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Abstract

Information is ubiquitous, and we are flooded with
more than we can process. Somehow, we must rely
less on visual processing, point-and-click navigation,
and manual decision making and more on computer
sifting and organization of information and auto-
mated negotiation and decision making. A resolu-
tion of these problems requires software with seman-
tic understanding—a grand challenge of our time.

More particularly, we must solve problems of au-
tomated interoperability, integration, and knowledge
sharing, and we must build information agents and
process agents that we can trust to give us the in-
formation we want and need and to negotiate on our
behalf in harmony with our beliefs and goals.

This paper proffers the use of information-
extraction ontologies as an approach that may lead
to semantic understanding.

Keywords: Semantics, information extraction, high-
precision classification, schema mapping, data inte-
gration, Semantic Web, agent communication, ontol-
ogy, ontology generation.

1 Introduction

Semantics is a grand challenge for the current genera-
tion of computer technology. It is the key for unlock-
ing the door, for example, to personal agents that can
roam the Semantic Web and carry out sophisticated
tasks for their masters, to information exchange and
negotiation in e-business, and to automated, large-
scale, in-silico experiments in e-science.

The American Heritage Dictionary (AmH 2003)
defines semantics as “the meaning or the interpre-
tation of a word, sentence, or other language form.”
The keyword here is “meaning,” but meaning requires
understanding, and as Berners-Lee et al. state in their
famous Semantic Web paper, “The computer doesn’t
truly ‘understand’ [anything].” They go on to say,
however, that computers can manipulate terms “in
ways that are useful and meaningful to the human
user.” This is a key point for semantic research in
computing—we only have to manipulate symbols in
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ways that are meaningful and useful for human users.
The illusion of understanding is sufficient if the sym-
bol manipulation is good enough to obtain meaning-
ful and useful results and good enough to allow us to
trust the results at the level required for the applica-
tion.

This paper takes a tiny peck at the grand chal-
lenge of semantics by motivating a particular ap-
proach to dealing with semantics (Section 2); by giv-
ing some practical, real-world applications of the ap-
proach (Section 3); and then by showing how to build
on the approach to automatically attain an auto-
mated measure of semantic agreement (Section 4).
Section 5 provides a short summary and gives future
directions and challenges.

2 Motivation

Since computers do not truly “understand” what
symbols mean, computer science researchers have the
responsibility and opportunity to creatively endow
computers with the ability to perform useful tasks—
indeed, to perform increasingly sophisticated useful
tasks. How can we succeed in raising the level of so-
phistication required for tomorrow’s applications?

Directing our discussion particularly to semantics,
we first give some foundational material by defining
data, information, knowledge, and meaning. Based
on this foundation, we then state our central theme,
which leads us to information extraction ontologies—
the basis for the particular approach to “semantic un-
derstanding” discussed here.

2.1 Foundations

As a foundation, we give a variation of the definitions
for data, information, knowledge, and meaning pro-
vided originally by Meadow (1992).

• Data: isolated attribute-value pairs.

• Information: data in a conceptual framework.

• Knowledge: information with a degree of cer-
tainty or community agreement.

• Meaning: data, information, or knowledge that
is relevant or actuates.

These definitions help because the give us a work-
ing basis for “meaning,” which we can take to be the
results we want from “semantic understanding.” Al-
though meaning may well be “in the eye of the be-
holder,” if we can, as Jim Gray said in a recent SIG-
MOD interview (Winslett 2003), “[take] data and [an-
alyze] it and [simplify] it and [tell] people exactly the
information they want, rather than all the informa-
tion they could have,” we will succeed in truly man-
aging information. This lets us focus on something
we can—with effort—succeed in doing.



Let’s assume, as many do, that “meaning” for
an individual is to be handled by personal software
agents, which have access to knowledge both about
their masters and about the world of interest to their
masters, and concentrate in this paper on the a foun-
dational ideas needed to enable and actuate this as-
sumption. Turning to “knowledge,” which is next
lower on the list, we observe that Meadow’s definition
of knowledge coincides with what most researchers
call ontologies—agreed upon logical theories for an
application domain, independent of any particular ap-
plication (Spyns, Meersman & Jarrar 2002). Drilling
further down in Meadow’s definitions, we observe that
logical theories are commonly conceptualized in a
data model or conceptual framework, or, in Meadow’s
words, as information. Drilling to the bottom in
Meadow’s definitions, we arrive at isolated attribute-
value pairs—data, the most fundamental concept for
meaning.

In most of computer science, this foundation—the
notion of data—is extremely weak. Our declarations
of data typically only weakly classify data as inte-
ger, real, and string and provide only highly general
operations over these classifications. To strengthen
our foundation, we must have a much stronger no-
tion of an attribute-value pair. We provide this
stronger foundation through the use of data frames
(Embley 1980). A data frame1 “[encapsulates] the
essential properties of everyday data items” such as
currency, dates, weights, and measures. A data frame
extends an abstract data type to include not only
an internal data representation and applicable oper-
ations but also highly sophisticated representational
and contextual information that allows a string that
appears in a text document to be classified as be-
longing to the data frame. Thus, for example, a data
frame for a birth date has regular expressions that rec-
ognize all forms of dates and regular expression rec-
ognizers for keywords such as “born,” “born on,” and
“birth date” to distinguish a birth date from other
dates such as the date of a meeting or a purchase
date.

