
Towards Enabling Communication among
Independent Agents in the Semantic Web

Muhammed Al-Muhammed? and David W. Embley?

Computer Science Department, Brigham Young University, Provo, UT 84602, USA
{mja47,embley}@cs.byu.edu

Abstract. Independent agents can roam the semantic web searching for
information and services. How can we enable them to communicate with
one another? Ontologies also exist on the semantic web. We show in this
paper that if we augment ontologies appropriately, we can attach agents
to them and enable the agents attached to them to interact on the fly
without requiring prior agreement on vocabulary and service protocols.
This solution to agent communication, however, relies on the system be-
ing able to recognize local agent concepts, local agent services, and local
agent service requests, all with respect to the ontology. Experiments we
have conducted on the agent communication system we built show that
we can successfully recognize concepts, services, and service requests and
that we can successfully map them to a global ontology and thus enable
communication among independently developed software agents.

Keywords. Agent communication, semantic interoperability, ontologies.

1 Introduction

Researchers frequently make three assumptions to enable agent communication:
agents must (1) share ontologies, (2) speak the same language, and (3) pre-agree
on a message format [1]. Although agents can communicate by satisfying these
three requirements, these requirements prevent agents from interoperating on
the fly. Interoperating on the fly requires agents to make the needed mapping
between them without agreeing on language and message format, or sharing any
type of ontological knowledge. Uschold [2] reflects on this idea by saying that
“the holy grail of semantic integration in architectures” is to “allow two agents to
generate needed mappings between them on the fly without a-priori agreement
and without them having built-in knowledge of any common ontology.”

To allow agents to interoperate on the fly, we have developed a MatchMaking
System (MMS) that enables communication. In our solution we assume neither
shared ontologies, nor a common language, nor a shared message format. Our
approach has two key ideas.

?
This work is supported by the National Science Foundation under grant #IIS-0083127.

1. Independent Global and Local Ontologies. Rather than requiring agents to
share ontologies, we provide our system with an agent-independent, domain-
specific ontology, called the global ontology. When an agent wishes to com-
municate within a particular application domain, our system applies an in-
formation extraction engine to the agent’s code to extract useful information.
This useful information, which we call a local ontology, includes the names of
concepts the agent uses such as class names, parameter names, and variable
names, and the types of these concepts. To compensate for not having a
shared ontology, our system maps each agent’s local ontology to the appli-
cation domain’s independent global ontology.

2. Automatic Message-Service Mapping. Rather than having agents deal di-
rectly with in-coming messages, our system automatically maps an in-coming
message to an appropriate service. As an immediate consequence, agents do
not have to use the same communication language and pre-agree on a mes-
sage format. As a necessary step to achieve the automatic mapping, our
system parses an agent’s code, finds its services, and expresses them in an
agent-independent way. Once our system has an agent’s services, it does a
mapping between these services and an in-coming message. Then, using the
local/global ontology mappings, our system can appropriately convert pa-
rameters of a requesting agent’s message to parameters of a providing agent’s
service and receive results and convert them to results the requesting agent
can “understand.”

We know of no comparable systems. We do know, however, that the require-
ment for agent communication is well established in the literature. Bradshaw [3]
defines a software agent as “a software entity, which functions autonomously
and continuously in a particular environment, often inhabited by other enti-
ties;” Bradshaw continues “we expect an agent that inhabits the same environ-
ment with other agents to be able to communicate and cooperate with them.”
Genesereth [4] emphasizes agent communication by suggesting that any entity
that cannot communicate is not an agent. To enable agent communication, re-
searchers have proposed agent communication languages such as KQML [5] and
FIPA [6]. Agents can communicate using these languages, provided that they
agree on these languages, on message formats, and on a shared ontology prior
to the communication. But these requirements prevent agents from interoperat-
ing on the fly. An attempt to solve the problem of pre-agreement on a message
format has been recently proposed in [1]. Unfortunately in this solution agents
must share ontologies and be able to parse templates, which to some extent is
tantamount to the agents agreeing on a message format, and thus this solution
fails to allow agents to interoperate on the fly. Attempts to match services with
requests have been proposed in [7, 8]. Both solutions define languages that agents
must use to describe their capabilities and represent their requests, and both give
matching algorithms that can match capabilities and requests represented in the
language. These solutions, however, require agents not only to share ontologies,
use a common language, and pre-agree on a message format, but also to use the
defined languages, and thus they fail to allow agents to interoperate on the fly.

