
Foundational Data Modeling and Schema

Transformations for XML Data Engineering

Reema Al-Kamha1, David W. Embley2, and Stephen W. Liddle3

1 Informatics Department, Damascus University, Syria
2 Department of Computer Science, Brigham Young University, USA
3 Information Systems Department, Brigham Young University, USA

Abstract. As XML data storage and interchange become ubiquitous,
analysts and data engineers increasingly need tools to model their data
and map it to XML schemas and to reverse engineer XML documents
and schemas in support of evolution and integration activities. For ef-
fective data management, model transformations require guarantees of
properties of interest including guarantees of information and constraint-
preservation, redundancy-free and compactness guarantees, and assur-
ances about readability and maintainability. In this paper, we make foun-
dational observations about XML data management, including concep-
tual modeling for XML data, transformations to and from XML Schema
and XML data models, and transformation guarantees concerning prop-
erties of interest, and we provide resolutions for conceptual mismatches
between XML data management and more traditional data management.
Our implemented prototype tools show that these observations and in-
sights can provide a strong foundation for XML data engineering.

1 Introduction

Because XML has become a standard for data representation, there is a need
for a simple conceptual model for XML-based data engineering. But this is not
enough—engineers also need a suite of design and development tools to map
conceptual designs into implementable designs and to reverse-engineer legacy
implementations to conceptual designs. In addition to facilitating these activ-
ities, the tools should guarantee certain desirable properties about generated
implementations and should warn developers if such properties do not hold.

In building a suite of XML design and development tools, we face several
interesting challenges. (1) Creating a conceptual model is a delicate balance be-
tween providing enough but not too many high-level conceptualizations without
introducing low-level, implementation detail; making the model formal but easily
understandable; and having a notation that is easily understood by developers
and customers alike. (2) Once a conceptual model exists, the challenge becomes
defining equivalence transformations to and from XML Schema—a nontrivial
task because of the large conceptual mismatch. (3) Beyond just having trans-
formations, XML data engineering demands certain guarantees. As a minimum,
the translations must preserve information content and, to the extent possible,



2 Al-Kamha, Embley, and Liddle

2:3

Street

Advisor

StateNickName

Department

Grade

Semester

Course

GradStudentUndergradStudent

StudentIDName Email

StateCity

PhoneNr

Address

Zip

Student

Fig. 1. Given C-XML Model Instance.

preserve constraints. These guarantees should also enable developers to guaran-
tee that forward translations yield storage structures that are redundancy-free
and thus free of update anomalies, and that reverse translations yield faithful
and understandable conceptual models.

In a keynote address [4] Carey challenged the conceptual-modeling commu-
nity to develop conceptual models usable in XML data engineering. Several
researchers have contributed to making this challenge a reality. Many have at-
tempted to create or define characteristics for conceptual models for XML (e.g.,
[5, 6, 10, 11, 12, 14, 15, 16]), but all have fallen short of capturing some interest-
ing features of XML Schema. Some have attempted to provide transformations
or design guidelines based on standard conceptual models or on XML-augmented
conceptual models (e.g., [5, 10, 11]), but few address design properties such as
being redundancy free or address them in a way to provide mapping guarantees,
and none provide transformations for XML reverse-engineering.

In this paper, we build on our earlier work [2, 3, 8] and describe our imple-
mented algorithms for conversions between a generic conceptual model and XML
Schema. Based on these implementations, we explain how to meet the challenges
of creating a suite of design and development tools for XML. In particular, we
make the following contributions: (1) We argue for a few augmentations to tra-
ditional conceptual models to accommodate XML (Section 2). (2) We provide
implemented equivalence transformations between XML-augmented conceptual
models and XML Schema (Sections 3 and 4). (3) We show how to guarantee
properties of interest in XML design and development (Sections 3 and 4).

2 C-XML: Conceptual XML

We show here how to extend traditional conceptual models for XML-based data
engineering. In our prototype implementation, we have extended the conceptual
modeling language OSM [7] for use with XML, resulting in C-XML (Conceptual
XML). Figure 1 shows an example of a graphical rendition of a particular C-XML
model instance for a small part of a student database.