Our hypothesis is this: ontological conceptual-
ization over data frames can increase shared under-
standing. The stronger foundation provided by data
frames leads to richer, more understandable infor-
mation, which, in turn, leads to a more solid bases
for knowledge and the potential for increased under-
standing and more meaningful semantics.

2.2 Information Extraction Ontologies

We formalize ontological conceptualizations over data
frames as extraction ontologies. In this conceptualiza-
tion we fundamentally base an extraction ontology on
its ability to recognize and classify value strings espe-
cially in semistructured and telegraphic text.

An extraction ontology is an augmented
conceptual-model instance that serves as a wrapper
for a narrow domain of interest such as car ads. The
conceptual-model instance includes objects, rela-
tionships, constraints, and data-frame descriptions
of strings for lexical objects. When we apply an
extraction ontology to a document such as a web
page, the ontology identifies objects and relationships
and associates them with named object sets and
relationship sets in the ontology’s conceptual-model
instance and thus wraps the page so that it is

1The name “data frame” was coined because of the similarities
to abstract data types (Liskov & Zilles 1974) and Minsky frames
(1975). Minsky’s theory of frames is a theory of rich symbolic
structure where a frame represents a particular situation. Data
frames represent data items instead of situations, but the informa-
tion included and its purpose are quite similar.

1. Car [-> object];
2. Car [0:1] has Year [1:*];
3. Car [0:1] has Make [1:*];
4. Car [0:1] has Model [1:*];
5. Car [0:1] has Mileage [1:*];
6. Car [0:*] has Feature [1:*];
7. Car [0:1] has Price [1:*];
9. PhoneNr [1:*] is for Car [0:1];
10. Year matches [4]
11. constant {extract ”\d{2}”;
12. context ”\b’[4-9]\d\b”;
13. ...
14. Mileage matches [8]
15. keyword ”\bmiles\b”,
16. ”\bmi\.”,
17. ”\bmi\b”,
10. ”\bmileage\b”,
19. ”\bodometer\b”;
20. ...

Figure 1: Partial Car-Ads Extraction Ontology

understandable in terms of the schema implicitly
specified in the conceptual-model instance.

The ontological approach to writing wrappers di-
rectly addresses the hardest part of wrapper creation,
which is to make a wrapper robust so that it works
for all sites, including sites not in existence at the
time the wrapper is written and sites that change
their layout and content after the wrapper is writ-
ten.2 Wrappers based on extraction ontologies are ro-
bust. Robust wrappers are critical: without them, we
have to create by hand, or at best semiautomatically,
a wrapper for every new web site encountered; with
them, extracting information from new or changed
web pages can be fully automatic. Ontology-based
wrappers are an example of the kind of “intelligent”
symbol manipulation that both gives the “illusion of
understanding” and obtains meaningful and useful re-
sults.

3 Applications

We now give several applications to show the power
of extraction ontologies. Our first application is not
surprising—it directly uses extraction ontologies to
obtain useful information from the web. It is surpris-
ing, however, at least at first glance that extraction
ontologies can play a direct role in high-precision doc-
ument classification, schema mapping for data inte-
gration, generating superimposed information for the
Semantic Web, and agent communication.

3.1 Information Extraction

Figure 1 shows part of a car-ads ontology for informa-
tion extraction. The extraction ontology includes ob-
ject and relationship sets and cardinality constraints
(Lines 1-9) and a few lines of the data frames (Lines
10-20). Line 1 defines Car to be the main object of
interest. Lines 2-9 define attributes of a car as they
may appear in a car-ad (e.g. Line 2 declares that a
Car in a car-ads listing may or may not have an asso-
ciated Year and that a Year is for one or more cars).
The data frames use Perl regular expression syntax
to describe lexical constants and keywords that sig-
nal the presence of a particular object or relationship.

Given an extraction ontology, such as the car-ads
extraction ontology in Figure 1, we can apply it to
text such as the car ad in Figure 2. In Figure 2 the
underlines denote text recognized by the data frames
in the extraction ontology. Given the recognized text,

2Other approaches to writing wrappers include languages for
wrapper development, HTML-aware tools, natural-language-based
tools, and modeling-based tools (Laender, Ribeiro-Neto, da Silva
& Teixeira 2002).



<html>
<head>
<title>The Salt Lake Tribute Classified’s</title>
</head>
...
<hr>
<h4> ’97 CHEVY Cavalier, Red, 5 spd, only 7,000 miles

on her. Previous owner heart broken! Asking only $11,995.