The main contribution of our paper is that it shows a possible way to enable
agent communication within a specified application domain without requiring
prior agreement regarding ontological concepts and message handling protocols.
We present the details of our contribution as follows. Section 2 describes the
initialization, which consists of establishing a mapping between local and global
ontologies and analyzing services to discover their properties and capabilities and
express them in an agent-independent way. Section 3 describes the operation of
our system. Section 4 describes the experiments we used to test the functionality
of our system. In Sect. 5, we conclude and give directions for future work.

2 System Initialization

In order for the MatchMaking System (MMS) to enable agents to communicate,
it must be initialized. The initialization includes two steps. In the first step,
the MMS establishes mappings between its global ontology and an agent’s local
ontology. In the second step, the MMS analyzes an agent’s services and expresses
them in an agent-independent way.

2.1 Local-Global Ontology Mappings

The MMS parses an agent’s code to extract useful information1. The MMS then
utilizes this information to establish mappings between its global ontology and
an agent’s concepts, data formats, and units of measurement.

The system’s global ontology is domain specific and contains the following
information.

1. Concept Names. These names denote objects we expect to find in the domain.
These names can be single words or short phrases.

2. Concept Recognizers. Dictionaries provide synonyms for global concept names.
These synonyms can be obtained from any available resources such as web
sites that match the ontology’s domain. Using these dictionaries, we cre-
ate regular-expression recognizers for the global concepts. The MMS uses
the recognizers to find local concepts in an agent’s code that may map
to the global concepts. For example, the regular expression (CPU |Pro-
cessor)(Speed)|(Processor)(clock)(Speed) can be a recognizer for the global
conceptProcessorSpeed2.

3. Value Recognizers. These recognizers identify constant values for a concept.
For example, the value recognizer [1− 9][0− 9]∗[.]?[0− 9]+\\s∗(GHz|MHz)
shows that a value of ProcessorSpeed is a number followed by either “GHz”
or “MHz”.

1 For several years we have been working on data extraction (e.g. see [9]). Our work
here uses data extraction to establish mappings from an agent’s code to the global
domain ontology, which is the key to enabling on-the-fly agent communication

2 Because concept names become identifiers in an agent’s code, we omit spaces for
concept names throughout our discussion.

<daml:Class rdf:ID=”Computer”>
</daml:Class>
<daml:Class rdf:ID=”Processor”>
</daml:Class>
<daml:Class rdf:ID=”ProcessorManufacturer”>
</daml:Class>
<daml:Class rdf:ID=”ProcessorClass”>
</daml:Class>
…
<daml:ObjectProperty rdf:ID="hasProcessor">
 <rdfs:domain rdf:resource="#Computer"/>
 <rdfs:range rdf:resource="#Processor"/>
</daml:ObjectProperty>
<daml:Class rdf:about="Computer">
 <rdfs:subClassOf>
 <daml:Restriction daml:CardinalityQ="1">
 <daml:onProperty rdf:resource="#hasProcessor"/>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

…
<daml:ObjectProperty rdf:ID="isPartOfProcessor">
 <rdfs: domain rdf:resource="#ProcessorType"/>
 <rdfs: range rdf:resource="#Processor"/>
</daml:ObjectProperty>
<daml:ObjectProperty rdf:ID="isPartOfProcessorType">
 <rdfs: domain rdf:resource="#ProcessorClass"/>
 <rdfs: range rdf:resource="#ProcessorType"/>
</daml:ObjectProperty>
<daml:ObjectProperty rdf:ID="isPartOfProcessorType">
 <rdfs: domain rdf:resource="#ProcessorManufacturer"/>
 <rdfs: range rdf:resource="#ProcessorType"/>
</daml:ObjectProperty>
<daml:DatatypeProperty rdf:ID="ProcessorSpeed">
 <rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema#Literal"/>
</daml:DatatypeProperty>
…

Fig. 1. A DAML representation for a computer-shopping ontology.

4. Data Format Recognizers. Data can appear in different formats, which the
MMS must be able to recognize. The regular expression ([0]?[1 − 9]|[1][1-
− 2])\\s∗[/]\\s∗([0]?[0− 9]|[1][0− 9]|[2][0− 9]|[3][0− 1])\\s∗[/]\\s∗[\\d]{4},
for example, can recognize one of the date formats: Month/Day/Year.

5. Unit of Measurement Recognizers. For global concepts that have units, we
must develop recognizers that can identify their units. For example, the
regular expression (US(D|$)|($)|(EUR)) can identify US dollars or Euros.

