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Conceptual Modeling Foundations for
a Web of Knowledge

David W. Embley and Stephen W. Liddle and Deryle W. Lonsdale

Abstract The semantic web purports to be a web of knowledge that can
answer our questions, help us reason about everyday problems as well as sci-
entific endeavors, and service many of our wants and needs. Researchers and
others expound various views about exactly what this means. Here we propose
an answer with conceptual modeling as its foundation. We define a web of
knowledge as a collection of interconnected knowledge bundles superimposed
over a web of documents. Knowledge bundles are conceptual model instances
augmented with facilities that provide for both extensional and intensional
facts, for linking between knowledge bundles yielding a web of data, and for
linking to an underlying document collection providing a means of authen-
tication. We formally define both the component parts of these augmented
conceptual models and their synergistic interconnections. As for practicali-
ties, we discuss problems regarding the potentially high cost of constructing
a web of knowledge and explain how they may be mitigated. We also discuss
usage issues and show how untrained users can interact with and gain benefit
from a web of knowledge.

15.1 Introduction

Ideas about the semantic web have been with us ever since Tim Berners-
Lee’s published his book, Weaving the Web [BL99], and his Scientific Amer-
ican article, The Semantic Web [BLHL01], with Hendler and Lassila. They
and others have continued to discuss these ideas in an effort to more fully
explain the semantic-web vision—its practicalities, successes, and challenges

David W. Embley, Stephen W. Liddle, Deryle W. Lonsdale
Brigham Young University, Provo, Utah 84602, USA, e-mail: embley@cs.byu.edu, lid-
dle@byu.edu, lonz@byu.edu

1



2 David W. Embley and Stephen W. Liddle and Deryle W. Lonsdale

[SHBL06, AH08]. The W3C web site introduces the semantic web simply as
“a web of data” [W3C].

Many of these ideas hark back even to the days of Plato [PlaBC] and Aris-
totle [AriBC] and the beginnings of philosophical discussions about ontology,
epistemology, and logic. Here, we begin with this ancient view of semantics
and show how it leads to a view of the semantic web rooted in conceptual
modeling. In particular, we show how conceptual modeling can unify a view
of these fundamental concepts and provide a practical way to realize them.
Our intent is not to resolve questions about what the semantic web is, but
rather to provide a practical view of one possible path toward realizing some
of the benefits claimed by semantic-web visionaries. We call our conceptual-
modeling view of the semantic web a “Web of Knowledge” (a “WoK”).

To motivate our vision of a WoK, consider the current web of pages, which
contains a wealth of knowledge. Unfortunately, most of the knowledge is not
encoded in a way that enables direct user query. We cannot, for example,
directly google for a car that is a 2003 or newer selling for under 15 grand;
or for the names of the parents of great-grandpa Schnitker; or for countries
whose population will likely decrease by more than 10% in 50 years. A way
to enable direct query for facts embedded in web pages and facts implied by
these stated facts is to annotate facts with respect to ontologies. Annotating
facts implicitly populates these ontologies, turning them into a database over
which structured queries can be executed. Annotation links also provide a
form of provenance and authentication, allowing users to verify query results
by checking original sources. Furthermore, facts and ontological concepts may
appear in more than one populated ontology. Linking facts and ontological
concepts across ontologies can provide navigation paths to explore additional,
related knowledge. The web with a superimposed layer of interlinked ontolo-
gies each annotating a myriad of facts from the underlying web becomes a
Web of Knowledge, a WoK.

Although this vision of a WoK is appealing, there are significant barri-
ers preventing both its creation and its use. Ontology languages exist, with
OWL being the de facto standard. RDF files can provide data for these on-
tologies and can also store annotation information linking data to facts in
web pages and linking equivalent information in RDF files to one another.
The SPARQL query language is a standard for querying RDF data. SWRL
rules can provide for reasoning. Thus, all constituent components for a WoK
are W3C standards in common use, and they even all work together allow-
ing for immediate WoK development and usage. Nevertheless, the barriers
of creation and usage remain high and effectively prevent WoK deployment.
The creation barrier is high because of the cost involved in developing OWL
ontologies and annotating web pages by linking RDF-encoded facts in web
pages to these OWL ontologies. The usage barrier is high because untrained
users cannot write SPARQL queries and SWRL rules.

In this exposition, we show how conceptual modeling can enable a WoK—
can provide a firm foundation for a WoK and ways to break through the
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barriers to WoK creation and usage. We begin in Section 15.2 by discussing
a computational view of ontology, epistemology, and logic. We argue that
conceptual models, augmented in a particular way, build nicely upon these
philosophical ideas so as to enable a WoK. In Section 15.3 we formalize this
foundation. The formalization leads to a clear understanding of what must be
done to create a WoK and make it usable. We then discuss initiatives we have
investigated to address these challenges and opportunities—for construction
in Section 15.4 and for usage in Section 15.5. We conclude in Section 15.6.

15.2 WoK Conceptualization

To think about constructing and using a web of knowledge, we first ask some
fundamental questions: What is data? What are facts? What is knowledge?
How does one reason and know? Philosophers have pursued answers to these
questions for millennia; and although we do not pretend to be able to con-
tribute to philosophy, we can use their ideas about ontology, epistemology,
and logic to guide us in how to build and use a WoK.

• Ontology is the study of existence. It asks: “What exists?” In our quest to
build a WoK, we must find computational solutions the question: “What
concepts, relationships, and constraints exist?” We answer computation-
ally, saying that we can declare a formal conceptual model for some domain
of knowledge that captures the relevant concepts along with the relation-
ships among these concepts and the constraints over these concepts and
relationships.1

• Epistemology is the study of the nature of knowledge. It asks: “What
is knowledge?” and “How is knowledge acquired?” To build a WoK, we
provide computational answers to “What is digitally stored knowledge?”
and “How does raw data become algorithmically accessible knowledge?”
Our answer is to turn raw data into knowledge by populating conceptual
models—by embedding facts in the concepts and relationships in accord
with constraints. We further follow Plato’s lead in wanting our knowledge
to be justified [PlaBC], and thus we provide (1) annotation links that
connect facts embedded in ontologies to sources from which they are ex-
tracted and (2) data and concept “same-as” connections that link objects
and concepts across populated ontologies.

• Logic comprises principles and criteria of valid inference. It asks: “What
is known?” and “What can be inferred?” In the computational context

1 Purists argue that conceptual models are not ontologies [Gru93, Gua98, Smi03]. We agree
that when conceptual models play their traditional role to aid in database schema design,
they typically are not ontologies. But when they are used to answer “What exists?” and
thus when they formally capture the concepts, relationships, and constraints that exist in
a domain, they are ontologies.
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of a WoK, it can answer the question: “What are the known facts, both
given and implied?” We ground our conceptual model in a description
logic—a decidable fragment of first-order logic [BN03]. To make this logic
practical for non-logicians, we must and do add a query generator whose
input consists of ordinary free-form textual expressions or ordinary fill-
in-the-blank query forms. Both query modes fundamentally depend on
conceptual-model-based ontologies to convert free-form and form-based
queries to structured queries. Justification of query results relies on tracing
annotation links back to source data and on following reasoning chains.

To illustrate these ideas, we give some examples. Suppose we wish to find
a used car to purchase. We might pose this query: “Find me a red Nissan
for under $5000, a 1990 or newer with less than 100K miles on it”, or this
query: “I’d like a Japanese-made car for under 15 grand.” Figure 15.1 shows
some web pages with cars for sale that satisfy these queries. Two of the three
Nissans satisfy the first query, and all the Nissans and the Mitsubishi, but not
the Toyota, satisfy the second query. Unfortunately, however, search engines
do not access the facts within these ads in the way we would wish to find
these cars. Our approach of superimposing a web of knowledge over a web of
pages makes these facts visible from outside the page and directly accessible
to query engines (as opposed to search engines).

To make this work, we need an ontology for car ads. Figure 15.2 shows
an example. The ontology is a conceptual model. It consists of object sets
which are either lexical (dashed boxes in Figure 15.2) or non-lexical (solid
boxes). Instances in lexical object sets are strings of characters such as ‘Nis-
san’ or ‘1990’; whereas instances in non-lexical object sets are object iden-
tifiers that stand for real-world objects—Car73 and Car1194, for example,
identify specific cars. Relationship sets in the conceptual model are lines con-
necting object sets. Min-max participation constraints impose restrictions on
the relationship sets: a car described in a car ad can have zero or more fea-
tures (0:* ), but at most one make (0:1 ). Ontologies for our WoK vision also
support hypernym-hyponym is-a hierarchies and holonym-meronym part-of
hierarchies. A white triangle denotes an is-a hierarchy, so that, for example,
a Body Type is-a Feature in Figure 15.2. The plus symbol (+) in the triangle
specifies a disjointness constraint among the specializations; it is also possible
to declare union constraints (∪) specifying that a generalization object set is
a union of its specialization object sets and partition constraints (�) spec-
ifying that specialization object sets partition their generalization. A black
triangle denotes a part-of hierarchy. In Figure 15.2, for example, a model such
as “Accord” aggregated with a trim specification such as “LX” constitutes
the concept “Accord LX”, which has some ModelTrim object identifier (e.g.,
ModelT rim39).