#1415 JERRY SEINER MIDVALE, 566-3800 or 566-3888
</h4>
<hr>
...
</html>

Figure 2: Sample Car Advertisement

we can use the ontology, its constraints and implied
relationships, to extract the information and populate
the ontology with the instance data. In this sense, we
“understand” the car ad.

Our general approach to information extraction
consists of the following steps. (See (Embley, Camp-
bell, Jiang, Liddle, Lonsdale, Ng & Smith 1999a) for
full details).

1. We develop the ontological model instance over
the area of interest.

2. We parse this ontology to generate a database
schema and to generate rules for matching con-
stants and keywords.

3. Given an applicable web page with multiple
records (like classified ads), we invoke a record
extractor that separates an unstructured web
document into individual record-size chunks
(Embley, Jiang & Ng 1999b), gathers addi-
tional associated data linked on a separate page
or factored into headers or footers (Embley &
Xu 2000), removes markup-language tags, and
presents them as individual unstructured record
documents for further processing.

4. We invoke recognizers that use the matching
rules obtained from the data frames to identify
potential constant data values and context key-
words in the cleaned records.

5. Finally, we populate the generated database by
using heuristics to determine which constants
populate which records in the database. These
heuristics correlate extracted keywords with ex-
tracted constants and use cardinality constraints
in the ontology to determine how to construct
records and insert them into the database.

Once the data is extracted, we can issue queries us-
ing a standard database query language. To make
our approach general, we fix the ontology parser, web
record extractor, keyword and constant recognizer,
and database record generator; we change only the
ontology as we move from one application domain to
another.

When we have applied our car-ads extraction on-
tology, we have attained recall ratios in the range
of 90% and precision ratios near 98%. We have
also applied extraction ontologies to many other do-
mains: apartment rentals, books, campgrounds, cell
phones, computer monitors, computer software, coun-
tries, course catalogs, digital cameras, games, gems,
genealogy, jewelry, jobs, movies, music, obituaries,
prescription drugs, personals, restaurants, and stocks
(see (DEG 2000)). Perhaps the hardest domain we
have tried is obituaries, but even for this application
our recall and precision ratios were still in the 90%
range, except for names of relatives, where the preci-
sion dropped to about 75%.

3.2 High-Precision Classification

The web contains abundant repositories of informa-
tion in web documents—indeed so much that locating
information of interest for an application becomes a
huge challenge. Even sorting through a tiny subset of
web documents is overwhelming. How can we auto-
matically select just those documents that have the
needed information for an application?

As a step toward solving this problem, we pro-
posed a technique for high-precision recognition of
web documents that apply to an ontologically speci-
fied domain (Embley, Ng & Xu 2001). High-precision
classifiers determine not only whether a document,
such as a listing of classified ads in a newspaper, con-
tains items of interest for a predefined application on-
tology, but also whether particular elements of inter-
est are present in the document.

It should be clear that if we can extract the basic
information in a document relative to an application
domain, then we can apply heuristic measures over
these extracted values to determine whether the doc-
ument is sufficiently similar to documents expected
in the application domain and thus do high-precision
classification. The heuristics we apply work partic-
ularly well for multiple-record web documents such
as classified ads or other lists described objects. We
apply three heuristics: (1) a density heuristic that
measures the percent of the document that appears
to apply to an application ontology, (2) an expected-
value heuristic that compares the number and kind
of values found in a document to the number and
kind expected by the application ontology, and (3) a
grouping heuristic that considers whether the values
of the document appear to be grouped as application-
ontology records. Then, based on machine-learned
rules over these heuristic measurements, we determine
whether a web document is applicable for a given on-
tology. Our experimental results show that we have
been able to achieve over 90% for both recall and pre-
cision, with an F-measure of about 95%.

Although our extraction-ontology approach to
classification differs fundamentally from most text
classifiers (e.g. (McCallum 1996)), the work reported
in (Riloff & Lehnert 1994) takes an approach similar
to ours in that it also attempts to do high-precision
classification for information extraction. Like most
text classifiers, (Riloff & Lehnert 1994) uses machine
learning, but to obtain the desired high precision, con-
siderably more effort must be expended to establish
the basis for machine learning. Not only must doc-
uments be marked as relevant and non-relevant, but
each individual relevant element plus the context for
each individual relevant element must also be marked.
In addition, an application-domain-specific dictionary
must be created. The basic trade-off in human ef-
fort between our approach and the approach in (Riloff
& Lehnert 1994) is the effort to tag the elements in
the document and create the domain-specific dictio-
nary versus the effort to create the extraction on-
tology. Some more recent work has been reported
that uses machine learning with less human effort
for doing “high-precision” classification for domain-
specific search engines (McCallum, Nigam, Rennie &
Seymore 1999) and focused crawling (Chakrabarti,
van den Berg & Dorn 1999). By mostly using un-
supervised learning, human effort can be greatly re-
duced. The challenge, however, is to reach high ac-
curacy, and it may not be possible to achieve the ac-
curacy that can be obtained with an ontology-based
approach. Ultimately, some combination of the ap-
proaches may be best.