6. Relationships and Participation Constraints. Relationships determine how
global concepts relate to each other. Participation constraints determine the
number of times instances of a concept relate to instances of another con-
cept. Figure 1 provides a DAML representation of some of the relationships
between global concepts in the computer-shopping domain. For example,
each Computer has one Processor (represented by the DAML restriction:
CardinaliyQ=“1”) on the properties of hasProcessor, and a ProcessorType
is part of a Processor (represented by the relation: isPartOfProcessor).

The strings in an agent’s code recognized by the recognizers in the global ontol-
ogy constitute the agent’s local ontology. Conceptually, a local ontology of an
agent is a subset of the global ontology. A local ontology includes the names of
concepts the agent uses, which are found in the agent’s code, and the definition
of data formats and units of measurement, which are usually found in literal
strings and comments.

Although not necessarily designed for our system, the quality of an agent’s
code is highly important for correct communication between our MMS and an
agent. The code should have meaningful names of concepts rather than unintel-
ligible names such as X or Y . In addition, the code should have definitions of
data representations and units of measurement. These definitions can appear in
the code in usual ways. Figure 2 provides a partial example. As can be seen, the
Price is of type integer and is expressed in “US$” as mentioned in a comment.

int Price = 0; //US$
double ProcessorClockSpeed; //GHz
string ProcessorClass;
double RamStandardSize; //MB
string Date =“10/16/2003”;

Fig. 2. Sample Java code.

//input: B is Book
public double getPrice(string B) {· · ·}
Fig. 3. An agent’s service.

The unit of measure for ProcessorClockSpeed is “GHz”. The ProcessorClass and
RamStandardSize declarations mention two more concepts and another unit of
measurement in a comment. The initial value for Date represents the date in an
acceptable format to the agent.

2.2 Service Analysis

Agents, in our system, do not directly handle messages because they do not share
a communication language or a message format. The MMS, therefore, calls ser-
vices that can answer messages rather than passing these messages directly to
agents. This requires the MMS to “know” an agent’s services. Specifically it
should know what input each service takes and what output it returns. Thus,
the MMS must be able to find a service declaration and discover from this dec-
laration and associated information the input and output of the service.

Service declarations, which for our MMS implementation are methods im-
plemented in a programming language, exhibit a specific pattern that can be
captured in a regular expression. To find the services of an agent, we created a
regular expression that can identify Java, C, or C++ service declarations.

Once we find a service declaration, we need to recognize the input parameters
and the output information. The MMS determines the input parameters from
the method declarations themselves or from the declarations and documenting
comments. The MMS determines the output from the return type, documenting
comments, the name of the service, or the results of executing the services. We
consider three cases.

1. The MMS recognizes all the input parameters and output parameters of a
service during the local-global ontology mapping process. In this case the
MMS simply takes this information and builds a service signature, which
consists of the name of the service, the return type, the input parameters,
and the output information.

2. The MMS fails to recognize at least one of the input/output parameters. This
can happen when an agent’s programmers use names such as X or Y rather
than recognizable names as input parameters of a service or when the return
type of a service does not tell enough about the returned values. In this
case, it may be possible to find some associated information (documenting
comments or name of the service) to help recognize the parameter(s). The
service in Fig. 3 shows that the name of the service can provide enough
information to discover the output parameter. The return type of the service
is double, which by itself is not enough to determine the output of the service,
but the name of the service, getPrice, which includes the concept Price is
a good signal that this service returns the Price for something. It is not

likely that the MMS can discover the input parameter of the the service, B,
because it is not by itself recognizable, but from the comments the MMS
can recognize B as a name for Book, which is recognizable.

3. Executing a service is another way to discover its output parameters. When
a service executes successfully, it returns information. The MMS can ap-
ply value recognizers to this information in an attempt to determine what
information the service returns. In order to execute a service, the MMS pro-
vides the input parameters with appropriate domain values. Therefore for
this strategy to work, the global ontology must supply typical values for
ontology concepts.

If the MMS cannot fully resolve the input/output parameters for a service, it
may request help from the agent’s developers. If the developers do not supply
the needed information, the MMS ignores the service.

After analyzing all the services, the MMS outputs an agent-independent rep-
resentation of each service. For each service, this representation consists of the
name of the service, its input parameters along with their types, and its output
parameters along with their types, all in terms of global ontology concepts.

3 System Operation

Once the MMS has been initialized, it becomes ready to operate and conse-
quently enables its agent to communicate with other agents. Figure 4 shows the
interactions between the MMS and agents. Each agent has its own copy of the
MMS, and all these copies are identical except for the repositories, which contain
data specific for each agent created during initialization.