Whereas an ontology tells us what kind of knowledge exists in our do-
main of interest, epistemological specifications tell us what the knowledge
is and how it is acquired. For our WoK vision, populating an ontology
yields knowledge. We can populate the the car-ad ontology in Figure 15.2
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Fig. 15.1 Sample Car Ad Web Pages.

with facts derived from car ads. Assuming Car73 denotes the Nissan Al-
tima pictured in Figure 15.1, some of the object-set facts are: Car(Car73 ),
Year(2003), and Transmission(“Automatic”), and some of the relationship
facts are: CarYear(Car73 , 2003) and CarFeature(Car73 , “Automatic”).

The way we intend to acquire knowledge in our WoK vision is particularly
interesting. Although possible to simply encode by hand, this is far too labor
intensive and does not scale. We must find ways to automatically identify
facts and associate them with ontologies. Sometimes information is struc-
tured in such a way that it is possible to reverse-engineer it into an ontology;
sometimes it is possible to resort to available outside knowledge sources to
align semi-structured information with an ontology; but sometimes the infor-
mation yields to neither of these techniques. For this latter case, we augment
the ontologies themselves so that they are capable of recognizing, annotating,
and extracting relevant facts with respect to their ontological descriptions.
We call these augmented ontologies extraction ontologies, because they are
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Fig. 15.2 Car Ad Ontology.

capable of locating and extracting facts from any kind of document, unstruc-
tured as well as semi-structured and structured.

The augmentation that turns an ontology into an extraction ontology is a
data frame [Emb80]. Data frames are linguistically grounded abstract data
types—they encapsulate everything we wish to know about categorized data
instances including their internal and external representations and their ap-
plicable operations. The linguistic grounding consists of providing recognizers
for instances of object and relationship sets. Figure 15.3 shows examples of
the kind of recognizers we currently use in our WoK vision, but any kind of in-
formation extractor [Sar08] is possible: e.g., machine-learned wrappers (e.g.,
[WCW+09]), NLP-based recognition techniques (e.g., [FM09]), and elaborate
handcrafted rules (e.g., [GGTB08, HLF+08]). The recognizers in Figure 15.3
are of two types—regular expressions and lexicons—which operate indepen-
dently or together. The regular expression for the external representation of
Price in Figure 15.3 recognizes price instances such as “$23,900” and “15
grand”. The external-representation recognizer for Make, on the other hand,
is a lexicon that lists all the makes of cars, including their alternate spellings
and abbreviations. Context keywords such as price and asking in Figure 15.3
help disambiguate instances that may be recognized for more than one con-
cept (e.g., MSRP price vs. asking price). Operators also have recognizers.
Keywords such as “less than”, “<”, and “under” in Figure 15.3 indicate the
applicability of the LessThan operator. A price instance following these key-
words becomes the second parameter p2 in the operation, the car price being
assumed as the first.

Justification of captured knowledge is a natural consequence of acquiring
and semantically annotating knowledge. When we reverse engineer structured
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Price
internal representation: Integer
external representation: \$[1-9]\d{0,2},?\d{3} | \d?\d [Gg]rand | ...
context keywords: price|asking|obo|neg(\.|otiable)| ...
...
LessThan(p1: Price, p2: Price) returns (Boolean)
context keywords: (less than | < | under | ...)\s*{p2} | ...
...

Make
...
external representation: CarMake.lexicon
...

Fig. 15.3 Data Frames.

knowledge into a fact-filled ontology, align facts in a knowledge source with an
ontology, or extract facts from data-rich documents, the WoK system keeps
track of the source of each fact. Later, when someone queries for these facts,
the WoK system provides, in addition to the standard query results, a cached
page with the fact instances highlighted. For example, if we query for a red
Nissan Altima for under 15 grand, as part of the answer the WoK system can
retrieve the cached page of the Altima in Figure 15.1 and display it with the
strings Red, Nissan, Altima, and $6,990 highlighted.

Besides enabling fact recognition in source documents, extraction ontolo-
gies also enable free-form query processing. For example, a WoK system with
the ontology in Figure 15.1 augmented with the data-frame recognizers in
Figure 15.3 can interpret and process the query: “Find me a red Nissan Al-
tima for under 15 grand.” The system associates the recognized instances
“red”, “Nissan”, “Altima”, and “15 grand” respectively with the object sets
Color, Make, Model, and Price, and it associates “under” with the LessThan
operator in the Price data frame and the price “15 grand” with the opera-
tor’s parameter p2. Generating a formal select-project-join query from these
recognized associations is straightforward: do outer join over the ontology’s
structure; select based on the identified constants and Boolean operations;
and project on the mentioned object sets.

Retrieving inferred facts is more complex. To illustrate, consider process-
ing the query, “I’d like a Japanese-made car for under 15 grand.” For this
query the WoK system needs a way to determine which cars are Japanese.
Suppose we have a second ontology about car manufacturers such as the one
in Figure 15.4. Observe that the concept Make in Figure 15.1 is semantically
the same as the concept Make in Figure 15.4. Connecting these concepts
with a between-ontologies same-as link is an example of the interconnecting
links in the web-like structure constituting a WoK. With these two ontologies
and the interconnecting link, we now have the information we need to declare
inference rules that can reason about a car being Japanese-made. A car in a
car ad that has a make produced by a manufacturer whose headquarters is
in Japan is a Japanese-made car.
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Fig. 15.4 Car Manufacturer Ontology.

Next observe that populated ontologies are in reality first-order-language
theories of predicate calculus. Each object set S is a one place predicate
S(x). Each n-ary relationship set R is an n place predicate, R(x1, ..., xn).
The constraints of our conceptual-modeling language are all expressible as
closed well-formed formulas of predicate calculus. Populating an ontology
provides the ground facts for a first-order theory. When all the constraints
hold for a populated ontology, we have a model of the first order theory. And,
we can reason over the model with logic languages, appropriately restricted
to make them decidable and tractable.

For our query about Japanese-made cars, suppose we have the following
logic rule (expressed in Datalog-like syntax) for the car-manufacturer ontol-
ogy:

JapaneseMake(x) :- Make(x), CarManufacturerMake(y, x),

CarManufacturerHeadquarters(y, z),

CountryHeadquarters(’Japan’, z).

Similar to linguistically grounding operators in our ontologies, we can lin-
guistically ground logic rules. Thus, the phrase “Japanese-made car” should
indicate that this rule applies. Now, when a user poses a query for Japanese-
made cars for under 15 grand, the WoK system recognizes that the two on-
tologies apply and generates the following formal query over the two theories
CarAd and CarManuf :

CarAd.Car(x) :- CarAd.CarPrice(x, y),

CarAd.LessThan(y, 15000), CarAd.CarMake(x, z),

CarManuf.JapaneseMake(z).

Here, the same-as link lets us seamlessly navigate among populated ontologies
in a WoK. As an aside, note the conversion of “15 grand” to the integer 15000.
As indicated in the Price data frame in Figure 15.3, the type for the internal
representation is integer. As the WoK system extracts data for an ontology,
it also converts the data to declared internal representations.

By way of summary for this informal introduction to our WoK vision,
we see a WoK consisting of logic theories, interconnected and superimposed
over web documents. Logic theories are populated ontologies. From an epis-
temological point of view, populated ontologies are extensional knowledge.
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And with the addition of inference rules, populated ontologies also embody
intensional knowledge.

15.3 WoK Formalization

We base our foundational conceptualization for a web of knowledge on the
conceptual modeling language OSM (Object-oriented Systems Modeling)
[EKW92]. OSM, however, simply provides a graphical representation of a
first-order-logic language. Here we restrict OSM to be decidable, yet power-
ful enough to represent desired ontological concepts and constraints. We call
our restriction OSM-O, short for OSM-Ontology. We thus base our founda-
tional conceptualization directly on an appropriate restriction of first-order
logic. This WoK foundation should be no surprise since it is the basis for mod-
ern information systems and has been the basis for formalizing information
since the days of Aristotle [AriBC].

Definition 1. OSM-O is a triple (O, R, C):

• O is a set of object sets; each is a one-place predicate; and each predicate
has a lexical or a non-lexical designation.

• R is a set of n-ary relationship sets (n ≥ 2); each is an n-place predicate.
• C is a set of constraints:

– Referential integrity: ∀x1...∀xn(R(x1, ..., xn) ⇒ S1(x1)∧ ...∧Sn(xn) for
each n-ary relationship set R connecting object sets S1, ..., Sn.