Foundational Data Modeling for XML 3

All who have addressed the issue of creating a conceptual model for XML
Schema argue for augmenting conceptual models with XML-like sequence and
choice features. Although we disagree with previously-suggested ways of includ-
ing sequence and choice features, we agree that both should be included. Some
may argue that sequence and choice constitute low-level, implementation detail.
We, and most others who have faced this problem, disagree. Order is a natural,
high-level conceptualization among some entities (e.g. to represent component
parts of addresses and start-end values for chromosome sequences), and alter-
natives are natural for others (e.g. to represent various forms of international
addresses). We do, however, recommend only appropriate and conceptual use of
sequence and choice—not the inappropriate and artificial use often seen in XML
Schema because of its lack of modeling alternatives.

Fundamentally, a C-XML model instance is a hypergraph whose nodes are
object sets and whose edges are relationship sets, which are often binary, but
may be n-ary (n > 2). Beyond a generic hypergraph, C-XML provides notation
to declare various constraints over object and relationship sets.

Rendered graphically, object sets are boxes, relationship sets are lines, and
constraints are decorations. A dashed box denotes a lexical object set whose
object values are printable types, and a solid box denotes a non-lexical object
set whose object values are object identifiers. In Figure 1, for example, Name

and StudentID are lexical object sets, and Student and Address are non-lexical
object sets. A participation constraint (e.g., 2:3 ) indicates how many times an
object in a connected relationship may participate in the relationship set. C-XML
uses decorations for common constraints: (1) an arrowhead specifies a functional
constraint and (2) an “o” on a connection designates optional participation.
A triangle represents a generalization/specialization relationship among object
sets, and C-XML allows for these relationships to be constrained (e.g., ∪, +, and
] respectively denote union, mutual-exclusion, and partition constraints).

A bounded half circle with a directional arrow represents a sequence struc-
ture. Sequenced child object sets connect to the curved side, and the parent
object set connects to the flat side. The representation for the choice structure
is similar, but instead of an arrow a vertical bar indicates choice. In Figure 1,
for example, each student has an address that is in a one-to-one correspondence
with an ordered 4-tuple (Street, City, State, Zip), and each student has two or
three ways to be contacted, each of which is either a phone number or an email
address. Students may share phone numbers, but email addresses are unique as
indicated by the functional relationship from Email to the choice structure.

C-XML satisfies the requirements for conceptual modeling for XML presented
by others who have studied the problem of creating a conceptual model for XML
[14, 15, 16]. These requirements include: a graphical notation, a formal founda-
tion, structural independence, reflection of the mental model, n-ary relationship
sets, views, logical-level mapping, cardinality for all participants, ordering, al-
lowance for irregular and heterogeneous structure, and document-centric data.
The property of having a formal foundation is particularly important, and we
thus point out that a C-XML model instance is precisely an abstract represen-



4 Al-Kamha, Embley, and Liddle

tation for a particular set of predicates and predicate-calculus formulas. Each
object set maps to a one-place predicate, and each n-ary relationship set maps
to an n-place predicate. Each constraint maps to a closed predicate-calculus
formula. A properly populated C-XML model is therefore a reformulation of a
model in first-order theory [9].

3 Mapping C-XML to XML Schema

In the translation from C-XML to XML Schema we must consider several chal-
lenging issues.

– XML Schema has a hierarchical structure, while a particular conceptual-
model instance may have no explicit hierarchical structure. Converting non-
hierarchical structure to hierarchical structure presents some interesting chal-
lenges especially if we wish to be able to guarantee properties such as making
the hierarchical structures as large as possible without introducing redun-
dancy.

– XML Schema often does not mesh well with conceptual-modeling structures.
Translations resulting in a valid XML-Schema instance sometimes need extra,
unwanted artifacts to satisfy XML Schema’s syntactic requirements.

– Because of XML-Schema limitations the translation sometimes cannot cap-
ture all the constraints of a C-XML model instance (e.g. some cardinality
constraints). To preserve constraints in the translation, we add them as special
comments that auxiliary constraint-checking software can read and enforce.