The MMS handles communication between agents as follows. Agent 1 in
Fig. 4 sends a request for some information about, say a PC, to the MMS. The
MMS receives this request and then using information in the Translation Repos-
itory obtained during initialization translates the vocabulary of the request to
the global vocabulary and normalizes the units (e.g. changes currencies to US$)
and the data formats (e.g. changes dates to Month/Day/Year) and passes the
request to the Message Handling component, which creates a KQML [5] mes-
sage and routes the request to Agent 2. When the MMS of Agent 2 receives
the message, in its Message-Handling component, it switches the message to the
Message-Service Matching component. The Message-Service Matching compo-
nent requests services from the Service Repository obtained during initialization
and matches the message against these services. If a match is found, then the
Message-Service Matching component passes the information to the Translation
component, which translates the information using Agent 2’s vocabulary, units,
and data format. The MMS then calls the service.

Agent 2 executes the service and returns a response. The MMS receives the
response, which is represented in Agent 2’s local vocabulary. The Translation
component translates the response to the global vocabulary and normalizes the
units and data formats and passes the response to the Response-Handling com-
ponent. The Response-Handling component filters out unwanted information by

MMS

Translation

Message-Service
Matching

Message
Handling

Agent 1

MMS

Translation

Message-Service
Matching

Message
Handling

Agent 2

Response

Service Call

The matched
service

 Messages

Response Request

String PcMake = “IBM”;
double Price = getPrice(PcMake);

Translation
Repository

Services
Repository

Translation
Repository

Services
Repository

Response
Handling Response

Handling

Fig. 4. The interaction among the MMS components.

comparing the response to the requested information and passes the response to
the Message-Handling component, which makes a KQML message and sends it
to Agent 1. The MMS of Agent 1 receives the message in its Message-Handling
component, which switches the response to the Translation component. The
Translation component translates the answer to Agent 1’s local vocabulary and
local units and formats. Finally, the MMS returns the response to Agent 1.

Agents formulate their requests as ordinary function calls to each other al-
though they do not know each other’s services. The lines of code in Fig. 4 show an
example. The agent simply initialized a parameter variable (PcMake=“IBM ”)
and calls a method (double Price = getPrice(PcMake)). Although oversimplified
for the application (we would need more parameters to identify an actual PC),
the example is sufficient to show how we couple our MMS with an agent3. To
make all this work, the MMS needs to make some changes to the code for agent
service requests. Figure 5 shows the translated code. The MMS transforms this
request to the series of calls in Fig. 5. The first MMS-generated call allows the
MMS to receive the input parameter, PcMake, along with its value “IBM ”. The
second call passes the function name, getPrice, to the MMS. The return type of
the second call is double. If the return type were supposed to be int, we would
have called MMS.sendint(“getPrice”).

3 For our actual prototype MMS, we initialized variables through a simple form inter-
face so that we could enter the values by hand while the agent system was running

MMS.sendString(“PcMake=”+“IBM”);
double Price = MMS.senddouble(“getPrice”);

Fig. 5. The MMS-generated calls.

 Global concept name ProcessorManufacturer

 Synonyms found in
websites

ProcessorManufacturer,
ProcessorMaker

 Concept name
recognizer

(Processor)(Manufacturer|Maker)

Memory capacity units
found in websites

MB, GB

 Memory capacity units
recognizer

(MB|GB)

(a): Some concepts from (cdw.com.) (b): A concept recognizer and a unit recognizer.

Fig. 6. Some concepts from a computer-shopping web site, a concept recognizer, and
a unit of measurement recognizer.

4 Experimental Results

To measure the performance of the MMS, we implemented two multi-agent sys-
tems, namely Computer-Shopping Agents and Meeting-Scheduling Agents. To
avoid a natural bias toward our work, we implemented the services of each agent
as described by others, and we took the concept names, units of measurement,
data representations, and data from sources defined by others.

4.1 Computer-Shopping Agents

For any application we first create the global ontology. To create the global ontol-
ogy for our computer-shopping application, we visited 8 web sites (amazon.com,
cdw.com, dell.com, half.ebay.com, gateway.com, plasmakings.com, price.com, and
ubid.com) and collected the concepts for each part/attribute of a computer, the
units of measurement, and the data formats. Figure 6(a) shows an example of a
web site, which contains concepts (e.g. ProcessorManufacturer) and units (e.g.
GHz).