– Participation constraint min:max cardinality: for every connection of
an object set S to an n-ary relationship set R, ∀xi(S(xi) ⇒ ∃≥min<x1,
..., xi−1, xi+1, ..., xn>(R(x1, ..., xn))) if min > 0, and ∀xi(S(xi) ⇒
∃≤max<x1, ..., xi−1, xi+1, ..., xn>(R(x1, ..., xn))) if max is not * (the
symbol denoting an unbounded maximum).

– Generalization/specialization: ∀x(S1(x) ∨ ... ∨ Sn(x) ⇒ G(x)) for each
generalization object set G of specialization object sets S1, ..., Sn in
a hypernym-hyponym is-a hierarchy. In addition, ∀x(Si(x) ⇒ ¬Sj(x))
for 1 ≤ i,j ≤ n and i �= j if the specialization object sets are disjoint
and ∀x(G(x) ⇒ S1(x) ∨ ... ∨ Sn(x)) if the generalization object set is
complete—is a union of the specialization object sets.

– Aggregation: holonym-meronym relationship sets grouped as an aggre-
gation in an is-part-of hierarchy. �

Example 1. Figure 15.2 shows an OSM-O model instance. Car(x) andModel-
Trim(x) are the one-place predicates for the two non-lexical object sets.
Mileage(x) and Engine(x) are two of the one-place predicates for the lexical
object sets. CarY ear(x, y) is a two-place predicate for the relationship set
connecting Car and Y ear. For readability, we may provide a more descrip-
tive name for a relationship set so long as the naming phrase for the rela-
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tionship set includes the names of its object sets. We then typically use infix
notation and write, for example, Car(x)hasY ear(y) for the CarY ear(x, y)
relationship set or Car(x)costsPrice(y) for the CarPrice(x, y) relationship
set. One of the referential integrity constraints is ∀x∀y(CarY ear(x, y) ⇒
Car(x) ∧ Y ear(y)). One of the participation constraints is ∀x(Car(x) ⇒
∃≤1y(CarY ear(x, y))), where we drop the tuple-grouping angle brackets for
the common case of only one variable being existentially quantified. The for-
mula ∀x(Engine(x) ∨ BodyType(x) ∨ Accessory(x) ∨ Transmission(x) ⇒
Feature(x)) defines the generalization/specialization; its disjointness con-
straint includes ∀x(Engine(x) ⇒ ¬ BodyType(x)) as one of its terms.
An aggregation groups several relationship sets denoting subparts of su-
perparts: Model(x)isSubpartOfModelT rim(y) and Trim(x)isSubpartOf -
ModelT rim(y) are the two relationship sets of the aggregation in Figure 15.2;
their inverses are respectively ModelT rim(x)isSuperpartOfTrim(y) and
ModelT rim(x)isSuperpartOfModel(y). Although graphical in appearance,
an OSM-O diagram is merely a two-dimensional rendition of predicates and
closed formulas as defined in Definition 1. �

Definition 2. Let M = (O, R, C) be an OSM-O model instance. Let I be an
interpretation for M that has a domain D = LID ∪OID, where LID∩OID =
Ø, and a declaration of True or False for each valid instantiation of each
predicate in O ∪ R. For predicates in O, valid instantiations require lexical
predicates to be instantiated with values in LID and non-lexical predicates to
be instantiated with values in OID. For predicates in R, valid instantiations
require each value v to be lexical or non-lexical according to whether the
connected object set for v is lexical or non-lexical respectively. If all the
constraints of C hold, I is a model of M , which we call a valid interpretation
of M (to avoid an ambiguous use of the word “model” when also discussing
conceptual models). An instantiatedTrue predicate for a valid interpretation
is a fact. �

Example 2. A valid interpretation of the OSM-O model instance in Fig-
ure 15.2 contains facts about cars. A valid interpretation might include
the facts Car(Car3), Y ear(2003), CarY ear(Car3, 2003), Model(“Accord”),
Trim(“LX”), ModelT rim(ModelT rim17), CarModelT rim(Car3, Model-
Trim17), and Trim(“LX”)isPartOfModelT rim(ModelT rim17). The ob-
ject sets Car and ModelT rim, being non-lexical, have object identifiers for
their domain-value substitutions (which we denote by object-set names with
a subscript). The constraint ∀x(Car(x) ⇒ ∃≤1y(CarY ear(x, y))) holds for
Car(Car3) if CarY ear(Car3, 2003) is the only car-year pair that exists with
Car3 as its first element. �

Similar to the work by Buitelaar, et al. [BCHS09], we now show how to
linguistically ground OSM-O. Linguistically grounding OSM-O turns OSM-
O model instances into OSM-Extraction-Ontology model instances (OSM-EO
model instances). We begin by defining an ordinary abstract data type for



15 Conceptual Modeling Foundations for a Web of Knowledge 11

each object set and relationship set. We then add linguistic recognizers for
instance values, operators, operator parameters, and relationships.

Definition 3. An abstract data type is a pair (V , O) where V is a set of
values and O is a set of operations. �

Definition 4. A data frame is an abstract data type augmented as follows:

1. The data frame has a name N designating the set of values V , and it may
have a list of synonyms for N .

2. The value set V has instance recognizers that identify lexical patterns
denoting values in V .

3. For a lexical object set, the operator set O includes input operators to
convert identified instances to an internal representation and output op-
erators to convert the internal representation of instances to displayable
strings.

4. An operation o in O may have a recognizer that identifies lexical patterns
in text that indicate that o applies. Further, the recognizer identifies lexical
patterns that, along with instance recognizers, identify parameters for o.
�

Example 3. In Figure 15.3 the value set V for the Price data frame is of
type Integer. Its recognizer is a potentially lengthy list of regular expressions
augmented by keywords. Its operation set O includes the LessThan opera-
tor and potentially has many more operations. The LessThan operator has
keyword phrases that indicate its applicability as well as how to identify its
parameters. �

For relationship sets, the definition of a data frame does not change, but
a typical view of the definition shifts as we allow value sets to be n-tuples of
values rather than scalar values. Further, like recognizers for operators, they
rely on instance recognizers from the data frames of their connected object
sets.

Example 4. Suppose the Car object set in Figure 15.2 has a relationship set to
a Person object set. The relationship-set data frame may have recognizers for
any one of several possible relationships such as {Person} is selling {Car},
{Person} posted {Car} ad, or {Person} is inquiring about {Car} Here, the
braces enclose references to data frames for the non-lexical object sets Car
and Person. �

As is standard, implementations of abstract data types are hidden, and we
hide implementations for data frames as well. Similar to data independence
in database systems, this approach accommodates any implementation. In
particular, it allows for new and better recognizers, which we can draw from
the large body of work devoted to information extraction [Sar08].

Definition 5. If M is an OSM-O model instance with a data frame for each
object set and relationship set, M is an OSM-EO model instance. �
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An OSM-EO model instance is linguistically grounded in the sense that
it can both “read” and “write” in some natural language. To “read” means
to be able to recognize facts in natural language text and to extract fact
instances with respect to the ontology in the OSM-EO model instance. To
“write” means to display fact instances so that they are human-readable.

How well a particular OSM-EO model instance can “read” and “write”
makes a difference in how well it performs. Our experience is that OSM-EO
model instances can “read” some documents well (over 95% precision and re-
call [ECJ+99]), but it is clear that opportunities abound for further research
and development. Writing human-understandable descriptions is less difficult
to achieve—just select any one of the phrases for each object set and rela-
tionship set (e.g., Person(Person17 ) is selling Car(Car734 ), Car(Car734 )
has Make(Honda)). Making written descriptions more pleasing, of course, is
more difficult.

Continuing in our quest to define the components of our WoK vision, we
now define its “knowledge,” and we explain how we see its “knowledge” being
justified and how we envision its knowledge components being interconnected.

Definition 6. The collection of facts in an OSM-O model instance con-
stitutes its extensional knowledge. The collection of implied facts derived
from the extensional knowledge by inference rules2 constitutes its intensional
knowledge. The extensional and intensional knowledge together constitute the
knowledge of the OSM-O model instance. �

Although this view of knowledge is common in computing, Plato, and
those who follow his line of thought, also demand of knowledge that it be
a “justified true belief” [PlaBC]. “Knowledge” without some sort of truth
authentication can be unsupported and even misleading. For our vision of a
WoK, we attempt to establish truth via provenance and authentication. When
an extraction ontology extracts a fact from a source document, it retains a
link to the fact; and when a query answer requires reasoning over rules, the
system records the reasoning chain. Users can ask to see fact sources and rule
chains, and in this way they can authenticate facts and reasoning the way we
usually do—by checking sources and fact-derivation rules.

