its training set.

During execution, the learned parameters are used in the
Viterbi algorithm to find, for each record in the test set, the
sequence of states (labels) that produces the maximum joint
probability for the sequence of word tokens in that record.
Out-of-vocabulary (OOV) words are words in the test set
that are not in the training set and therefore have zero prob-
ability of being emitted by the trained generative model. To
prevent these OOV words from producing probabilities of
zero for entire records during execution, we smoothed the
emission parameters by assigning a probability of 1/N to
OOV words. Here N equals the number of tokens in the
training set. This smoothing method produced higher ac-
curacies in a sample taken from the development test data
than Laplace smoothing. We smooth the transition parame-
ters in the same way, meaning that any state may follow any
other state with a probability of 1/N if that pattern was not
seen in the training data. During development we executed
a sample of our HMMs without this transition parameter
smoothing and saw no change in accuracy.

Our three HMMs differ from each other in the labeling
scheme used to train them and therefore also in what kinds
of labels they produce during execution. We trained the
error HMM using the error labeling scheme, so it produces
a binary classification for each word token in the test sets.
In other words, we trained this HMM on the same kind of
data we tested all the approaches on. On the other hand, we
trained the field-error and entity-error HMMs on the train-
ing data with corresponding labels. Because of this, they
were trained to produce labels that are the conjunction of
an OCR error label and a semantic label as described in



Table 3: Macro-averaged F-measure of OCR error
detection for all combinations of books (2), test sets
(2), labeling schemes (3), and HMM variations (2).
This illustrates a strong though inconsistent depen-
dency of our HMM’s accuracy on the learned state
transition model.

Section 2. Note that the current implementation of our
HMMs treat each compound label as completely distinct
from any other label. So, even though it may be possible to
improve their performance by treating labels like “name.e”
and“name.n”as related or similar, our HMMs don’t do that.
To evaluate these two HMMs, we compared the error label
in the hand-labeled test data with the error portion of the
conjoined labels that the HMMs produced. Note that we
can similarly use these two HMMs to do information extrac-
tion (without OCR error detection) by looking at only the
semantic portion of the labels they produce.

The HMM is related to the dictionary approach in that
both base their labeling decisions, at least in part, on finding
a match for a word token in a list of words associated with
some state or label. In other words, they both base their de-
cision on whole word content. The HMM carries additional
information in the form of the two probability models, one of
which (the transition model) models a word token’s context.
It may be interesting to know if both probability models are
necessary for this task or what the relative value of context
vs. content is. We can easily modify an HMM to ignore
its transition (context) model and therefore select the la-
bel that maximizes each token’s probability given only the
emission (content) model during execution. We used this
technique below to investigate whether our HMMs’ levels of
performance were due in part to modeling the relative or-
der of states in the input records (the transition model) or
whether that level of accuracy could be accounted for merely
by modeling the distribution of words associated with each
label (the emission model). We selected one of these two
HMM variations for execution on each combination of book
and labeling scheme in the blind test set based on its per-
formance on the corresponding development test set.

During development, we trained and executed a sample
of the HMMs on case-folded text. This consistently reduced
the evaluation metrics by less than a percent. So, unlike the
dictionary approach, we applied all our HMMs in a case-
sensitive manner.

4. RESULTS

As seen in Table 3, the full HMM performed better than
the isolated emission model for all combinations of book and
labeling scheme except one, namely the field-error labeling
scheme applied to the Ely book. In this case, the transi-

tion model is likely causing errors because of a well-known
problem with the HMM, namely its inability to correctly
model the length of a field [13, 19]. There are more states
with self-transitions in our field-labeled data than in our
entity-labeled data. Based on their relative performance in
the development test sets, we chose to execute the isolated
emission model for that combination and the full HMM for
the other five in the results reported below. Fortunately, the
relative performances were consistent between development
and blind test sets.