Given the concepts and the implied relationships among them, we created
a global ontology for the application covering the concepts in which we were
interested. Figure 1 shows part of the global ontology of our computer-shopping
application. To form names for the concepts, we designated one of the concept
names (e.g. ProcessorManufacturer in Fig. 6(a)) as the global concept name. We
let that name and all other names be synonyms for the concept. We created a rec-
ognizer for the concept by placing its synonyms together in a regular expression.
Figure 6(b) shows a global concept (ProcessorManufacturer), its synonyms, and
the global concept name recognizer. In addition, we created recognizers for each
unit of measurement that we found in the 8 sites. Figure 6(b) shows an example
of the recognizer for the units used in the 8 sites to measure MemoryCapacity.
For this application there were no data formats of interest.

After creating the global ontology for the computer-shopping application, we
created seller and buyer agents. The seller agents need to provide services for
buyer agents. We generated services for a seller agent according to a form we
found in a particular web site, Fig. 7 shows a an example. We did not generate
all possible services implied by a form because the number of the services would
have been large4 and, more importantly, because many of the services would
have been redundant in the sense that they could not measure anything differ-
ent from a few well chosen services. For a form with n field names, we generated
n services, where the ith service has i input parameters chosen from the field
names. We made sure that each field name participated in the generated services
at least once.

We generated a service signature by determining its name, input parameters,
and return type as follows. We obtained input parameter names for the service
directly from the field names of the form. We determined the type of each input
parameter of the service according to the type of the allowed values in its match-
ing field. If the value was a number without a decimal point, we chose the type
to be int ; if the value was a number with a decimal point, we chose the type to
be double; otherwise we chose the type to be String. We defined the return type
of the service according to the result we obtained by entering valid values for the
field names we chose to be input parameters. If the site returned one value, we let
the type of this value be the return type of the service (determined in the same
way we determined input value types). Otherwise we defined the return type as
a Java class with the site’s concept names as the class’s attributes, each with a
type determined in the same way we determined input value types. Finally, we
used the following convention to name the service. If the service returned one
value, we used the concept name for the value prefixed with get as the service’s
name (e.g. getPrice); otherwise we used the generic name getPcInfo. For exam-
ple, Fig. 7(a) shows a form provided by site shopping.yahoo.com, and Fig. 7(b)
shows a service, PcInfo getPcInfo(String InstalledMemory), generated from the
form. We chose the field name InstalledMemory to be the service input parame-
ter. The type of the input parameter is String because the form allows the values
for this field to be alphanumeric values (see “512 MB” in the form). The return
type of the service is the class PcInfo with attributes ProcessorManufacturer,
ProcessorClass, ... because when we filled in the field InstalledMemory with the
value “512 MB”, we obtained the information in Fig. 7(c), which has multiple
values. We defined the units for each attribute through comments (e.g. Proces-
sorSpeed is in GHz and the Price is in US dollars). Finally, since the returned
information has multiple values, we named the service using the generic name
getPcInfo. The generated services for seller agents need data to answer a buyer
agent’s requests. We obtained the data for these services from the same sites we
used to generate services.

4 Any combination of fields can constitute a service. For example, in a form with 6
fields, the number of possible services (excluding services with 0 input parameters)
is C(6,1) + C(6,2) +··+ C(6,6) = 63.

(a): A form (shopping.yahoo.com).

PcInfo getPcInfo (String InstalledMemory)
{
 …
}

//user-type definition
class PcInfo
{
 String ProcessorManufacturer;
 String ProcessorClass;
 String ProcessorSpeed; //GHz
 …;
 double Price; //$
}

(b): A service signature generated from

the form and a type definition.

(c): Returned results for Installed Memory = “512 MB”.

Fig. 7. Service generation.

The buyer agent needs request messages to obtain information from a seller
agent. A request is a call to a service. For each request, we must determine what
information it provides for the called service’s input parameters and what infor-
mation it requests. We use concept names to hold the information that a request
provides for the called service’s input parameters and to specify a parameter to
which the result of the call is assigned. The input parameters of a request receive
their data through a user interface form, which we created using field names we
took from the web site we chose for the buyer agent. We generated requests for
the buyer agent using concepts and units of measurement that came from the
web site. The number of requests was sufficient to cover all the concepts and
units of measurement in the web site and to invoke all services of every seller
agent. The requests return values, which should be represented in units and for-
mats acceptable for the buyer agent. We took the units of measurement and the
data formats for the concepts from the chosen buyer web site. Figure 8(a) shows
the web site from which we created the request message in Fig. 8(b). We created
the request as function call to an assumed service, getPrice, using three concept
names, ProcessorSpeed and SystemRAM, which receive their values at runtime
from a user interface, and Price, which holds the result of the call. The request
also specifies the units of measurement and data formats the buyer agent accepts
(i.e. the buyer agent accepts Price in US$).

