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Abstract

There are huge and growing amounts of biological data that reside in different online repositories. Most
of these Web-based sources only focus on some specific areas or only allow limited types of user queries. To
obtain needed information, biologists usually have to traverse different Web sources and combine their data
manually. In this research, we propose a system that can help users to overcome these difficulties. Given
a user’s query within the the area of molecular biology, our system can automatically discover appropri-
ate repositories, retrieve useful information from these repositories and integrate the retrieved information
together.

1 Introduction

“Catalyzed” by world-wide research communities producing publicly available data, the volume of biological

data is increasing at a rapid pace. To do activities such as perform background research for a specified research

field, gain insights into relationships and interactions among different research discoveries, or build up research

strategies inspired by other’s hypothesis, biologists need a system that can help them discover, integrate, and

extract the online information. The biological repositories online, however, are highly diverse in both granularity

and variety. Different researchers focus on different levels of biological problems. This makes the online data

sources focus on different granularities, such as, from genomic and protein sequences to protein activities, from

cell structure to 2D or 3D structured data of huge molecules. Also, different sites present information various

ways including images, plain text, tables, and information behind forms, and use different terminologies, different

ID systems, or different units to describe the same concepts. Thus, automatic extraction and integration of

online biological information is a challenging task.

We classify online biological data into two categories: repositories and literature. There are hundreds of

available repositories of biological data, each with its own interface supporting different invocation, processing,

and data semantics. [Bax, BGM, DBC], for example, all list hundreds of high-quality repositories of value to

the biological community. These repositories have a large amount of information including, for example, DNA

sequences, gene expressions, gene identification, intermolecular interactions, metabolic pathways and cellular

regulation, mutation databases, protein sequences, RNA sequences, and large molecule structures. If a user

needs to find detailed, particular information, the online literature is a better place to obtain the answer.

Researchers publish a large volume of papers each year. These papers can either be found in an online literature

database such as PubMed [pub] or by using online search engines from various sources or researchers’ own

Web pages. However, most of the documents are written in a human language rather than in a specific format
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that computers would deal with more easily. These two sources are both critical and data-rich. Furthermore,

sometimes the information a user needs exists across these two sources. A system that traverses only one source

may not answer users’ queries completely. Therefore, we propose a system to handle both of them.

Other solutions have been proposed that address some of these issues. [Won03] surveys recent technologies

for integrating biological data. Systems such as EnsEmBL [Hub] and GenoMax [Gen] allow users to submit

queries through their interfaces, but they only focus on a small range of biological concepts and problems and

can only deal with a specific set of online repositories. It is simple and straightforward to add new data sources

into systems such as SRS [EA96], but SRS does not allow users to write their own query. DiscoveryLink [Haa]

has greater generality than SRS, EnsEmbl, and GenoMax and allows simple user queries, but it cannot deal

with complex source data. Kleisli [DOTW97] has the ability to store and manage complex nested data, but it

requires programming queries that are hard for biologists to write.

In our work, we propose a system that can automatically discover, extract, and integrate online biological

data independent of the source and make it available for Semantic Web agents. Our system retrieves information

based on our ontology extraction technology [ECJ+99, Emb04]. Section 2 introduces extraction ontologies and

provides a short overview of how we generate an extraction ontology depending on user’s query. Section 3

explains how our system can discover applicable online repositories, submit queries through form interfaces (if

necessary), extract information of interest, and integrate it. Section 3 also discusses how we can use this same

system to extract useful information from published papers. Section 4 concludes by summarizing the system’s

features and the critical work to be done to make the system successful.

2 Extraction Ontology

Our system works based on information-extraction ontologies. An extraction ontology is a conceptual-model

instance that serves as a wrapper for a narrow domain of interest. The conceptual-model instance includes

objects, relationships, constraints over these objects and relationships, descriptions of strings for lexical objects,

and keywords denoting the presence of objects and relationships among objects. When we apply an extraction

ontology to a Web page, the ontology identifies the objects and relationships and associates them with named

object sets and relationship sets in the ontology’s conceptual-model instance and thus wraps the recognized

strings on a page and makes them “understandable” in terms of the schema implicitly specified in the conceptual-

model instance. In our previous research, we have experienced with many ontologies for real-world applications

such as cars and obituaries ([Emb04] summarizes our previous research). These experiments indicate that

ontological conceptualization over recognized data items is a promising way to achieve the goal of semantic

agreement over heterogeneous sources.