– A conceptual-model instance may contain a variety of conceptualizations:
hypergraphs representing interrelated object and relationship sets; general-
ization/specialization hierarchies with union, mutual-exclusion, and partition
constraints; hierarchies of sequence and choice structures; and mixed tex-
tual/conceptual structures. Translating these conceptualizations individually
presents some challenges, and translating conceptual-model instances with a
mixture of these conceptualizations is harder.

3.1 Build Scheme-Tree Forest

Our translation starts by applying an algorithm to convert a conceptual-model
hypergraph to a forest of scheme trees [13], which we refer to as the HST algo-
rithm (Hypergraph-to-Scheme-Tree translation algorithm). By observing many-
one cardinality constraints, this algorithm finds hierarchical structures, making
them as large as possible without introducing potential redundancy in stored
XML data instances. Observing mandatory/optional constraints, this algorithm
also ensures that all values populating a C-XML model instance are representable
in the XML data instance.

An application of the HST algorithm to the C-XML model instance in Fig-
ure 1 generates the forest of scheme trees in Figure 2. The algorithm lets us build
a root node in a scheme-tree beginning with any object set. By default it chooses



Foundational Data Modeling for XML 5

Fig. 2. Scheme Trees.

an object set that is the root of the largest natural hierarchy as determined by
the one-many relationship sets. In Figure 1, State is one-many with Address

which is one-many with Student and thus would be the default choice. Often,
however, it is best to start with the most important node, measured as one with
the maximum number of incident edges—Student in our example. A starting
object set for a node becomes a key for the node. For our example, we start with
Student, place it in the first root node as Figure 2 shows, and underline it to
indicate that it is a key for the node. The HST algorithm then builds the rest of
the scheme-tree forest in Figure 2.

The details are beyond the scope of this paper, but in essence, the HST
algorithm ensures that each relationship instance appears at most once in any
populated scheme tree it generates, which ensures the redundancy-free property,
and thus also ensures that storage structures are free from update anomalies.
At the same time, from a given starting node, it grows scheme trees as large
as possible without introducing potential redundancy. This ensures that the
representation does not introduce unnecessary trees, and thus ensures that the
representation is compact [13].

3.2 Generate Nested Object Containers

After generating the forest of scheme trees, we construct the XML-Schema in-
stance. Since each scheme-tree node denotes a set of tuples, we generate a con-
tainer for the set of tuples as well as a container for an individual tuple. Each
container requires a name, and although we could use arbitrary names or let the
user select names, we attempt to select a reasonable name for each container au-
tomatically. Since a key for a set of tuples identifies individual tuples, we choose
keys as names for individual tuples and plurals of these names for sets of tuples.
For example, Figure 3 shows part of the XML-Schema instance generated for the
Student scheme tree in Figure 2, and Figure 4 shows part of an XML document
that complies with the XML-Schema instance in Figure 3.

Each container has some content. Thus, the container element has complex-
Type content. The container element for a node must provide for a set of tuples.
We introduce them with a sequence structure, even though the sequence struc-
ture has the extra, perhaps unwanted, constraint of requiring its children to be
ordered. The sequence structure is the only choice that suffices in this case. The
container element for an individual tuple, on the other hand, contains at most
one instance of each object set and each child node of the tuple. We thus use
the all structure for the elements representing the child nodes of the node being
built, where possible. It is not possible when sequence and choice structures



6 Al-Kamha, Embley, and Liddle

<xs:element name="Students">
<xs:complexType>

<xs:sequence>
<xs:element name="Student" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>
<xs:sequence>

<xs:element name="Name" />
<xs:element name="Address">

<xs:complexType>
<xs:attribute ref="AddressOID"

use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:choice minOccurs="2" maxOccurs="3">

<xs:element name="Emails">

...
<xs:attribute name="StudentOID" type="xs:string"

use="required" />
<xs:attribute name="StudentID" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>

</xs:complexType>
<xs:key name="StudentOID-Key">

<xs:selector xpath="./Student" />
<xs:field xpath="@StudentOID" />

</xs:key>

<xs:key name="StudentID-Key">
...