Definition 7. A knowledge bundle (KB) is a 5-tuple (O, E, S, I, R) where
O is an OSM-O model instance; E is an OSM-EO instance whose OSM-O
instance is O; S is a set of source documents from which facts for E are
extracted; I is a valid interpretation for O whose facts are extracted from the
documents in S; and R is a set of inference rules. �

Finally, to make the envisioned WoK truly a web of knowledge, we inter-
connect knowledge bundles (KBs). Facts about the same object may appear

2 As the work on logic and particularly on description logics [BN03] continues to expand,
we can take advantage of the work of this community (e.g., [Ros05, CGL09, CGP09]) to
employ better and more powerful reasoning engines.
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in more than one KB. We can directly connect these objects so that users
may navigate among KBs and obtain additional information about an object.
Concepts in more than one KB may also be essentially the same as is the
concept Make, and also the concept Model, in their respective ontologies in
Figures 15.2 and 15.4. We also connect concepts across ontologies to provide
additional navigation paths.

Definition 8. A Web of Knowledge (WoK ) is a collection of knowledge bun-
dles interconnected with binary links, <x, y>, of two types: (1) object iden-
tity: non-lexical object identifier x in knowledge bundle B1 refers to the same
real-world object as non-lexical object identifier y in knowledge bundle B2.
(2) Object-set identity: object set x in knowledge bundle B1 designates the
same kind of real-world objects as object set y in knowledge bundle B2. �

15.4 WoK Construction

To construct a WoK, we must be able to construct a knowledge bundle (KB),
and we must be able to establish links among KBs. We can construct KBs
and establish links among them by hand (and this should always be an op-
tion). However, scaling WoK construction demands semi-automatic proce-
dures, with much of the construction burden placed on the system—all of
it when possible. Our KB construction tools transform, or aid in transform-
ing, source information into KB components. For links among KBs we apply
record-linkage and schema-mapping tools.

Definition 9. A transformation is a 4-tuple (R, S, T , Σ), where R is a set of
resources, S is the source conceptualization, T is the target conceptualization
for an S-to-T transformation, Σ is a set of source-to-target transformation
statements. �

Definition 9 leaves several of its components open—to take on specific
meanings in a variety of KB building tools. The “set of resources” is unde-
fined, but we intend this to mean semantic resources such as WordNet and a
data-frame library. “Target conceptualizations” are KBs or KB components.
“Source conceptualizations” depend on sources whose fact conceptualizations
can be formal, semi-formal, or informal. “Source-to-target transformation
statements” can be declarative or procedural and can be written in a variety
of formal languages.

To the extent possible, we want our transformations to preserve the infor-
mation and constraints in source documents and repositories. When sources
are formalized as predicate calculus or in a formalization equivalent to predi-
cate calculus, we can guarantee the preservation information and constraints.
We identify the predicates and the facts for the predicates (thus preserving
information) and formulate a closed well-formed formula for each constraint
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(thus preserving constraints). If the source interpretation is valid, the target
interpretation will be valid as well. When sources are informal with respect
to predicate calculus, the predicates, facts for the predicates, and the con-
straints are implicit. The challenge is nevertheless to discover and extract
them.

Definition 10. Let S be a predicate calculus theory with a valid interpreta-
tion, and let T be a populated OSM-O model instance constructed from S by
a transformation t. Transformation t preserves information if there exists a
procedure to compute S from T . Let CS be the closed, well-formed formulas
of S, and let CT be the closed, well-formed formulas of T . Transformation t
preserves constraints if CT ⇒ CS . �

Our goal has been and is to successfully develop automatic and good semi-
automatic transformations over a broad spectrum of documents for a variety
of ontological contexts. For sources whose facts and constraints over these
facts have formal declarations, transformations should preserve all facts and
constraints. For sources whose facts and constraints are implicit, we seek to
identify the facts and constraints that are applicable to a given ontology or,
in the absence of a given ontology, we seek to determine and populate the
implicit ontology based on the document’s data and on applicable external
knowledge resources.

Longstanding research endeavors can all contribute to various parts of
WoK construction. These include: reverse engineering [Aik98], table and form
understanding [EHLN06, dSJT06], ontology learning [Cim06], ontology align-
ment [ES07], data integration [BN08, HRO06, RB01], and record linkage
[EIV07]. In Sections 15.4.1–15.4.4 we explain how we have taken advantage
of some of this work for WoK construction. In Section 15.4.1 we show how
to reverse engineer XML data repositories into KBs. In Section 15.4.2 we de-
scribe how we can interpret collections of nested tables in hidden web pages
and thus turn the collection into a KB. In Section 15.4.3 we explain how we
integrate a group of semantically overlapping tables to create a KB. And, in
Section 15.4.4 we give a way via form creation and information harvesting
to generate KBs. Finding and implementing other ways to construct WoK
components are interesting and worthwhile research endeavors.

15.4.1 Construction via XML Reverse Engineering

We have designed a conceptual model for XML, called C-XML (Conceptual
XML). C-XML adds a few XML-specific concepts to OSM-O, including in
particular a sequencing construct and a choice construct. Being formally de-
fined as templates over OSM-O constructs, however, these additions remain
within the purview of OSM-O.
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Reverse engineering an XML schema to C-XML effectively defines a map-
ping to OSM-O for all XML documents complying to the XML schema
[AK07]. The basic translation strategies for mapping XML Schema to C-XML
are straightforward, although some parts of the translation require some so-
phisticated manipulation. In the translation, elements and attributes become
object sets. Elements that have simple types become lexical object sets, while
elements that have complex types become non-lexical object sets. Attributes
become lexical object sets since they always have a simple type. Built-in data
types and simple data types for an element or an attribute in XML Schema
are specified in the data frame associated with the object set representing
the element or the attribute. XML parent-child connections among elements
and XML element-attribute connections both become binary relationship sets
in C-XML. The constraints minOccurs and maxOccurs translate directly to
participation constraints in C-XML.

Unfortunately, not everything is straightforward. Translations for keys,
extension, restriction, substitution groups, and mixed content are all quite
interesting. The translation also involves a myriad of detail extending to over
40 pages in [AK07]. Although extensive, the translation details provide a
constructive proof that the transformation from XML Schema to C-XML
preserves both information and constraints.

The result of doing information- and constraint-preserving transformations
of XML documents complying to an XML schema is a KB. Further, to the
extent that we can automatically infer an XML schema specification directly
from an XML document, we can also reverse-engineer raw XML documents
into populated C-XML model instances and thus into KBs.

15.4.2 Construction via Nested Table Interpretation

TISP (Table Interpretation with Sibling Tables) is a tool of ours that in-
terprets tables in sibling pages [Tao08]. To interpret a table is to properly
associate table category labels with table data values. Using Figure 15.5 as
an example, we see that Identification, Location, and Function are labels for
the large rectangular table. Inside the cell labeled Identification is another
table with headers IDs, NCBI KOGs, Species, etc. Nested inside of this table
are two more tables, the first starting with the label CGC name and the sec-
ond starting with the label Gene Model. We associate labels with data values
by observing the table structure. A cell in a table associates with its header
label (or labels in the case of multi-dimensional tables). For nested tables,
we trace the sequence of labels from the outermost label to the data cell.
Thus, for example, the label for the value F47G6.1 under Sequence name is
Identification.IDs.Sequence name.

Although automatic table interpretation can be complex, if we have an-
other page, such as the one in Figure 15.6, that has essentially the same
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Fig. 15.5 Nested Table from a Molecular-Biology Web Page.

structure, the system can usually obtain enough information to make au-
tomatic interpretation possible. We call pages that are from the same web
site and have similar structures sibling pages. The two pages in Figures 15.5
and 15.6 are sibling pages. They have the same basic structure, with the
same top banners that appear in all the pages from this web site, with the
same table title (Gene Summary for some particular gene), and a table that
contains information about the gene. Corresponding tables in sibling pages
are called sibling tables. If we compare the two large tables in the main part
of the sibling pages, we can see that the first columns of each table are ex-
actly the same. If we look at the cells under the Identification label in the
two tables, both contain another table with two columns. In both cases, the
first column contains the identical labels IDs, ..., Remarks, although the ta-
ble in Figure 15.6 has one additional label, Notes. Further, the tables under
Identification.IDs also have identical header rows, and the tables under Iden-
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Fig. 15.6 Sibling Page of the Page in Figure 15.5.

tification.Gene model(s) have nearly identical header rows. The data values,
however, vary considerably. Generally speaking, we can look for commonali-
ties in sibling tables to find labels and look for variations to find data values.

Given that we can interpret a table—find labels and values and properly
associate them—we can create a conceptualization of the table linking labels
as metadata with values as instance data. This simple conceptualization may
not always be best, but for some tables it works well. In particular, it works
well for nested tables like the ones in Figures 15.5 and 15.6.