 string ProcessorSpeed; //GHz
string SystemRAM; //MB
double Price; //$
//get values from a user interface
ProcessorSpeed=ProcSpdFiled.getText();
SystemRAM = MemFiled.getText();
//call to assumed service
Price = getPrice(ProcessorSpeed, SystemRAM);

(a): Concepts from website(walmart.com.) (b): An example of a request.

Fig. 8. Site: walmart.com.

To measure the performance of the MMS for the computer-shopping ap-
plication, we fixed the global ontology and used 9 test sites (different from the 8
sites we used to build the global ontology), one for a buyer agent and the rest for
seller agents. We measured the MMS’s performance in mapping concepts, units
of measurement, and data formats used by agents to the global ontology. The
agents’ code included 104 concepts, which the MMS needed to map to global
concepts. The MMS generated 94 mapping pairs of the form (Local, Global), of
which 91 were correct, yielding (91/104) or 88% recall and (91/94) or 97% pre-
cision. The units of measurement, in the agents’ code, that the MMS needed to
recognize were currencies, processor/hard-drive speed units, and memory/hard-
disk capacity units. The currency types in the 9 test sites were US$, GBP (Great
Britain Pound), and EUR (Euro). There were 9 currency instances that the MMS
needed to recognize. The MMS recognized 9 all of which were correct. The num-
ber of processor/hard-drive speed units and memory/hard-disk capacity units
was 23. The MMS recognized 25, of which 23 were correctly associated with their
global counterparts. Altogether there were 32 unit instances; the MMS recog-
nized 34, of which 32 were correct, yielding 100% recall and 94% precision.

Before we discuss our results, we give our rationale for excluding all mappings,
except local-global ontology mappings, from our performance measurement. The
local-global ontology mapping generates mapping pairs between local concepts
and global concepts, recognizes units of measurement, types, and data formats.
This information is necessary and sufficient to translate messages and services
from local to global and vice versa. Representing messages and services in terms
of the global ontology makes message-service matching straightforward because
the concepts to be matched belong to the same ontology. Furthermore, it makes
result filtering straightforward because the response handler only needs to make
simple comparisons between information represented in terms of the same on-
tology. Type conversions are also straightforward because the MMS knows both
the source and the target types, and thus the conversion is straightforward (we
do not consider loss of precision). Finally, since the MMS will have recognized all
the concept names during the local-global ontology mapping, the input/output
parameters of the services, which we need to build service signatures, are al-
ready recognized. These observations allow us to focus only on the local-global
ontology mapping and ignore measuring the other processes.

We now discuss the results of the local-global ontology mapping. The MMS
failed to recognize and consequently map 13 concepts out of 104 in the agents’
code. ProcessorBrand and ProcessorFrequency are examples of an agent’s con-
cepts that did not map to global concepts. They are synonyms for the global
concepts ProcessorManufacturer and ProcessorSpeed respectively, but the recog-
nizer for ProcessorManufacturer does not include ProcessorBrand (see Fig. 6(a))
and the recognizer for ProcessorSpeed does not include ProcessorFrequency. Al-
though we can simply fix this problem for these sites by adding the synonyms
that appear in these sites to the global concept recognizers, we are aware that this
solution may not resolve the problem because there may be additional synonyms,
which are still not included. A possible technique, which we will further investi-
gate in future work, to fix this recall problem is to generalize the recognizers by
not limiting ourselves to the concepts that we had seen in web sites or provided
by subjects, but also to exploit our knowledge of the domains to augment the
recognizers with the concepts that we would expect to see in these domains.
Further we can use auxiliary synonyms dictionary, such as WordNet [10], and
we can use more sophisticated matching techniques [11, 12].