</xs:element>

Fig. 3. Generated XML-Schema Instance.
<Students>
<Student StudentOID="Student1" StudentID="0000-1">

<Name>Alice</Name>
<Address AddressOID="Address1"/>

<Emails>
<Email Email="alice@university.edu/>

<Email Email="alice@gmail.com/>
<Emails>
<Course-Semester-Grades>

<Course-Semester-Grade
Course="CS100" Semester="Fall" Grade="A"/>

...
</Course-Semester-Grades>

</Student>

<Student StudentOID="Student2" StudentID="0000-2">
<Name>Bob</Name>

...
</Students>

Fig. 4. Complying XML Document.

are present, as they are for Student in our example, and thus in Figure 3 we
introduce the elements of the Student tuple with a sequence structure.

The tuple itself consists of the key object set (or object sets in case of a
compound key)—Student in our example; other object sets in the node be-
ing constructed—StudentID, Name, and Address in our example; and the
container element for child nodes of the node being constructed—PhoneNrs,
Emails, and Course-Semester-Grades in our example. We generate the object
sets as attributes, when possible, and otherwise as elements, and we generate the



Foundational Data Modeling for XML 7

child-node containers as elements. Thus, as Figure 3 shows, Name and Address

are elements since they appear under a sequence structure, and StudentID and
StudentOID are attributes.

Each non-lexical object set has an “OID” attribute, which allows us to explic-
itly represent the entity. If designers prefer not to have explicit representations
for non-lexical entities, they can “lexicalize” the C-XML model instance before
transforming it to an XML-Schema instance. To lexicalize a non-lexical object
set, we replace it with a lexical object set with which it has a one-to-one cor-
respondence or by a group of lexical object sets with which it has a one-to-one
correspondence. To retain original names for generating more pleasing tag names
for XML documents, we can rename the lexicalized nodes in a special way: X
(of Y) where X is the name of the lexical object set and Y is the name of
the non-lexical object set. Thus, in our example we would have StudentID (of
Student), StudentID (of UnderGradStudent), and StudentID (of GradStudent).
With this construction we would retain the names Students and Student for
node and tuple containers, and we would omit the attribute StudentOID, re-
taining StudentID as an attribute and as the key.

Each XML-Schema instance must have a single root element. When the num-
ber of scheme trees in the generated forest is one, we do not generate a root
element because the container element for the set of tuples for the root node
in that scheme tree can serve as the root element. When the number of scheme
trees in the generated forest is more than one, we generate a root element, call
it Root, and nest the elements beneath it that represent the sets of tuples for
each generated scheme tree.

3.3 Add Constraints

The structure of the generated scheme trees plus the optional constraints of the
input C-XML model instance dictate the cardinality constraints. Every XML-
Schema element declaration specifies its cardinality with respect to its parent as
a minOccurs value and a maxOccurs value, and every XML-Schema attribute
declaration specifies whether it is “required” or “optional” in its use attribute.
Since there is exactly one instance of the container element for a set of tuples
for a node, the assigned values for minOccurs and maxOccurs are both 1, the
default values. A set of individual tuples may contain one or more tuples. Thus,
for a container for individual tuples, the minOccurs value is 1 and maxOccurs
is unbounded. The Student element in Figure 3, for example, shows these car-
dinalities. The value for use is required unless the conceptual model constrains
the use to be optional. In Figure 3, for example, the use for the attribute for
StudentID is required.

We observe that since XML Schema has a hierarchical structure, we can only
capture participation constraints in the conceptual model instance for the parent
element. By default, the nesting structure in an XML-Schema instance makes the
minimum participation constraint for a child element be 1 and the maximum
constraint be unbounded. XML Schema provides no way to capture any con-
straint other than this default constraint. We can, however, capture constraints



8 Al-Kamha, Embley, and Liddle

<xs:keyref name="UnderGradStudentOID-Keyref"
refer="StudentOID-Key">

<xs:selector
xpath="./UnderGradStudents/UnderGradStudent" />

<xs:field xpath="@UnderGradStudentOID" />

</xs:keyref>
<xs:keyref name="GradStudentOID-Keyref"

refer="StudentOID-Key">
<xs:selector

xpath="./GradStudents/GradStudent" />
<xs:field xpath="@GradStudentOID" />

</xs:keyref>

Fig. 5. Generated Subset Declarations.