Our gene extraction ontology (GEO) contains various concepts (object sets) in the molecular biology domain

in different granularities such as Gene, Gene Name, Gene Locus Tag, Gene Sequence, DNA, DNA Sequence,

RNA, RNA Sequence, Protein, Protein Name, Protein ID, Protein Activity, Protein Function Description, Mu-

tant, Mutant Name, Mutant Indicator, Mutant Function, Source Organism or Species. We define relationship

sets between these concepts, i.e., Protein has Protein Activity and DNA translates to RNA. There are also

aggregations or generalizations/specializations between object sets. For example, Gene is an aggregate of Gene

Name, Gene Sequence, and Gene Locus Tag, and Protein Activity can be specialized to Enzyme, Binding, and

many more such specializations. For each object set, there is a data frame that defines how the extraction
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ontology recognizing target terms or phrases in source documents. A data frame contains either regular expres-

sions or vocabulary terms or phrases that can help our system to recognize values for a concept. In order to

build successful extraction ontologies for biological data, we need a trusted knowledge base that we can use as a

thesauri. The Gene Ontology (GO) [GO] is a generally acknowledged tool that provides a controlled vocabulary

for the description of cellular components, molecular functions, and biological processes. 1 Therefore, we use

GO as our thesaurus of data-frame terms and phrases.

GEO is general and contains many concepts. A user query, however, is usually just about a few of these

concepts. If we use the whole extraction ontology for the extraction and integration task, not only is it expensive

in both time and space, but we are likely to retrieve much unwanted information and lose our focus on the items

of interest to a specific user query. Therefore, we use a smaller, query-oriented extraction ontology (QEO) for

each user’s query. When a user submits a query, we decide which object sets and relationship sets we should

include in the extraction ontology depending on the query as follows.

1. Match query concepts with ontology concepts. We first match the concept(s) in the query with object sets

in our extraction ontology. Since a user may not use the same term we use to define a concept, our name

matcher needs to match the corresponding concepts semantically. Since a user may also describe concepts

at a different granularity than we do, the matching may be one to one, one to many, many to one, or even

many to many.

2. Augment recognized concepts to form a meaningful query-oriented extraction ontology (QEO). We include

all the object sets that match with concepts in the query. Augmentations include the following. If a

matched object set is in an aggregation, we also add other components in the aggregation to the new

ontology to facilitate Web querying. If the query references a relationship, but does not include all the

objects in this relationship, we also add all the object sets in the extraction ontology. Any object set in a

one-to-one correspondence with included concepts is also included. An augmented QEO makes our search

better.

Consider the following query as an example: “Find Aspergillus flavus’s gene: aflR’s sequence, expressed

protein’s function and any mutant that inhibits this gene.” We first need to match the concepts in this query

with object sets in GEO. We obtain seven matches: “Aspergillus flavus” ↔ Source Organism or Species,

“gene” ↔ Gene, “aflR ”↔ Gene Name, “sequence” ↔ Gene Sequence, “protein’s function” ↔ Protein Function

Description, “mutant” ↔ Mutant, and “inhibits” ↔ Mutant Function. We augment these recognized concepts

to form our QEO as follows. Along with Gene name we add Gene Locus Tag and Gene Sequence as aggregate

components for Gene and Protein Name and Protein ID as aggregate components for Protein. Since Mutant

Indicator is in the relation of Mutant Indicator indicates Mutant of Source Organism or Species that has Mutant

Function on Gene, we include all of these object sets. After generating an extraction ontology, the system is

ready to “query” the online resources and retrieve the useful information.

3 Query Oriented Extraction and Integration

Given a user’s query, our system can automatically discover appropriate repositories, retrieve useful information

from these repositories, and integrate the retrieved information together.
1Although called an ontology, the Gene Ontology is not an extraction ontology. It is a controlled vocabulary. GO contains 1364

components, 7268 functions and 8026 process terms as of December 1, 2003.
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Our system contains following three components.

• Source Discovery. There are large amounts of online resources. How does the system find appropriate

repositories and papers that contain the answer to a query? There are several classical tools for document

classification and source discovery such as the Vector Space Model (VSM) [RW86] and Bayesian networks

[FGG97]. Our system discovers appropriate resources by using an approach that combines classical docu-

ment classification methods with ontology extraction techniques. VSM requires a set of index terms that

represents the domain of interest. It calculates similarities between index terms and a test document to

determine if the document belongs to the domain of interest. One big problem with this approach is to

determine good index terms that represent a user’s query and how to group index terms depending on

semantic equivalence. Our extraction ontology provides a good solution to this problem. Since a user’s

query is represented in the context of a QEO, we can use all the terms defined by the data frames for the

query in this ontology as index terms. Terms that describe the same concept are in the data frame under

one object set. Therefore, they are already clustered .