Car Year Make Model Mileage Price PhoneNr Car Feature
0001 1999 Ford Mustang 42,130 $10,988 405-936-8666 0001 Yellow
0002 1998 Ford Taurus 63,168 $7,988 405-936-8666 0002 Black

... ...
0111 1995 ACURA INTEGRA LS $14,5000 0111 Red
0112 1988 ACURA Legend $4,600.00 0111 Auto
0113 1992 ACURA Legend 0111 A/C

... 1112 Red
...

Figure 3: Sample Tables for Target Schema

For more information call 405-936-8666.
Year Vehicle Price Miles Exterior
1999 Ford Mustang $10,988 42,130 Yellow
1998 Ford Taurus $7,988 63,168 Black
1995 Ford F150 Super Cab $6,988 92,739 Red
1995 Ford Contour GL $3,988 95,581 Green

...

Figure 4: Slightly Modified Excerpt of a Table from www.bobhowardhonda.com

3.3 Schema Mapping for Data Integration

The schema-mapping problem for heterogeneous data
integration is hard and is worthy of study in its own
right (Madhavan, Bernstein & Rahm 2001). The
problem is to find a semantic correspondence between
one or more source schemas and a target schema
(Doan, Domingos & Halevy 2001). In its simplest
form the semantic correspondence is a set of map-
ping elements, each of which binds an attribute in
a source schema to an attribute in a target schema
or binds a relationship among attributes in a source
schema to a relationship among attributes in a tar-
get schema. Such simplicity, however, is rarely suf-
ficient, and researchers thus use queries over source
schemas to form attributes and relationships among
attributes to bind with target attributes and attribute
relationships (Miller, Haas & Hernandez 2000, Biskup
& Embley 2003). As it turns out, we may even need
queries beyond those normally defined for database
systems. Thus, we more generally define the seman-
tic correspondence for a target attribute as any named
or unnamed set of values that is constructed from
source elements, and we define the semantic corre-
spondence for a target n-ary relationship among at-
tributes as any named or unnamed set of n-tuples over
constructed value sets. The sets of values for target
attributes may be constructed in any way, e.g. di-
rectly taken from source values, computed over source
values, or manufactured from source attribute names
or from strings in table headers or footers.

Suppose, for example, that we are interested in
viewing and querying web car ads through the target
database in Figure 3, whose schema is

{Car, Year, Make, Model, Mileage, Price, PhoneNr},
{Car, Feature}.
Figures 4 and 5 show some potential source tables.
The data in the tables in Figure 3 is a small part of
the data that can be extracted from Figures 4 and 5.

It is easy to see that Year in the source table of
Figure 4 and Year in the table of Figure 5 map to
Year in the target table of Figure 3. But it is harder
to see that both Exterior in Figure 4 and Colour in
Figure 5 map to Feature in Figure 3 and even harder
to see that the attributes Auto and A/C in Figure 5
should map as values for Feature, but only for “Yes”
values.

3.3.1 Matching Problems

Many matching problems arise when trying to match
source tables with a target schema.

• Merged values (e.g. Make and Model are sepa-
rate attributes in Figure 3 but are merged as one
attribute called Vehicle in Figure 4).

• Multiple subsets constituting a set (e.g. color, air
conditioning, and transmission features in Fig-
ure 5 are each proper subsets of the set of features
in Figure 4).

• Synonyms and homonyms (e.g. Mileage in Fig-
ure 3 and Miles in Figure 4 are synonyms; Fea-
ture in a source table, meaning only specific kinds
of features, would be a homonym of Feature in
Figure 3, which denotes general features).

• Externally factored information (e.g. the phone
number in Figure 4 is for all vehicles).

• Internally factored information (e.g. the Make
for the second and third cars in Figure 5 is
ACURA and the Model for the third car is Leg-
end).

• Missing information (e.g. there are no phone
numbers in Figure 5 and there is no price for
the 1992 ACURA).

• Blanks fields that carry information (e.g. the
empty strings in the Auto and A/C columns of
Figure 5 are not missing values, but, instead, rep-
resent “No”).

• Attributes appearing as values (e.g. in Figure 5
the features Auto and A/C are attributes rather
than values).

This list is not exhaustive. It certainly illustrates,
however, that there are many problems to solve.

3.3.2 Matching Solutions

Rather than directly try to find mappings from source
schemas to target schemas as suggested in (Miller et
al. 2000, Doan et al. 2001, Madhavan et al. 2001), our
approach makes use of table understanding (Lopresti
& Nagy 1999) and extraction ontologies (Embley et
al. 1999a) and results in establishing a semantic cor-
respondence between a source schema and a target
schema. Our approach has four steps.



Make Model Year Colour Price Auto A/C
ACURA INTEGRA LS 1995 Red $14,5000 Yes Yes

Legend 1988 Red $4,600.00
1992 grey Yes

AUDI A4 2000 Blue $34,500 Yes Yes
...