that differ from the default in special pragma comments. We prefix pragma com-
ments with C-XML so that we can know to process them if we wish to enforce
the constraint or if we wish to restore the original C-XML model instance from
the XML-Schema instance. So that we can know what constraint to enforce or
restore, we write the constraint formally using predicate-calculus syntax. (All
constraints in C-XML have equivalent predicate-calculus expressions [7].) For
example, to declare that the participation of Course in the n-ary relationship
set in Figure 1 among Student, Course, Semester, and Grade is optional, we
write the comment

forall x(Course(x) => exists [0:*] <y, z, w>

(Course(x)Student(y)Semester(z)Grade(w)))

which establishes the constraint that each element x in Course may have zero or
more tuples <y, z, w> in the relationship set among Course, Student, Semester,
and Grade.

For each key within a node we determine the uniqueness constraints and ex-
press them in the generated XML-Schema instance. Every key for each node is
unique within the container element for that node. Keys within child nodes,
however, are only known to be unique within their parent node. Course-
Semester-Grade tuples, for example, are only unique for each Student. Figure 3
shows the generated key constraint for StudentOID. Its selector declaration is
./Student since its declaration is within Students, and its field declaration is
@StudentOID since StudentOID is an attribute.

Generalization/specialization is not a native construct in XML Schema. Nev-
ertheless, with judicious use of XML-Schema’s keyref constraint, we can make
XML Schema enforce basic generalization/specialization constraints. The main
idea in generalization/specialization is that a generalization object set is a su-
perset of each of its specialization object sets. Using keyref enables us to specify
that the set of values in a specialization element is a subset of the set of val-
ues in a generalization element. Figure 5 shows these basic subset declarations
for UnderGradStudent and GradStudent. Observe that these declarations force
the set of UnderGradStudentOIDs and the set of GradStudentOIDs to be a
subset of the set of StudentOIDs.

When a generalization/specialization hierarchy has a union, a mutual-
exclusion, or an intersection constraint, we generate a special pragma comment



Foundational Data Modeling for XML 9

to capture the constraint. Since our example in Figure 1 has a partition con-
straint, we generate both a union constraint and a mutual-exclusion constraint

as follows.

forall x(StudentOID(x) => GradStudentOID(x)
or UnderGradStudentOID(x)

forall x(GradStudentOID(x) =>

not UnderGradStudentOID(x))

3.4 Property Guarantees

Having explained the basic idea of our translation of a C-XML model instance
to an XML-Schema instance, we now show that the translation preserves both
information and constraints. We also show that the translation is redundancy-
free and is reasonably compact.

Definition 1 Let T be a transformation from a model instance M to a model
instance M ′ that not only derives M ′ from M but also derives a populated model
instance M ′

p from a populated model instance Mp. T preserves information if for
any properly populated model instance Mp, there exists an inverse transformation
T−1 that maps T (Mp) to Mp such that T−1(T (Mp)) = Mp.

Theorem 1 The transformation from C-XML to XML Schema preserves infor-
mation. (We have omitted all proofs due to space constraints.)

Definition 2 Let C be the constraints of a model instance M , and let C′ be the
constraints of a model instance M ′ obtained from M by a transformation T . T

preserves constraints if C′ =⇒ C.

Theorem 2 Allowing for pragma constraints, the transformation from C-XML
to XML Schema preserves constraints.

Definition 3 A value or object instance i in a populated model instance MI is
redundant with respect to a set of constraints C if i is uniquely determinable
from C and the values and object instances in MI other than i.

If, for example, we store the StateNickName with every student’s address,
then for any two student instances S1 and S2 whose address is in the same state,
we can uniquely determine the state nickname of S1 from the information in
S2’s address and from the constraint that StateNickName and State are in a
one-to-one correspondence.