Observe that for these nested tables, the conceptual, nested, label-value
structure is isomorphic to a simple XML schema. There exists a single, nested,
label path to every data value. For the sequence name F47G6.1 in the top row
of the table in Figure 15.5, the label path is Identification.IDs.Sequence name.
This nested-label property lets us conceptualize these tables in an XML-like
conceptual tree with labels as tags and instance values as leaf strings in a
nested tag structure, as Figure 15.7 illustrates. Note that the tree structure
in Figure 15.7 precisely captures the nesting of the tables in Figures 15.5
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and 15.6. Note also that the conceptualization can account for the variation
among tables. In Figure 15.7, for example, Gene Models relates optionally
to Swissprot because the ontology-generation process observes that one table
(Figure 15.5) has an entry for Swissprot whereas the other (Figure 15.6) does
not. The end result is an automatically generated KB containing all the data
from the given set of sibling tables.
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Fig. 15.7 Generated Conceptual Model Instance.

15.4.3 Construction via Semantic Integration

TANGO (Table ANalysis for Generating Ontologies) provides another way to
create KBs. Given a collection of tables all in the same application domain,
we reverse-engineer each table into a conceptual-model instance and then
integrate the conceptual-model instances into an ontology that represents
the domain. During the process, we analyze each table individually, inferring
concepts, relationships among concepts, and data values for concepts and
relationships. The result of this process is a conceptual-model instance for
the table, which we call a “mini-ontology”—“mini” because the number of
concepts in a table is usually small. We then exploit schema-mapping tech-
niques to discover interrelationships among the mini-ontologies, enabling us
to merge the generated conceptual-model instances into an ontological struc-
ture for the domain.

TANGO operates in three steps:

1. Recognize and canonicalize table information.
2. Construct mini-ontologies from canonicalized tables.
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Fig. 15.8 World Populations and Religions.

3. Discover inter-ontology mappings and merge mini-ontologies into a grow-
ing application ontology.

We illustrate with an example.

15.4.3.1 Table Recognition and Canonicalization

Tables appear in many shapes and sizes; most, but not all, have rectangular
grid layouts. Figure 15.8 is an example of a table without a clearly delineated
grid layout.

In our first step, we canonicalize tables by converting them to “Wang
notation,” a layout-independent formalization for tables [Wan96]. Wang no-
tatation has two parts: (1) label structure and (2) data-value/label-structure
association. Label structure consists of a collection of dimension trees, one for
each coordinate that indexes a data cell. A dimension tree organizes labels in
a tree structure: each path from root to leaf provides an index coordinate for
a data value. In our example, the table in Figure 15.8 has two dimensions.
In Wang notation, these two dimension trees are:
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(DT1Root, {
(Population (July 2001 est.), Ø),
(Religion, {

(Albanian Orthodox, Ø),
(Muslim, Ø),
(Roman Catholic, Ø),
(Shi’a Muslim, Ø),
(Sunni Muslim, Ø),
. . .
(other, Ø)
}))

(Country, {
(Afghanistan, Ø),
(Albania, Ø),
. . .
})

Wang associates data with dimension trees in δ-statements. Each combination
of paths through dimension trees can have a value:

δ(DT1Root.Population (July 2001 est.), Country.Afghanistan) = 26,813,057
δ(DT1Root.Religion.Albanian Orthodox, Country.Afghanistan) = ⊥
. . .
δ(DT1Root.Religion.other, Country.Afghanistan) = 1%
δ(DT1Root.Population (July 2001 est.), Country.Albania) = 3,510,484
. . .

Here, the first statement is for the data cell containing 26,813,057, the popula-
tion of Afghanistan. The other three index an empty cell, the 1% for “other”
religions in Afghanistan, and the 3,510,484 for the population of Albania.
Similarly, we can index all values for all countries in Figure 15.8.

We consider any collection of data that we can represent in Wang notation
to be a table. Further, given a table in Wang notation, we can display the
table in a standard grid form. We place the first dimension above the data,
the second to the left of the data, the third to the left of the second with the
second replicated for every leaf of the third, . . . . We omit implicit roots, such
as the root DT1Root for Dimension Tree 1. Figure 15.9 displays the table in
Figure 15.8 in this standard way. Figures 15.10–15.14 show several additional
examples, which together with Figure 15.8 constitute, for our example here,
the tables to be merged into a KB.

We [EHLN06, JNS+09, TE09], and others (e.g., [GBH+07, PSC+07, RK06,
dSJT06, ZBC04]), are working toward fully automatic table-interpretation
tools. These tools take as input a table such as the one in Figure 15.8, and
produce as output Wang notation, which we can display in a standard way.
In our tools, we augment Wang notation so that it can capture more than
just labels and values. We also capture a table’s title, its footnotes, and its
units of measure. In the absence of fully automated tools, we have developed
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Religion
Population Albanian Roman Shi’a Sunni

Country (July 2001 est.) Orthodox Muslim Catholic Muslim Muslim . . . other

Afghanistan 26,813,057 15% 84% 1%
Albania 3,510,484 20% 70% 10%
...

Fig. 15.9 Canonicalized Table for World Religious Populations.

Population Median Age (2002) Population Growth Rate
Country (July 2003 est.) Total Male Female (2003 est.)

Afghanistan 28,717,213 18.9 years 19.1 years 18.7 years 3.38%*
Albania 3,582,205 26.5 years 24.8 years 28.1 years 1.03%
...

* Note: this rate does not take into consideration the recent war and its continuing impact

Fig. 15.10 Canonicalized Table for People.

Country Location Description Geographic Coordinates

Afghanistan Southern Asia, north and west 33 00 N, 65 00 E
of Pakistan, east of Iran

Albania Southeastern Europe, bordering 41 00 N, 20 00 E
on the Adriatic Sea and Ionian
Sea, between Greece and Serbia
and Montenegro

...

Fig. 15.11 Canonicalized Table for Geography.

tools that let a user efficiently mark a table’s label areas, data areas, title,
and other augmentations [JN08, PJK+09]. As a principle, it should always
be possible for a knowledge worker to manually specify any output to be
generated by the system, even though we aim to automate as much as is
possible. Manual specification ensures that we can always complete a task
and that we can correct any errors our automated procedures may introduce.

15.4.3.2 Construction of Mini-Ontologies

Figure 15.15 gives a graphical representation of each of the mini-ontologies
for our six sample canonicalized tables in Figures 15.9–15.14. The notation
differs slightly from our earlier notation for OSM-O. In this notation, we
represent graphically the four common participation constraints: 0:*, 0:1,
1:*, and 1:1. A zero minimum makes participation optional, which we de-
note with an “o” on the relationship-set line near the object set whose ob-
jects participate optionally. The absence of an “o” makes the participation
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Population

Asia 3,674,000,000
Africa 778,000,000
...
New York City, New York 8,040,000
Los Angeles, California 3,700,000
...
Mumbai, India 12,150,000
Buenos Aires, Argentina 11,960,000
...
China 1,256,167,701*
India 1,017,645,163*
...

*January 15, 2000

Fig. 15.12 Canonicalized Table for Largest Populations.

Place Type Elevation* USGS Quad Lat Lon

Bonnie Lake reservoir unknown Seivern 33 72 N 81 42 W
Bonnie Lake lake unknown Mirror Lake 40 71 N 110 88 W
...
New York town/city unknown Jersey City 40 71 N 74 01 W
New York town/city 149 meters Leagueville 32 17 N 95 67 W
New York mine unknown Heber City 40 62 N 111 49 W
...

*Elevation values in this table are approximate, and often subject to a
large degree of error. If in doubt, check the actual value on the map.

Fig. 15.13 Canonicalized Table for US Topographical Maps.

Pos Language Speakers Where Spoken (Major)

1 Mandarin 885,000,000 China, Malaysia, Taiwan
2 Spanish 332,000,000 South America, Central America, Spain
3 English 322,000,000 USA, UK, Australia, Canada, New Zealand

...

Fig. 15.14 Canonicalized Table for Most Spoken Languages.

mandatory—equivalent to a 1-minumum in a participation constraint. Thus,
for example, the mini-ontology in Figure 15(e) declares that a Place must
have a Name and may, but need not, have an Elevation. A 1-maximum in a
participation constraint makes the relationship set functional, which we de-
note with an arrowhead on the opposite side of a relationship-set line. Thus,
for example, in Figure 15(e), a Place has one Name, at most one Elevation,
one USGS Quad (the map in which the center of the place appears), and one
pair of Geographic Coordinates. The functional (arrowhead) notation, also
allows us to express functional dependencies whose left-hand side is compos-
ite. Thus, for example, in Figure 15(a) we have the functional dependency
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Country Religion → Percent. The notation also provides explicitly for ob-
ject values with large black dots, which are object sets (one-place predicates)
limited to have a single value.