Figure 5: Slightly Modified Excerpt of a Table from autoscanada.com

1. Form Attribute-Value Pairs. Using table under-
standing techniques, we determine, for exam-
ple, that 〈Year : 1999〉 and 〈Exterior : Yellow〉
are two of the attribute-value pairs for the first
record in Figure 4.

2. Adjust Attribute-Value Pairs. We convert, for ex-
ample, the recognized attribute-value pair 〈A/C :
Yes〉 in the first row of Figure 5 to A/C, mean-
ing that this car has air conditioning, and discard
〈A/C : 〉 in the second row.

3. Perform Extraction. The extraction ontology
recognizes, for example, that 42,130 in the first
row of Figure 4 should be extracted as the
Mileage for the first car in Figure 3 and that the
first part of Ford Mustang should be extracted
as the Make while the second part should be the
Model.

4. Infer Mappings. Given the recognized extraction
(which need not be 100%), the system can infer
general mappings from source to target. Based
on the extraction examples above, the system
would know, for example, that the first part of
the Make and Model strings in Figure 4 map to
Make, and that the remaining characters in the
strings map to Model. It would also know that
the Price values in Figure 4 map to Price in the
target (Figure 3), and thus that $14,5000 is a
Price even though it is an obvious typo3 that
does not match the form of a price.

We have implemented a system to process tables
as just described. To test our system, we processed
46 tables containing car ads, which included 319 map-
pings. Our system correctly discovered 296 (92.8%)
mappings, missed 23 (7.2%), and incorrectly declared
13 false mappings (4.2% of the 309 declared map-
pings). Of the 296 mappings we correctly discovered,
121 (40.9%) were direct, in the sense that attributes in
the source and target schemas were identical, and 175
(59.1%) were indirect. Of the 175 indirect matches, 28
had synonyms, 1 had “Yes”/“No” values, 91 required
collecting values from more than one table column, 2
had externally factored values, and 53 were merged—
like Make and Model are merged under Vehicle in
Figure 4—and needed to be split. (See (Embley, Tao
& Liddle 2004) for a detailed discussion.)

Once the system is build, the cost for being able
to do these mappings for any application is the cost
of building an extraction ontology for the application.
We were able to retarget our car-ads application to
a cell-phone application in a few dozen person-hours.
The results in this new application domain were sim-
ilar (Embley et al. 2004).

We also implemented a similar system for mapping
between attributes in ordinary relational database ta-
bles. For this system we tested three data sets ob-
tained from the University of Washington (Doan et
al. 2001). The applications for these data sets were
university course schedules, university faculty, and
real estate. Altogether our system correctly found
1335 of 1396 (96%) of the direct mappings and 479

3This typo actually appeared—was not made up just for illus-
tration.

of 510 (94%) of the indirect mappings while declar-
ing only 98 (5% of 1906 mappings) incorrectly. (See
(Xu 2003) for full details.)

3.4 Semantic Web

Research is underway in universities and companies
around the world to develop the Semantic Web—the
next generation of the web. The idea of the Seman-
tic Web is to add semantics to web content in or-
der to make it easier to find and use for both hu-
mans and machines. Adding formal semantics to the
web will aid in everything from resource discovery
to the automation of all sorts of tasks (Koivunen &
Miller 2002).

With all the advantages of the Semantic Web,
what keeps it from reaching a critical mass where it
will gain widespread acceptance and use? One reason
is the newness of the area leading to a lack of nec-
essary tools to help people publish and use Semantic
Web content. To a large extent, however, it is sim-
ply the lack of useful content. For years people have
been publishing web documents on nearly every topic
imaginable and building systems to continually gen-
erate new content, so there is a vast amount of human
readable information on the web. It is hard to imag-
ine rewriting, by hand, the current web content to be
accessible to Semantic Web agents.

Is it possible to automatically (or at least semi-
automatically) rewrite the web content (or at least
some of the web content) so that it will be accessible
to Semantic Web agents? Perhaps the most daunt-
ing task in making web data accessible to Semantic
Web agents is extracting the data from web pages. If
we could automatically extract information from web
pages and reconstitute it as metadata superimposed
over the original web pages, we may be able to enable
the Semantic Web as it is envisioned.

Currently, the basic description language for meta-
data on the Semantic Web is RDF (Resource Descrip-
tion Framework) (RDF 2003b). RDF is a domain-
independent model for describing resources, where
a resource is anything that can be represented by
a Uniform Resource Identifier, including web pages,
parts of web pages, or even physical objects. RDF
helps give structure to web content, but does not
describe the resources themselves. For this we
need ontologies. RDF Schema (RDFS) is a sim-
ple ontology language written in RDF that allows
the creation of vocabularies with classes, properties,
and subclass/superclass hierarchies (RDF 2003a).
DAML+OIL (DARPA Agent Markup Language +
Ontology Inference Layer) is an extension of RDFS
that allows finer-grained control of classes and prop-
erties with features such as cardinality constraints
and inverses of properties (Fensel, van Harmelen &
Horrocks 2002).