Theorem 3 Let C be a canonical C-XML model instance whose declared func-
tional constraints are its functional edges and whose declared multivalued con-
straints are its non-functional edges. The transformation from C-XML to XML
Schema for C yields an XML-Schema instance whose complying XML documents
have no redundant value or object instances with respect to the functional and
multivalued constraints declared in C.



10 Al-Kamha, Embley, and Liddle

Observe that we have not claimed redundancy-free with respect to the in-
clusion dependencies in a generalization/specialization hierarchy. Indeed, be-
cause of the way we store and reference object identifiers or values in generaliza-
tion/specialization hierarchies, every value or object in a generalization is stored
redundantly. XML system developers can avoid this redundancy by collapsing all
generalization/specialization hierarchies to their roots before generating XML-
Schema instances. In Figure 1 collapsing the generalization/specialization hier-
archy to the root consists of discarding the object sets UnderGradStudent and
GradStudent and attaching Advisor optionally through a functional relationship
set to Student. Implicitly, those students who have advisors are graduate stu-
dents and those who do not have advisors are undergraduate students. The dis-
advantage of this approach is that the generalization/specialization constraints
(the partition in our example) are lost as are all the specialization names.

As it turns out, the HST algorithm does not always produce the fewest num-
ber of scheme trees both because a developer may choose to start the algorithm
at a node that does not initially carve out the largest natural hierarchy and be-
cause of some pathological cases that occur only when the hypergraph is cyclic.
Normally, however, the HST algorithm yields the fewest number of scheme trees
and thus yields a compact representation.

Although not provable, we believe that XML-Schema instances obtained by
transforming C-XML model instances are reasonably readable and thus main-
tainable. As Figure 4 indicates, they provide reasonable tags for both sets of
objects (e.g. Students) and individual objects (e.g. Student), and they appro-
priately nest associated information nicely inside of the scope of objects (e.g.
Address, Email, and Course-Semester-Grades inside the scope of student).

4 Mapping XML Schema to C-XML

The basic translation strategies for mapping XML Schema to C-XML are
straightforward, although some parts of the translation require some sophis-
ticated manipulation. In the translation, elements and attributes become ob-
ject sets. Elements that have simple types become lexical object sets, while
elements that have complex types become non-lexical object sets. Attributes
become lexical object sets since they always have a simple type. Built-in data
types and simple data types for an element or an attribute in XML Schema are
specified in the data frame associated with the object set representing the ele-
ment or the attribute. XML parent-child connections among elements and XML
element-attribute connections both become binary relationship sets in C-XML.
The constraints minOccurs and maxOccurs translate directly to participation
constraints in C-XML.

Unfortunately, not everything is straightforward. Translations for keys, ex-
tension, restriction, substitution groups, and mixed content are all quite interest-
ing. The translation also involves a myriad of detail extending to over 40 pages
in [1]. One general observation about the translation is that it is often difficult
and sometimes impossible to express modeling constraints of interest.



Foundational Data Modeling for XML 11

– XML Schema provides no good way to nest elements that are not natural
sequences of, not natural alternatives of, and not functionally dependent on
a parent. Although designers usually declare sequences for these nestings, it
is difficult to tell whether a sequence is merely an artifact, required by XML
Schema, or whether it is a conceptual sequence, as address elements would be.
Since a translation algorithm does not know whether a sequence is meaningful,
however, we must faithfully generate all declared sequences. We can, and do,
handle the special case of a sequence of one nested element.

– Generalization/specialization, especially large hierarchies with complex con-
straints, is difficult and sometimes impossible to specify [3].

– Some functional constraints are difficult or impossible to capture.
– Lexical elements cannot be parent elements. In such cases, we must introduce

another object set.

Because some unwanted artifacts appear and because some constraints are either
difficult or impossible to declare, one interesting possibility is to reverse-engineer
an XML Schema instance to an C-XML instance, add the missing constraints,
remove unwanted artifacts, and then regenerate a more desirable XML Schema
instance.

Theorem 4 The transformation from XML Schema to C-XML preserves infor-
mation.

Theorem 5 The transformation from XML Schema to C-XML preserves con-
straints.