The MMS generated 3 incorrect mapping pairs all of them of the form (Pro-
cessorType, ProcessorClass). The incorrect pairs arise because of a naming am-
biguity among the web sites we visited. Most of the web sites either represented
the processor as one concept Processor or in terms of three different concepts,
namely ProcessorManufacturer, ProcessorType, and ProcessorSpeed, using these
names or synonyms for these names. A few, however, represented a processor in
terms of only two different concepts, namely ProcessorType and ProcessorSpeed,
using these names or synonyms for these names. The web sites that represented
the processor in terms of three concepts used the names ProcessorType or Pro-
cessorClass to represent the type of the processor (e.g. “Pentium 4”), and we
selected ProcessorClass to be the global concept for our global ontology. The
web sites that represented the processor in terms of two concepts also used
the names ProcessorType or ProcessorClass to represent the manufacturer and
the type of the processor (e.g. “Intel Pentium III”), and we selected Proces-
sorType to be the global concept for our global ontology. As a result, when
we used our predetermined method for generating recognizers, both global con-
cepts ProcessorType and ProcessorClass were identical—both recognizers were
(Processor)(Type|Class). Thus, the MMS incorrectly declared the pairs (Proces-
sorType, ProcessorClass) because both recognizers recognized ProcessorType in
an agent’s code and produced two pairs: (ProcessorType, ProcessorType), which
is correct, and (ProcessorType, ProcessorClass), which is incorrect.

Possible techniques, which we plan to investigate further in future work, to
fix this precision problem are to use more sophisticated matching techniques [11,
12] and to use reasoning rules. For example, consider the reasoning rule: “If Pro-
cessorType (or ProcessorClass) is recognized in an agent’s code and there is no
occurrence of ProcessorManufacturer, then ProcessorType (or ProcessorClass)
maps to the global concept ProcessorType; otherwise it maps to the global con-
cept Processor Class.” This rule would detect and remove the incorrect pairs.

(a): An example of a filled-in worksheet.

(1) The user will put the name of the person who is calling for the meeting (e.g. Embley is calling for
the meeting). Choose a label (preferably a single word but possibly a short phrase) to indicate that.

(2) The user will choose from the list the names of the people to attend the meeting. Choose a label
(preferably a single word but possibly a short phrase) to indicate that.

(3) …
(b): Examples of descriptions of the semantics of the blanks in the worksheet.

 Fig. 9. An example of a filled-in worksheet and semantic descriptions of its blanks.

Regarding the units, the MMS also incorrectly recognized 2 units. It recog-
nized MB (Megabyte) twice as a hard-disk capacity, but the agents used GB
as their hard-disk capacity unit. If any web site we used to create the global
ontology had had MB units for hard-disk capacity, we would have included MB
as a unit and would not have encountered this error.

4.2 Meeting Scheduling Agents

For our meeting scheduling application, we requested some of the people in our
research group to create their own scheduling information for agents in their own
terms. The scheduling information consisted of concept names used to schedule
meetings, data formats, and services. Figure 9(a) shows the worksheet we used to
request concepts and data formats. As can be seen, the worksheet has numbered
boxes. The numbers refer to a high-level description of the semantics of each box;
Fig. 9(b) shows examples of high-level descriptions for Boxes 1 and 2. Subjects
filled in each numbered blank with the concept name (a single word or a phrase)
to reflect the semantics of the description associated with that number. Subjects
filled in Boxes 7 and 9 with non-specific dates and non-specific times respectively.
In addition, there were two more boxes, one for a sample date and one for a
sample time.

These subjects from our research group also translated some high-level de-
scriptions for services into service signatures. In the translation we asked them
to use the concept names that they had chosen when they filled in their work

sheets. They chose their own names of services and input/output parameter
types.

We received 12 completely filled-in work sheets from 12 different individuals,
8 of which turned in work sheets several weeks before the remaining 4. Using
methods similar to those used in our computer-shopping application, we used
the concepts and data formats in the first 8 work sheets to build the global on-
tology. We used the concept names, data formats, and service signatures in the
other 4 work sheets to build four agents. We implemented the agents based on
ideas presented in [13].

The MMS needed to map 28 concepts in the agents’ code to global concepts.
The MMS generated 22 mapping pairs of the form (Local, Global), of which 22
were correct, yielding (22/28) or 79% recall and (22/22) or 100% precision. The
four agents used four different formats for Date, instances of which are “25 Apr
04”, “4/25/04”, “4-25-2004”, and “4.25.04”. The MMS recognized all four of
these formats and no others, yielding 100% recall and precision. The four agents
used only one time format, namely a format with 12-hours with AM or PM. The
MMS recognized this format, yielding 100% recall and precision.