As an experiment to investigate the possibility of
bridging the gap between the HTML web and the Se-
mantic Web, we built a system to extract data from
the web with respect to a DAML+OIL ontology and
reconstitute it as RDF data superimposed over the
original web site (Chartrand 2003). Figure 6 shows
an overview of our RDF-extraction system. The first
input to the system, on the left in Figure 6, is a



Figure 6: Semantic Web Conversion System Overview

Figure 7: Screen Shot of the Semantic Web Conversion System Demo



DAML+OIL ontology that describes the structure
and constraints of the desired Semantic Web data.
The second input, at the top of Figure 6, is a set
of data-rich, multiple-record web pages whose data is
in the application domain described by the ontology.
As output, shown on the right in Figure 6, the system
produces RDF data, with respect to the input ontol-
ogy, corresponding to the data in the input web pages.
Internal to our system is an extraction ontology of the
type we have been discussing in this paper. As a first
step the system converts the DAML+OIL ontology
to an extraction ontology. It then applies the extrac-
tion ontology to the given web page and produces a
populated database with the extracted information.
Finally it converts this extracted data into RDF and
stores it back into the original HTML document as a
script.

While extracting Semantic Web data from an
HTML document, we keep track of the original lo-
cation of each extracted data item within the docu-
ment. We can thus build an index of all extracted
concepts and superimpose this index over the origi-
nal data in the document (Maier & Delcambre 1999).
To show how our extracted RDF can be used and to
illustrate the principle of superimposing information,
we have created an RDF browser that allows a user
to view the RDF and the original document together
in a superimposed fashion. Figure 7 shows our RDF
browser. A user browses the RDF data in the left-
hand frame by navigating through the classes in the
ontology. While a user navigates through the classes,
our browser shows class instances extracted from a
web page. A user selects a property value in the left-
hand frame to highlight in the right-hand frame the
place in the original document from which the value
was extracted.

Although our system merely allows a user to
browse an original document that has been marked
up with superimposed information, it is only a small
step to enable a Semantic Web agent to read this same
information and “understand” it with respect to the
original DAML+OIL ontology. To this extent our ex-
periment has been successful. The task, however, is
still arduous. Very few DAML+OIL ontologies exist
that convert readily to extraction ontologies. Creat-
ing them is a huge task, but not much larger than
creating DAML+OIL ontologies for applications on
the web. In principle, if we would create Semantic
Web ontologies so that they are also extraction on-
tologies, then we could superimpose agent readable
metadata over many existing HTML pages.

3.5 Agent Communication

The American Heritage Dictionary (AmH 2003) de-
fines an agent as “one that acts or has the power or
authority to act for or represent another.” In this
sense, we expect software agents to act on behalf of
their owners to do some work such as filtering email or
finding the best deal for airline tickets or other simi-
lar tasks. Bradshaw (1997) defines a software agent as
“a software entity, which functions autonomously and
continuously in a particular environment, often in-
habited by other entities.” Bradshaw continues, “we
expect an agent that inhabits the same environment
with other agents to be able to communicate and co-
operate with them.”

Due to its importance, communication among co-
operative agents becomes (to some extent) the defin-
ing characteristic of agents. This is clearly empha-
sized by Genesereth and Ketchpel (1994) who go so
far as to suggest that any entity that cannot commu-
nicate is not an agent.

Communication requires mutual understanding
between cooperating agents. Heterogeneity is the ma-

jor barrier that hampers agents from mutually under-
standing each other, and thus from communicating.
To resolve the heterogeneity/communication prob-
lem, researchers have assumed the need for a com-
mon language that all agents in a multi-agent system
can understand. As a result, two major languages
have been developed, namely KQML (Knowledge
Query and Manipulation Language) (Finn, Fritz-
son, McKay & McEntire 1994) and FIPA (Foun-
dation for Intelligent Physical Agents) (O’Brien &
Nicol 1988). Researchers discovered, however, that
a common language is not enough for agents to com-
municate and therefore have added two other require-
ments to constitute sufficient conditions for commu-
nication. These sufficient conditions are: agents must
(1) share ontologies, (2) use the same communication
language (e.g. KQML), and (3) pre-agree on a mes-
sage format. Shared ontologies provide agents with
commonly understood vocabularies. When agents
share ontologies, they agree on semantics. This agree-
ment is necessary for agents to interpret and under-
stand the vocabulary in messages unambiguously and
in the same way. Using the same communication lan-
guage and pre-agreeing on a message format allows
agents to parse messages correctly.

Although agents can communicate by satisfying
these three requirements, these requirements prevent
agents from interoperating on the fly. Interoperat-
ing on the fly requires agents to make the needed
mapping between them without agreeing on language
and message format, or sharing any type of ontolog-
ical knowledge. In a keynote address at a Semantic
Web Workshop (Frank, Noy & Staab 2002) Uschold
reflected this idea by saying that “the holy grail of se-
mantic integration in architectures” is to “allow two
agents to generate needed mappings between them on
the fly without a-priori agreement and without them
having built-in knowledge of any common ontology.”