Another problem with VSM is that it assumes independence among all the index terms. But there are

relationships between index terms and these relationships sometimes affect the classification, especially

when there are many concepts mentioned in the query. In this case, we use a Bayesian net (BN) classifier.

A BN classifier, however has its own practical problem: it is usually hard to obtain the structure of the net.

Our ontology also provide a good solution to this problem. The ontology itself defines the relationships

between different concepts. The graphic version of a QEO is a network. Therefore, we can use this

“ontology net” as the structure of the Bayesian net.

• Retrieval of Information Hidden Behind Forms. Some of the online repositories allow users to submit

queries through their interface. This helps users find the information of interest easier and faster. Different

repositories, however, usually provide different interfaces that require users to submit their queries in

different Web specific ways. It is tedious for users to visit dozens of sites for the same application and

fill out different forms provided by each site. Enabling automated agents and Web crawlers to interact

with form-based interfaces designed primarily for humans would be of great value. [Che] proposes an

approach that can achieve this goal. Given a user’s query, the system analyzes each online responsory’s

form, matches field names in the form with object sets in the extraction ontology using our ontology based

schema matching techniques [Xu], then fill out the form depending on a user’s query, and finally submits

the form to obtain information the user needs.

• Data Extraction and Semantic Schema Matching. Our ontology-based information extraction technology

can extract information from unstructured, semi-structured, and structured data. [ECJ+99] explains

how to extract data of interest from unstructured or semi-structured source files. [ETL02] discusses an

approach that can integrate information from heterogeneous tables. In this approach, we first pair and

adjust attribute-value pairs in the source table. We then perform extraction from the formed attribute-

value pairs to the target. Given the recognized extraction (which need not be 100%), the system can infer

general mappings from source to target and then extract more information. We tested these approached

in different application domains such as car ads and cell phone sales. We believe that the same techniques

also apply to the biological domain.
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Gene Gene Name Gene Locus Tag Gene Sequence Protein

001 alfR AN7820.2 Aspergillus nidulans contig 1.132 226012-227313 001

Protein Protein Name Protein ID Protein Function Description

001 AFLR EMENI protein 1ajy zinc ion binding
Sterigmatocystin biosynthesis regulatory

Mutant Indicator Mutant Source Organism or Species Mutant Function Gene

tan, afl-4, pdx6 strain 241 a. flavus block 001

wA, methG1, biA1; stcE::argB TSS40 a. nidulans defective 001

Figure 1: Sample Result of the Example Query

As an example to illustrate how these three components cooperate together, we further consider our query:

“Find Aspergillus flavus’s gene: aflR’s sequence, expressed protein’s function and any mutant that inhibits this

gene.” Given the QEO for the query obtained in Section 2, we use the source discovery component to find

possible repositories that answer the query. We then go to these online repositories, use our ability to retrieve

information hidden behind forms. In this initial stage, the only thing we know from the query is the Gene Name

(“aflR”), Mutant Function (“inhibits”), and Source Organism or Species (Aspergillus flavus). For repositories

such as [ANA] that allow searches by multiple concepts including gene name, we can automatically fill out forms

and retrieve information. What we retrieve from [ANA] are Gene Locus, Gene Sequence, and Protein Name.

Now we know more information about what we are looking for, and we can automatically fill out more forms

to retrieve more information. After we try a certain number of forms, we may still not be able to answer all

the questions implied by the query. In our example, we cannot find answers for “any mutant that inhibits this

gene.” In this case, we search for online literature because it usually contains detailed and specific information

that online repositories do not contain. We use the same technique to find useful papers and extract needed

information from them. [AFG], for example, is a source we can use to answer the query. Figure 1 shows the

sample result the system can obtain.

4 Summary

We are proposing a system that can automatically discover appropriate repositories, retrieve useful informa-

tion from these repositories and integrate the retrieved information. Our system depends on a dynamically

constructed query-oriented extraction ontology. Our System has three main components: source discovery,

retrieval of information hidden behind forms, and data extraction and integration. We have already developed

some techniques for each of the components. In the future, we will augment these techniques and do experiments

in the domain of biology.
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