July 2001

ReligionPercent

PopulationCountry

(a)

*

July 2003

Population

2003
2002

Population Growth Rate

Female Median AgeMale Median AgeTotal Median Age

Religion

Percent

Country

(b)

Latitude

Longitude
Geographic Coordinates

Location DescriptionCountry

(c)

*

January 15, 2001 | ?

Population

CityCountryContinent

NameGeopolitical Entity

(d)

Mine
ReservoirLake

City | Town

USGS Quad

Elevation
NamePlace

Latitude

Longitude
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(e)

CountryRegionContinent

Name

Where Spoken (Major)

Language

Speakers

(f)

Fig. 15.15 Mini-Ontologies Constructed from the Tables in Figures 15.9 - 15.14.

To construct mini-ontologies from canonicalized tables, we must discover
what concepts (object sets) are involved and how they are related (relation-
ship sets). We must also determine the constraints that hold over the re-
lationship sets (functional, mandatory/optional participation, aggregations)
and among the object sets (generalization/specialization). We do so by ap-
pealing to the structural constraints of canonicalized tables and to outside
resources such as WordNet and a data-frame library [LE09]. Aligning model
instances with outside resources also makes them easier to integrate.
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As an example, we obtain the mini-ontology in Figure 15(a) from the table
in Figure 15.9 as follows. Country is a key and appears in a leftmost column,
strongly suggesting that it should be the tail side of functional dependencies.
Population depends on Country but also depends on July 2001. Knowledge
from the data frame library recognizes that the values in the Religion columns
are Percent values. The religions, which could either be object sets or values,
are values since there are many (our current threshold is five). Given that
religions are values, we therefore have a ternary relationship among Country,
Religion, and Percent. Based on constraint mining, we can determine that
Country and Religion together functionally determine Percent. Creation of
the remaining five mini-ontologies is similar.

15.4.3.3 Mapping Discovery and Ontology Merge

Our approach to discovering inter-ontologymappings is multi-faceted [EJX01,
EJX02], which means that we use all evidence at our disposal to determine
how to match concepts. These facets include label matching [EJX01], value
similarity [EJX01], expected values via matching values with data frames
[EJX01, EXD04], constraints [BE03], and structure [ETL02, EJX02]. In us-
ing this evidence we look not only for direct matches as is common in most
schema matching techniques [BMPQ04, FNS07, RB01] but also for indirect
matches [XE06]. Thus, for example, we are able to split or join columns to
match the single Geographic Coordinates column in Figure 15.11 with the
pair of columns, Lat and Lon, in Figure 15.13, and we are able to divide the
values in the Place column in Figure 15.13 into several different object sets.

Once we have discovered mappings between mini-ontologies or between
a mini-ontology and the ontology we are building, we can begin the merge
process. Sometimes the match is such that we can directly fuse two ontolo-
gies by simply keeping all the nodes and edges of both and merging nodes
and edges that directly correspond. Often, however, merging induces con-
flicts that must be resolved. We resolve conflicts synergistically based on
Issue/Default/Suggestion (IDS) statements [BE03, Lia08] When a conflict
arises, the system brings the issue to the attention of a knowledge worker.
It provides a default resolution—the one it will take if the user does not in-
tervene, and it makes some suggestions about alternate possibilities. In the
tool we have created [Lia08], a user can specify mappings that the automated
matching algorithms my miss, can remove mappings that the matching al-
gorithms may have incorrectly suggested, can run the merge automatically
(allowing the system to take all the default resolutions for any conflict), can
run merge interactively (resolving each IDS statement manually), and can
manually adjust the results after merge.

Given a collection of mini-ontologies, such as those in Figure 15.15, we look
initially for mini-ontologies that exhibit as large of an overlap as possible (as
measured by the number of inter-ontology mappings); thereafter we select
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mini-ontologies with the largest overlap with our growing ontology. In our
example we begin by merging the mini-ontologies in Figures 15(a) and 15(b).

1st Merge Country matches Country and Population matches Population.
Both July 2001 and July 2003 are date components associated with Pop-
ulation, and we merge them as Date.

2nd Merge Building on the 1st Merge, we add the mini-ontology in Fig-
ure 15(d) and obtain the emerging ontology in Figure 15.16. Here, we
encounter IDS statements that help us reconcile the lexical/non-lexical
Country object sets so that Country becomes non-lexical with an associ-
ated name and also that let Population be an inherited property and thus
omit it from the Country specialization.

3rd Merge Continuing, we merge the mini-ontology in Figure 15(f) with
the growing ontology in Figure 15.16. Here, the data in the object sets
Geopolitical Entity and Where Spoken largely overlap, but it is not 100%
clear whether one set should be a subset of the other, whether they are
overlapping siblings in an is-a hierarchy, or whether they should be the
same set. An IDS statement is therefore appropriate, and we assume the
issue is resolved by declaring that the sets are the same and should be
called Geopolitical Entity. This merge thus adds Region as a specializa-
tion of Geopolitical Entity and adds Language and Speakers connected to
Geopolitical Entity in the same way they are connected to Where Spoken
(Major) in Figure 15(f).

4th Merge Continuing, we next add the mini-ontology in Figure 15(c).
Here, the constraints on the Location Description in Figure 15(c) declare
that the relationship is mandatory for both Country and Location Descrip-
tion and functional from Country to Location Description. Because of the
lack of location descriptions for most countries in our growing collection,
however, we have enough evidence to override the mandatory declaration
and make the relationship for Country optional.

5th Merge Continuing, we next add the mini-ontology in Figure 15(e) and
obtain the growing ontology in Figure 15.17. Here, with the help of IDS
statements, we must recognize that Geopolitical Entity is a specialization
of Place. Other adjustments come readily, including inheriting Name from
Place and making the existence of USGS Quad optional for Place based
on lack of map locations for most places.

As we transform tables to mini-ontologies and merge them, we also re-
tain the data. The end result is a populated ontology and thus a KB that
represents the domain described by the given collection of tables.
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Fig. 15.16 Growing Ontology after Merging the Mini-Ontologies in Figures 15(a), 15(b),
and 15(d). (The object sets with lighter-shaded, “red,” borders are those most recently
added.)

15.4.4 Construction via Form Filling

Although the KB construction methods discussed in Subsections 15.4.1–
15.4.3 are largely automatic, they have the disadvantage that users have
little or no control over the ontological structure created and the data that
populates the ontological structure. Users could take the final generated re-
sult and edit it by hand—a reasonable possibility if the desired ontological
structure and the data are almost the same as the generated structure and
data. In this subsection, we discuss an alternative that gives users a way to
create a custom-designed ontological structure for a KB and to populate it
with values harvested from a diverse collection of web pages. This method
works particularly well when the information to be collected for the KB
comes from machine-generated collections of semi-structured web pages such
as those commonly found in most hidden-web/deep-web sites.

FOCIH (Forms-based Ontology Creation and Information Harvesting)
[TEL09] is a tool that lets users specify ontologies without having to know
any conceptual-modeling language or any ontology language. We observe that
forms are a natural way for humans to collect information. As an everyday
activity, people create forms and ask others to fill in the blanks. FOCIH lets
users create their own forms to describe information they wish to harvest.
Once defined, users can fill in forms from web pages by copy and paste. From
the form specification and user cut-and-paste actions, FOCIH generates an
ontology, extracts data, and annotates the web page with respect to the on-
tology. Further, if the web page is machine-generated and has sibling pages,
FOCIH is able to harvest the specified information from all the sibling pages,
often without further user intervention.
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Fig. 15.17 Growing Ontology after Merging all Mini-Ontologies. (The object sets with
lighter-shaded, “red,” borders are those most recently added.)

FOCIH’s form-creation mode provides users with an intuitive method for
defining different kinds of form features. FOCIH has five types of form fields:
single-label/single-value, single-label/multiple-value, multiple-label/multiple-
value, mutually-exclusive choice, and non-exclusive choice. Users create stan-
dard forms by stringing these form elements together in any order and nest-
ing them within one another to any depth. The form in the left panel of
Figure 15.18 shows an example. The form is for collecting country informa-
tion. It starts with three single-label/single-value fields for Name, Capital,
and Geographic Coordinates, followed by a single-label/multiple-value field
for Religion, and a multiple-label/multiple-value field for Population-Year
estimates. The Life Expectancy field is a non-exclusive choice field for either
Male or Female Life Expectancy or both. The final field shows the nesting of
three form fields for Water, Land, and Total under a single-label/single-value
field for Area.