To allow agents to interoperate on the fly, we have
developed a matchmaking system that enables com-
munication. In our solution we assume neither shared
ontologies, nor a common language, nor a shared mes-
sage format. As a result, we explicitly eliminate the
requirements imposed by current approaches. Our
approach has two key ideas, which we explain as fol-
lows.

1. Independent Global and Local Ontologies. Rather
than requiring agents to share ontologies, we
provide our system with an agent-independent,
domain-specific ontology, called a global ontol-
ogy. Besides the global ontology, our system
obtains useful information from agents. When
an agent joins the system, our system applies
an information-extraction engine to the agent’s
code to extract the useful information. This use-
ful information, which we call a local ontology,
includes recognized names of concepts the agent
uses such as class names, parameter names, and
variable names, and the types of these concepts.
To compensate for not having a shared ontology,
our system maintains a mapping of the local on-
tologies of all agents to the independent global
ontology. We emphasize that there is a major
difference between our approach and a shared
ontology approach. An agent’s programmer(s)
need to know nothing about any other agent’s lo-
cal ontology, nor do they need to know anything
about the global ontology. It is the system that
does the mapping not an agent’s programmer(s).

2. Automatic Message-Service Mapping. Rather
than having agents deal directly with in-coming
messages, our system automatically maps an in-
coming message to an appropriate service. An



immediate consequence is that agents do not
have to use the same communication language
and pre-agree on a message format. As a neces-
sary step to achieve the automatic mapping, our
system parses an agent’s code, finds its services,
and expresses them in an agent-independent way.
Once our system has an agent’s services, it does
a mapping between these services and an in-
coming message by (1) parsing a message and
identifying its type and its input and output pa-
rameters and (2) matching the type and input
and output parameters of the message with those
of a service. Then, using the local/global on-
tology mappings, our system can appropriately
convert parameters of a requesting agent’s mes-
sage to parameters of a providing agent’s service
and receive results and convert them to results
in terms of the requesting agent’s local ontology.

We have implemented this system and tested it
on three real-world applications: computer shopping,
book shopping, and meeting scheduling. To create
our global ontology, including the regular expres-
sions for the extraction ontology embedded within
the global ontology, we drew vocabulary from vari-
ous shopping web sites for computers and books and
from worksheets about scheduling filled out indepen-
dently by a group of a dozen graduate students. For
these initial experiments, we created running code
for agents using this vocabulary. We then allowed
our matchmaking system to automatically create the
mappings and facilitate the communication. Thus, we
successfully created a framework in which we can fur-
ther experiment with agent communication “on the
fly.” Future work will require us to enhance the ex-
traction ontologies for the domains in which we work
and to experiment with software agents created inde-
pendently for these domains.

4 Ontology Generation

Having discussed and illustrated ideas about how
extraction ontologies apply to Meadow’s first two
levels—Data and Information—we wish to now ask
whether we can step up to the next level—Knowledge.
Following the theme of Data Extraction and Informa-
tion Extraction, we ask, can we do Knowledge Extrac-
tion? In other words, can we automatically build an
ontology—an agreed upon, shared, conceptual-model
instance?

We approach this problem by assuming that if we
can extract domain information from several differ-
ent “expert-created” sources, all roughly containing
the same information, then if we can satisfactorily
reconcile the differences in these sources, we can cre-
ate a reasonable, “agreed-upon” ontology for the do-
main. Motivated by this objective, we are developing
an information-gathering engine to assimilate and or-
ganize knowledge. Our approach is to consider the
information in tables found on the web4 in a specific
domain.5 Since we organize the knowledge we gain
from “reading” tables as an ontology [1], we call our
information-gathering engine TANGO (Table ANaly-
sis for Generating Ontologies).

Our work can be considered as semiautomated, ap-
plied “ontological engineering,” which has as its goal
“effective support of ontology development and use
throughout its life cycle—design, evaluation, integra-
tion, sharing, and reuse” (Gruninger & Lee 2002). As

4Since we are using real tables provided in the public domain,
we consider these tables to be “expert-created.”

5To be specific, we have decided to apply our work to knowledge
gathering in the domain of geopolitical facts and relations, where
relevant data is often presented in the form of lists and tables.

an analogy for what we are trying to accomplish with
TANGO, consider that instead of humans collaborat-
ing to design an ontology (Holsapple & Joshi 2002),
TANGO provides an approach in which tables “col-
laborate” to design an ontology. In a sense, this is the
same because information is assembled from specific
instances of tables created by humans.

Ontology generation in TANGO makes use of aux-
iliary knowledge sources, including an ontology-based
system for (1) table understanding, (2) data extrac-
tion, and (3) data integration. Based on completed
work, we offer the following specifics.

• Our ontology-based table-understanding system
takes a table as input and produce attribute-
value pairs as output. (See Section 3.3.)