Figure 5 shows the results of the final versions of our
four approaches on the four combinations of test set and
book. The two HMM approaches that also perform infor-
mation extraction consistently outperform the two simpler
approaches to error detection. To illustrate why, we draw
an example from the emission models of the HMMs learned
from the Barber training set. A three-digit numeral pat-
tern (“888”) appears exactly once in both the “e” state and
the “n” state of the HMM trained on the error-labeled data,
making this an ambiguous word without additional semantic
information. Therefore, the error HMM’s emission model is
less discriminating than the emission model trained on field-
error labeled data. Given this labeling scheme, the erroneous
three-digit number appears in the field “<personId.e> 238!,
</personId.e>” while the non-erroneous three-digit num-
ber appears in a different type of field, namely “<other.n>
a soldier in Civil War, 189th Regt. N. Y. Vols. </other.n>”.

We next show that both the field-error and entity-error
HMMs consistently perform better than the error HMM re-
gardless of how many records are in the training data beyond
just a few records. Figure 6 shows the macro-averaged F-
measure computed for both blind test sets when training
each of the three HMMs on varying numbers of training ex-
amples. The Y-value for each point is the average of 50 runs
of training using a different subset of the training set per
run, followed by execution on the whole blind test set.

Lastly we note that the micro-averaged F-measure (and
equivalently, overall accuracy) for the multi-task HMMs eval-
uated on the error detection task using the blind test set fell
between 94% and 98%. Accuracy is computed as C/(C +I),
where C is the number of correctly labeled tokens and I is
the number of incorrectly labeled tokens in the test set.

5. CONCLUSIONS AND FUTURE WORK
The relative performance of the four methods is fairly

consistent across books and between development and final
testing. Most notably, the two forms of joint IE and error
detection consistently outperform the other two methods,
with a 5.1% increase in macro-averaged F-measure in blind
testing averaged over the four versions of HMM (two label-
ing schemes and two books) and an 8.1% average increase
between the dictionary approach and the best HMM. This
supports the idea that applying mutli-task learning to OCR
error detection and information extraction is beneficial.

We originally hoped to show that the field-error and entity-
error HMMs also perform better at the information extrac-
tion tasks compared to an HMM trained on field or entity
labels alone. However, the experiments we have performed
so far show only inconsistent improvement in the informa-



Figure 5: Macro-averaged F-measure of four approaches to OCR error detection computed for four combi-
nations of test set and family history book.

Figure 6: Macro-averaged F-measure of OCR error detection on the blind test set of the Ely (a) and Barber
(b) family history books for various numbers of training records (X-axis).



tion extraction task, with improvements of macro-averaged
F-measure falling between 0% (due to identical label predic-
tions) and 3%.

We have shown that joining an approach to information
extraction with OCR error detection helps improve the per-
formance of OCR error detection. We have also shown that
this improvement occurs for more than one form of informa-
tion extraction, specifically field segmentation and named
entity recognition. We believe that similar methods can also
be adapted to the task of error detection in other forms of
text such as automatic speech recognition and other noisy
language. After seeing similar results for two different infor-
mation extraction tasks and two different qualities of OCR
output we believe that the improvement in error detection
is not due entirely to a particular labeling scheme or docu-
ment. We also have no reason to believe that our approaches
are dependent on the domain (i.e. specific to family history
documents). Performance of our approaches may be affected
by the difficulty of the information extraction task, although
we have not yet tested this idea.

We expect to see further improvements to OCR error de-
tection in future work. We have already implemented a char-
acter n-gram probability model to predict OCR errors, have
trained it on the error -labeled training set and have eval-
uated it to a limited extent. It performed well on some
of the tests and appears to be less apt to over-fit to the
training sets than the HMMs used here. We are currently
considering ways of combining the strengths of the character
n-gram model with the HMM, i.e. by augmenting or replac-
ing the HMM’s emission model with the character n-gram
model. We would also like to refine our approach to multi-
task learning so that there is a looser coupling between the
two tasks, e.g. by tying the parameter of compound labels
that share the same error or semantic component. We also
expect that utilizing the images of characters and words will
also improve OCR error detection.
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