FOCIH’s form-fill-in mode lets users browse to a web page they wish to
annotate and copy and paste values into form fields. A user highlights values
in the page and then clicks on the form field to fill in a value. Figure 15.18
shows a web page for the Czech Republic in the right panel. Copied values
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Fig. 15.18 Filled-in FOCIH Form.

from the web page appear in the form in the left panel. The pencil icon
lets a user drop a highlighted value into a form field, and the x icon lets
a user remove a value. The plus icon lets a user concatenate a second part
of the value to a partial value already in the form field. Thus, for example,
if the latitude and longitude values are disjoint, perhaps labeled Latitude:
and Longitude: and appearing on separate lines in a web page, a user can
concatenate the two as a single value in the Geographic Coordinates field.

From the filled-in form, FOCIH can generate a conceptual model and pop-
ulate it with values. Note that filled-in nested forms are identical in structure
to the nested tables discussed in Subsection 15.4.2. Thus, the generated on-
tologies are similar, and are like the OSM-O model instance in Figure 15.7.
In addition to generating a conceptual model and populating it, FOCIH also
records the following information: (1) paths to leaf nodes in the DOM tree of
an HTML page containing each value and, for concatenated values, each value
component; (2) for each value the most specific instance recognizer from the
data-frame library (e.g., string, number, percentage, year, geographic coordi-
nate); and (3) enough left, right, and delimiter context within each leaf node
to identify the value or values within the DOM-tree node. This enables FO-
CIH to harvest the same information from other machine-generated sibling
pages from the same web site.

The result of running FOCIH over a collection of sibling pages is a custom-
built KB containing the information in the collection. Further, FOCIH can
harvest information from other sibling-page collections with respect to the
same custom-built ontology, which can further augment the KB.
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15.5 WoK Usage

The construction of extraction ontologies leads to “understanding” within a
WoK. This “understanding” leads to the ability to answer a free-form query
because, as we explain in this section, a WoK system can identify an ex-
traction ontology that applies to a query and match the query to the ontol-
ogy. Hence, a WoK system can reformulate the free-form query as a formal
query, so that it can be executed over a KB. In addition, “understanding”
leads to establishing a context of discourse, allowing the system to expose its
conceptualization of the subject and thus allowing users to more effectively
communicate their information needs to the system. In both cases results
returned for a query include not only answers to queries but also answer jus-
tification. Users can obtain a reasoning chain justifying each answer as well
as provenance links identifying each ground fact supporting the answer.

Definition 11. Let S be a source conceptualization and let T be a target
conceptualization formalized as an OSM-EO model instance. We say that
T understands S if there exists an S-to-T transformation that maps each
one-place predicate of S to an object set of T , each n-place predicate of S to
an n-place relationship set of T (n ≥ 2), each fact of S to a fact of T with
respect to the predicate mappings, and each operator of S to an operator in a
data frame of T , such that the constraints of T all hold over the transformed
predicates and facts. �

Observe that although Definition 11 states how T is formalized, it does
not state how S is formalized. Thus, the predicates and operators of S may or
may not be directly specified. This is the hard part of “understanding”—to
recognize the applicable predicates and operators. But this is exactly what
extraction ontologies are meant to do. If an OSM-EO model instance is lin-
guistically well grounded, then it can “understand” so long as what is stated
in S is within the context of T—that is if there is an object set or relationship
set in T for every predicate in S and if there is an operator in a data frame
of T for every operator in S.

Applications of understanding include free-form query processing, grounded
reasoning chains, and KB building for research studies. We explain and illus-
trate each in turn. In doing so, we also illustrate our WoK prototype system,
which we are building as a way to experiment with our vision of a WoK
[ELL+08].

15.5.1 Free-Form Query Processing

Figure 15.19 illustrates free-form query processing within our WoK prototype.
To “understand” a user query, our WoK prototype first determines which ex-
traction ontology applies to the query by seeing which one recognizes the
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Fig. 15.19 Screenshot of WoK Prototype Showing Free-Form Query Processing.

most instances, predicates, and operators in the query request. For the query
in Figure 15.19, we assume that the WoK prototype chooses the Car extrac-
tion ontology illustrated in Figures 15.2 and 15.3. The WoK prototype then
applies the S-to-T transformation highlighting what it “understands” (“Find

me a honda , 2003 or newer for under 15 grand ”). Figure 15.20 shows the
result of this transformation—each predicate and each operation is mapped
correctly and the constraints of the OSM-EO model instance all hold. Given
this ”understanding,” it is straightforward to generate a SPARQL query. Be-
fore executing the query, our WoK prototype augments it so that it also
obtains the stored annotation links. Then, when our WoK prototype displays
the results of the query (e.g., in the lower-left box in Figure 15.19), it makes
returned values clickable. Clicking on a value, causes our WoK prototype to
find the page from which the value was extracted, highlight it, and display
the page appropriately scrolled to the location that includes the value. The
right panel of Figure 15.19 shows several highlighted values, which happens
when a user checks one or more check-boxes before clicking. �

The form in Figure 15.20 is for an alerter system which we have imple-
mented for craigslist.org. We use the form in two ways: (1) for comprehensive
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Fig. 15.20 Generated Form Showing the System’s “Understanding”—Its “Understood”
Instances within Its “Understood” Ontological Context.

feedback to indicate its “understanding” of the query and (2) for giving users
advanced options for query specification. As feedback, it lets users know the
context in which the system “understands” the query being asked (i.e., the
system displays the name of the extraction ontology and its details as form
elements), and (2) it lets users know exactly what has been “understood”
(i.e., the system displays constant values in fields for object sets or for op-
erations applicable to object sets). With respect to advanced options, it lets
users know what else can be asked in the context of the query. A user then
has the opportunity to adjust the query or add additional constraints. For
example, besides Hondas, a user may wish to also know if Toyotas are for sale
but only if they if they are not Camrys. Clicking on OR for Make and adding
Toyota and then clicking on NOT for Model and adding Camry makes this
possible. The plus icons show that more operators are available; clicking on
the plus displays them. For example, a user may wish to limit the search
to cars whose odometer reading is less than 100K miles; clicking on the “+
Options” button shows the Boolean operators for Mileage and lets a user
enter this limitation.
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15.5.2 Grounded Reasoning Chains

To illustrate grounded reasoning chains, we give an example from family-
history research. Many millions of hand-written records such as those in
the census record in Figure 15.21 have been transcribed by human index-
ers [Fam]. Using extraction ontologies, we can extract from the transcription
to associate names, dates, places, and other information with a genealogical
ontology. Bounding boxes for names and other information in the image are
also available, so we know where in the image information appears.

Fig. 15.21 Census Record.

It is not hard to see that, among others, the following rules hold and are
useful for establishing family relationships implied by the information in the
census record in Figure 15.21:

Person(x)isHusbandOfPerson(y) :- Person(x), Person(y),

Person(x)hasGender(‘Male’),
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Person(x)hasRelationToHead(‘Head’),

Person(y)hasRelationToHead(‘Wife’),

Person(x)isInSameFamilyAsPerson(y).

Person(x)isInSameFamilyAsPerson(y) :-

Person(x)hasFamilyNumber(z)inCensusRecord(w),

Person(y)hasFamilyNumber(z)inCensusRecord(w).

Person(x)named(y)isHusbandOfPerson(z)named(w) :-

Person(x)isHusbandOfPerson(z), Person(x)hasName(y),

Person(z)hasName(w).

The first rule states that a person x is the husband of person y if x is a male
head of the family, y is the wife, and x and y are in the same family. The
second rule assures that they are in the same family by checking to see that
their family number is the same, and the last rule associates the husband and
wife with their names.

When we associate a rule with an ontology, we must ensure that it is
grounded in the base predicates of the ontology. The set of rules forms a graph
over a “head predicate depends-on body predicate” relation, and this graph
must lead to predicates declared in the ontology as object-set predicates,
relationship-set predicates or Boolean operations declared for the ontology.
Recursive rules such as the following rules to compute ancestors are possible,
but must also be grounded.

Person(x)isAncestorOfPerson(y) :-

Person(x)isParentOfPerson(y).

Person(x)isAncestorOfPerson(y) :-

Person(x)isParentOfPerson(z),

Person(z)isAncestorOfPerson(y).

Here, the predicate Person(x)isParentOfPerson(y) must be a rule head
that eventually resolves down to ground predicates such as Person(x)has-
RelationToHead(′Son′) or Person(x)hasRelationToHead(′Daughter′).

We linguistically ground a rule r by declaring a data frame for r in the same
way we declare a data frame for an object set (if the head of r is a one-place
predicate) or for a relationship set (if the head of r is an n-place predicates,
n ≥ 2). Thus, for example, {Person}\s*is\.*husband\s*of\s*{Person} may
be one of the regular expressions for the rule head Person(x)isHusbandOf-
Person(y).