• Our ontology-based data-extraction system al-
lows us to take semistructured text (e.g. grouped
attribute-value pairs) as input and produce as
output a database corresponding to a given ap-
plication ontology and populate it with the given
semistructured data. (See Section 3.1.)

• Our ontology-based integration system pro-
duces schema-element matches between popu-
lated database schemas: direct matches when
schema elements in two schemas have the same
meaning, and indirect matches when schema ele-
ments have overlapping meanings or have differ-
ent encodings. (See Section 3.3.) The key ideas
for matching, which we explore in this integration
work, are (1) value characteristics, (2) expected
values based on our data-extraction techniques,
(3) attribute names and their synonyms, and (4)
the structure of a schema.

Our ontology-generation procedure has three
steps, the first of which we do only once for any
given domain. (See (Tijerino, Embley, Lonsdale &
Nagy 2003) for more details.)

1. An ontology engineer builds a kernel application
ontology, which should be small (having only
a few concepts), central (containing the most
important concepts for the application), and
example-rich (containing typical sample data,
descriptions of common data values such as dates
and times, and typical operations over this data).

2. For any given table, the system creates a mini-
ontology based on its understanding of the ta-
ble. This yields a schema of object and relation-
ship sets, values for the object sets as attribute-
value pairs, and tuples for the relationship sets
each representing a relationship among attribute-
value pairs.

3. The system attempts to integrate each new mini-
ontology with the ontology it is building. Inte-
gration may raise several issues: (a) there may
be alternative ways it can integrate the mini-
ontology into the evolving global ontology, (b)
constraints may be inconsistent, (c) adjustments
to the evolving ontology may be necessary, and
(d) it may need human intervention. To re-
solve these issues, the system can use congruency
principles (Clyde, Embley & Woodfield 1996)
and principles of ontology construction (Wand,
Storey & Weber 1999, Welty & Guarino 2001);
and when we need human intervention, we can
use Issue/Default/Suggestion (IDS) statements
as in (Biskup & Embley 2003) as well as tools
for cleaning ontologies, e.g. (Guarino & Welty
2002).



5 Concluding Remarks

We conclude by giving some summary remarks and
laying out future directions and challenges.

5.1 Summary

In this paper we have argued that ontological con-
ceptualization over data frames can increase shared
understanding. We started by giving a stronger no-
tion for data by introducing the idea of a data frame,
which is an encapsulation of the essential proper-
ties of everyday data items including, in particular,
fine-grained recognizers that can locate and classify
text strings that belong to the data frame. Build-
ing on the foundation of being able to recognize and
classify individual data items, we can extract infor-
mation into a conceptual framework. This lets us
deal with some practical, real-world applications, in-
cluding (1) information extraction from semistruc-
tured web pages; (2) high-precision classification of
semistructured web pages; (3) schema mapping, in-
cluding finding both direct and indirect semantic cor-
respondences between HTML tables (or relational ta-
bles) and a target schema; (4) the generation of su-
perimposed information over HTML pages for the Se-
mantic Web; and (5) agent communication without
the requirement of shared ontologies or pre-agreement
on message and language format. Extending these
ideas even further, it appears that we can automati-
cally attain a measure of semantic agreement by gen-
erating ontologies from groups of populated tables all
pertaining to the same application domain. All of this
provides some hope that we can establish a basis for
“semantic understanding.”

5.2 Research Issues

There are many ideas for future research. Based on
our discussion in this paper, we mention a few.

• Build a comprehensive library of data frames.

• Find ways to synergistically generate resilient ex-
traction ontologies with as much of the burden
as possible shifted to the computer.

• Extend high-precision classification beyond web
pages to be able to identify with precision rele-
vant portions of web pages and relevant linked
information, relevant information in headers and
footers, and relevant global contextual informa-
tion.

• Identify a complete set of operators for specifying
indirect mappings among semantically identical
schema components.

• Expand web ontology languages such as RDFS
and DAML+OIL so that they can directly serve
as extraction ontologies.

• Investigate and resolve data conversion issues—
types, encoded representations, constraints, pre-
cision, units, abstraction level, etc.

• Determine how to engender trust so that the
“illusion of understanding” is not illusive, but
rather concrete and something on which we can
rely in accordance with the demands of the ap-
plication.

5.3 Research Challenges

• Develop a way to largely automate ontology con-
struction. How can we obtain an operational,
shared agreement about a conceptual framework
with minimal human involvement?

• Develop a way to largely automate the process of
converting the data currently on the web to data
for the Semantic Web. How do we obtain a criti-
cal mass of Semantic Web pages understandable
to software agents?

• Develop personal agents that can access knowl-
edge both about their masters and about the
world of interest to their masters and that can
serve their masters’ informational needs by giv-
ing them the information they want and need at
the time they want and need it.

We cannot now raise the level of sophistication as
high as we want it. We may never be able to raise
it all the way. But we can do some things that are
useful, and what we can do for the benefit of society,
we ought to do.
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