A main use of the transformation from XML Schema to C-XML is to reverse-
engineer an XML Schema instance. We believe that the result is quite usable. We
capture each XML concept as an object set and each nested connection among
concepts as relationship set, and we also capture all representable constraints.
Further, we believe that the representation is appropriately abstract and suffi-
ciently high level in the usual way in which conceptual models are abstract and
high level. Thus, we can reasonably claim that this reverse-engineering transfor-
mation can aid in understandability and thus maintainability and evolvability.

5 Concluding Remarks

We have implemented automatic conversions between C-XML and XML Schema
that preserve information and constraints, that have guaranteed redundancy-free
and compactness properties, and that yield reasonably understandable results
and thus provide for maintainability and evolvability. Our prototype implemen-
tations and these observations and insights provide a solid theoretical foundation
for XML data engineering.



12 Al-Kamha, Embley, and Liddle

References

1. R. Al-Kamha. Conceptual XML for Systems Analysis. Phd dissertation, Brigham
Young University, Department of Computer Science, June 2007.

2. R. Al-Kamha, D.W. Embley, and S.W. Liddle. Representing generaliza-
tion/specialization in XML schema. In Proceedings of the Workshop on Enterprise
Modeling and Information Systems Architectures (EMISA’05), pages 250–263, Kla-
genfurt, Austria, October 2005.

3. R. Al-Kamha, D.W. Embley, and S.W. Liddle. Augmenting traditional concep-
tual models to accommodate XML structural constructs. In Proceedings of the
26th International Conference on Conceptual Modeling (ER2007), Auckland, New
Zealand, November 2007. (in press).

4. M. Carey. Enterprise information integration—XML to the rescue! In Proceedings
of the 22nd International Conference on Conceptual Modeling (ER2003), page 14,
Chicago, Illinois, October 2003. (keynote address).

5. M. Choi, J. Lim, and K. Joo. Developing a unified design methodology based on
extended entity-relationship model for XML. In Proceedings of the International
Conference on Computational Science—ICCS 2003, St. Petersburg, Russia and
Melbourne, Australia, June 2003.

6. R. Conrad, Deiter Scheffner, and J.C. Freytag. XML conceptual modeling using
UML. In Proceedings of the Ninteenth International Conference on Conceptual
Modeling (ER2000), pages 558–571, Salt Lake City, Utah, October 2000.

7. D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems Analysis:
A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

8. D.W. Embley, S.W. Liddle, and R. Al-Kamha. Enterprise modeling with concep-
tual XML. In Proceedings of the 23rd International Conference on Conceptual
Modeling (ER2004), pages 150–165, Shanghai, China, November 2004.

9. H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, Inc.,
Boston, Massachussets, 1972.

10. L. Feng, E. Chang, and T. Dillon. A semantic network-based design methodology
for XML documents. ACM Transactions on Information Systems, 20(4):390–421,
October 2002.

11. H. Liu, Y. Lu, and Q. Yang. XML conceptual modeling with XUML. In Proceed-
ings of the 28th International Conference on Software Engineering, pages 973–976,
Shanghai, China, May 2006.

12. M. Mani. Conceptual models for XML. In Proceedings of the Second International
XML Database Symposium (XSym 2004), pages 128–142, Toronto, Canada, August
2004.

13. W.Y. Mok and D.W. Embley. Generating compact redundancy-free XML docu-
ments from concptual-model hypergraphs. IEEE Transactions on Knowledge and
Data Engineering, 18(8):1082–1096, August 2006.

14. M. Nec̆aský. Conceptual modeling for XML: A survey. In Proceedings of the Annual
International Workshop on Databases, Texts, Specifications and Objects (DATESO
2006), pages 45–53, Desna, Czech Republic, April 2006.

15. A. Sengupta and E. Wilde. The case for conceptual modeling for XML. Technical
report, Wright State University (WSU) and Swiss Federal Institute of Technology
(ETH), February 2006.

16. E. Wilde. Towards conceptual modeling for XML. In Proceedings of the Berliner
XML Tage 2005 (BXML2005), pages 213–224, Berlin, Germany, September 2005.