The MMS missed 6 concepts, namely Initiator, Authority, ScheduledBy, Per-
sonsInvited, DateFormat, and TimeFormat. The first three concepts are syn-
onyms for the concept Inviter ; the fourth concept is a synonym for the concept
Invitee; the fifth concept is meant to be a synonym for the concept Date; and the
sixth concept is meant to be a synonym for the concept Time. Because the con-
cept recognizers for Inviter, Invitee, Date, and Time do not have these synonyms,
the MMS missed these 6 concepts. Although an obvious fix for the problem of
missing the first 4 concepts is to add more synonyms to the global concept rec-
ognizers (e.g. adding Initiator to the Inviter recognizer), this fix raises the same
concerns we discussed earlier. We believe that missing the 5th (DateFormat)
and 6th (TimeFormat) concepts is inevitable because these concepts are not
synonyms for Date and Time. Most likely they originated because of a subject’s
misunderstanding of the semantics of Boxes 6 and 8 in Fig. 9.

5 Conclusions and Future Work

We have developed a framework to allow agents to communicate with no need
to share ontologies, use a common language, and pre-agree on a message format.
In our framework, our MMS has a predefined global domain ontology, which is
a standard web ontology augmented with regular expressions recognizers. The
MMS maps local agent concepts to global domain concepts and uses these map-
pings to translate requests and services to terms specified in the global domain
ontology. With requests and services all expressed in common ontological terms
communication is straightforward.

We realize that using concepts derived from web sites and meaningful names
or phrases requested from subjects reveals our assumption that the concept
names must be human readable in order for the MMS to work properly. How-
ever, we believe that this assumption is quite reasonable especially for agents,

which typically use ontological concepts, with human readable names, to de-
fine their knowledge and to communicate with other agents. Tests we conducted
on two domains (Computer-Shopping and Meeting Scheduling) showed that for
these two applications our system performs reasonably well with an average of
84% recall and an average of 99% precision for concept recognition, 100% recall
and an average of 97% precision for units recognition, and 100% recall and pre-
cision for data format recognition.

Although we have largely achieved our initial goal of enabling agents within a
pre-specified domain to communicate on the fly without the usual pre-agreement
requirements, much remain to be done. For example, the local-global mapping
process could be strengthened as proposed in Sect. 4.1. Further, the ideas pre-
sented in this paper should be integrated into the semantic web, allowing agents
to roam the web and attach themselves dynamically to domains of interest.

References

1. Payne, T.R., Paolucci, M., Singh, R., Sycara, K.: Facilitating Message Exchange
through a Middle Agent. In: Proceedings of the 1st International Joint Conference
on Autonomous Agents and Multi-Agent Systems. (2002) 561–562

2. Frank, M., Noy, N.F., Staab, W.: The Semantic Web Workshop at the 11th
International WWW Conference (WWW-2002). SIGMOD Record 31 (2002)

3. Bradshaw, J.M.: Software Agents. AAAI press, Menlo Park, California (1997)
4. Genesereth, M., Ketchpel, S.: Software Agents. Communications of the ACM 37

(1994) 48–53
5. Labrou, Y.: Semantics for an Agent Communication Language KQML. PhD

thesis, ”University of Maryland” (1997)
6. FIPA: Fipa Agent Communication Language Specification. Tech-

nical report, Foundation for Intilligent Physical Agents (2002) URL,
http://www.fipa.org/repository/aclspecs.html.

7. Lu, H.: Ontology based Agent Services Description and Matchmaking on the
World Wide Web. In: Preceedings of the 9th Australian World Wide Web Con-
ference, Queensland, Australia (2003) 110–117

8. Sycara, K., Wido, S., Klusch, M., Lu, J.: LARKS: Dynamic Matchmaking Among
Heterogeneous Software Agent in Cyberspace. Autonomous Agents and Multi-
Agent Systems 5 (2002) 173–203

9. Embley, D., Campbell, D., Jiang, Y., Liddle, S., Lonsdale, D., Ng, Y.K., Smith,
R.: Conceptual-Model-Based Data Extraction from Multiple-Record web pages.
Data & Knowledge Engineering 31 (1999) 227–251

10. Miller., G.A.: Wordnet:A lexical database for English. Communications of the
ACM 38 (1995) 39–41

11. Bernstein, P., Rahm, E.: A survey of approaches to automatic schema matching.
The VLDB Journal 10 (2001) 334–350

12. Xu, L., Embley, D.: Using Domain Ontologies to Discover Direct and Indirect
Matches for Schema Elements. In: Proceedings of the Workshop on Semantic
Integration (WSI’03), Sanibel Island, Florida (2003) 105–110

13. Jennings, N.R., Jackson, A.J.: Agent-Based Meeting Scheduling: A Design and
Implementation. IEEE Electronics Letters Journal 31 (1995) 350–352