Now when we ask the query, “Who is the husband of Mary Bryza?”, we
can match the query to our genealogy ontology and specifically to the rule
and thus also the chain of rules needed to answer the query. The returned
result would yield “John Bryza” and perhaps others if other Mary Bryzas are
known within the KB. Clicking on “John Bryza” yields both the reasoning
chain in Figure 15.22 and the highlighted census recored in Figure 15.23. The
reasoning chain is simply a list of rules invoked with instance data filled in for
the variables and reformatted to be more readable. The highlighted census
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record shows the source of all the extracted ground fact values used to yield
the answer.

Fig. 15.22 Reasoning Chain for Query.

Fig. 15.23 Census Record with Ground Facts Highlighted.
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15.5.3 Knowledge Bundles for Research Studies

In addition to “understanding” queries, it should be clear that “under-
standing” is also about fact finding. The fundamental intent of linguisti-
cally grounding extraction ontologies is to allow them to recognize facts in
structured, semi-structured, and unstructured text. As an example, we give
a plausible scenario, based on the WoK components we have presented, for
gathering facts for a bio-research study and storing them as a KB for fur-
ther analysis [ELL+09]. Gathering tasks for these research studies often take
trained bio-researchers several man-months of work. So, any significant speed-
up extraction ontologies can provide would be of great benefit in bio-medical
research.

Suppose a bio-researcher B wishes to study the association of TP53 poly-
morphism and lung-cancer. To do this study, B wants information from the
NCBI dbSNP repository3 about SNPs (chromosome location, SNP ID and
build, gene location, codon, and protein), about alleles (amino acids and nu-
cleotides), and about the nomenclature for amino-acid levels and nucleotide
levels. B also needs data about human subjects with lung cancer and needs
to relate the SNP information to human-subject information.

To gather information from dbSNP, B uses FOCIH to construct the form
in the left panel in Figure 15.24. Form construction consists of selecting types
of form fields and organizing and nesting form fields so that they are a con-
ceptualization of the information B wishes to harvest for the research study.
B next finds a first SNP page in dbSNP from which to begin harvesting
information. (The created form and located page need not have any special
correspondence—no schema correspondence, no name correspondence, and
no special structure requirements—but, of course, the page should have data
of interest for the research study and thus for the created form.) B then
fills in the form by cut-and-paste actions, copying data from the page in the
center panel in Figure 15.24 to the form in the left panel.

To harvest similar information from the numerous other dbSNP pages, B
gives a list of URLs, as the right panel in Figure 15.24 illustrates (although
there would likely be hundreds rather than just the six in Figure 15.24).
The FOCIH system automatically harvests the desired information from the
dbSNP pages referenced in the URL list. Since one of the challenges bio-
researchers face is searching through the pages to determine which ones con-
tain the desired information, FOCIH should provide a filtering mechanism.
By adding constraints to form fields, bio-researchers can cause the FOCIH
harvester to gather information only from pages that satisfy the constraints.
B, for example, might only want coding SNP data with a significant hetero-
geneity (i.e., minor allele frequency > 1%).

3 The Single Nucleotide Polymorphism database (dbSNP) is a public-domain archive for a
broad collection of simple genetic polymorphisms hosted by National Center for Biotech-
nology Information (NCBI) at www.ncbi.nlm.nih.gov/projects/SNP/.
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Fig. 15.24 Form Filled in with Information from an SNP Page.

For the research scenario, B may also wish to harvest information from
other sites such as GeneCard. B can use FOCIH with the same form to
harvest from as many sites as desired. Interestingly, however, once FOCIH
harvests from one site, it can use the knowledge it has already gathered to do
some of the initial cut-and-paste for B. In addition to just being a structured
knowledge repository, the KB being produced also becomes an extraction
ontology capable of recognizing data items it has already seen. It can also
recognize data items it has not seen but are like the data it has seen—e.g.,
numeric values or DNA snippets.

Using KBs as extraction ontologies also lets bio-researchers search the lit-
erature. Suppose B wishes to find papers related to the information harvested
from the dbSNP pages. B can point the extraction ontology to a repository
of papers to search and cull out those that are relevant to the study. Using
the KB as an extraction ontology provides a sophisticated query of the type
used in information retrieval resulting in high-precision document filtering.
For example, the extraction ontology recognizes the highlighted words and
phrases in the portion of the paper in Figure 15.25. With the high density
of not only keywords but also data values and relationships all aligned with
the ontological KB, the system can designate this paper as being relevant for
B’s study.

For collecting human-subject information, B may decide to obtain in-
formation from INDIVO, a database containing personally controlled health
records. Based on reverse-engineering techniques, the system can automat-
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Fig. 15.25 Paper Retrieved from PMID Using an Extraction Ontology.

Fig. 15.26 Some Human Subject Information Reverse-Engineered from INDIVO.

ically reverse-engineer the INDIVO database to a KB, and present B with a
form representing the schema of the database. Figure 15.26 shows an example.
B can then modify the form, deleting fields not of interest and rearranging
fields to suit the needs of the study. Further, B can add constraints to the
fields so that the the systems only gathers data of interest.

With all information harvested and organized into a KB, B can now is-
sue queries and reason about the data to do some interesting analysis. Fig-
ure 15.27 shows a sample SPARQL query over the data harvested from the
pages referenced by the six URLs listed in Figure 15.24. The query finds three
SNPs that satisfy the query’s criteria and for each, returns the dbSNP ID,
the gene location, and the protein residue. As Figure 15.27 shows, B wishes
to see the source of the query result <rs55819519, TP53, His Arg>.
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Fig. 15.27 Screenshot of our Web of Knowledge Prototype.

15.6 Conclusion

We have described a web of knowledge (WoK) as a collection of intercon-
nected KBs superimposed over a web of documents. Our WoK vision has
conceptual modeling at its foundation. As described, a WoK consists of KBs,
which are conceptual-model instances augmented with facilities that provide
(1) for both extensional and intensional facts, (2) for linking between KBs
yielding a web of data, and (3) for authentication by linking to source docu-
ments and explicating reasoning chains.

We have provided a formal foundation for WoK components—ontologies
(OSM-O) in terms of decidable first-order logic and extraction ontologies
(OSM-EO) linguistically grounded via data-frame recognizers. In addition,
we have formalized a WoK as a collection of interconnected knowledge bun-
dles (KBs) consisting of OSM-EO model instances with valid interpretations
super-imposed over source documents.

Further, we have addressed concerns about WoK construction. Trans-
formations map source conceptualizations to target conceptualizations. In-
formation- and constraint-preserving transformations guarantee that target
conceptualizations completely and accurately capture source conceptualiza-
tions. We have explained how reverse engineering of some documents can
yield source conceptualizations guaranteed to preserve information and con-
straints. We conclude, however, that many source conceptualizations (rang-
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ing from semi-structured sources such as ordinary human-readable tables and
forms to unstructured sources such as free-running text) likely require best-
effort automation methods and may involve some user supervision. We have
given, as examples, a way to transform a collection of ordinary tables with
overlapping information from some domain into a KB and a way to construct
KBs via form-creation and form-filling.

Finally, we have addressed concerns about WoK usage. When transfor-
mations exist that map source predicates and operations to an established
ontology, the ontology is said to have “understood” the information in the
source. “Understanding” applied to free-form queries allows untrained users
to query the envisioned WoK. Users receive direct answers to queries, rather
than pages that may contain answers. They may, however, ask for justifica-
tion by clicking on displayed answers, which yields the pages from which the
answers were taken and also yields an explanation of any reasoning used to
generate inferred answers for the query. As another example of WoK usage,
we have illustrated the process of creating a KB for bio-medical research
studies.

We have implemented a WoK prototype [ELL+08] including some pro-
totypical extraction ontologies [ECJ+99]. We have also done some work on
automated extraction-ontology construction [TE09, LE09, TEL09, TEL+05]
and some work on free-form query processing [Vic06, AME07]. We neverthe-
less still have much work to do, even on fundamental WoK components such
as creating a sharable data-frame library, constructing data frames for rela-
tionship sets, finding ways to more easily produce instance recognizers, devel-
oping processes for reverse-engineering additional genres of semi-structured
sources into KBs, investigating bootstrapping as a way to construct extrac-
tion ontologies, enhancing query processing, incorporating reasoning, and
addressing performance scalability. We also see many opportunities for in-
corporating the vast amount of work done by others on information extrac-
tion, information integration, and record linkage. We cite as relevant ex-
amples: KnowItAll [ECD+05], OMNIVORE [Caf09], best-effort information
extraction [SDM+08], C-PANKOW [CLS05], Q/A systems [RFRF08], boot-
strapping pay-as-you-go data integration [SDH08], large-scale deduplication
[ARS09], and OpenDMAP [HLF+08].

These collective efforts will eventually lead to a WoK—a realization of
ideas of visionaries from Bush [Bus45] to Berners-Lee [BLHL01] and Weikum
[WKRS09]. Conceptual modeling can and should play a foundational role in
these efforts.
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