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1 Introduction

Software development is a complex and difficult task that requires the in-
vestment of significant resources and carries major risk of failure. According
to its proponents, model-driven (MD) software development approaches are
improving the way we build software. Model-driven approaches putatively
increase developer productivity, decrease the cost (in time and money) of
software construction, improve software reusability, and make software more
maintainable. Likewise, model-driven techniques promise to aid in the early
detection of defects such as design flaws, omissions, and misunderstandings
between clients and developers. The promises of MD are rather lofty, and so
it is only natural to find many skeptics.

As Brooks famously described [Bro95], software engineering will not likely
deliver the sort of productivity gains we experience in hardware engineering
where we see “Moore’s law”-styled doublings every 24 months [Moo10]. Thus,
if we accept Brooks’ premise, nobody should expect any innovative approach
to software development to be a “magical silver bullet” that will increase
productivity by an order of magnitude within a decade. Unfortunately, the
amount of hyperbole surrounding the various flavors of MD sometimes makes
it seem like advocates believe MD to be a silver bullet. Model-driven devel-
opment is no panacea. However, we believe that model-driven is a superior
approach to software construction. This chapter examines the current state
of the art in model-driven software development.

We begin by characterizing the various approaches to model-driven devel-
opment (Section 2). Then we examine what modeling is and why we engage
in modeling (Section 3). Next, we explore the history of software modeling
that has led to current model-driven approaches and discuss what is required
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to make our models formal and executable (Section 4). With this background
laid out, we explore the details of various model-driven approaches to soft-
ware development. We commence with a reference model (Section 5) and
then examine MDA (Section 6), giving special attention to the Executable
UML variant of MDA (Section 6.3). In Section 7 we describe the OO-Method
approach to MD and the comprehensive OlivaNova tool that implements this
approach. We next explore MD in the context of web engineering (Section 8)
and then examine the argument for an agile approach to MD (Section 9).
We conclude by summarizing available tools, arguments for and against, and
directions for future research (Section 10).

2 Overview of Model-Driven Approaches

There are numerous ideas that come under the umbrella of model-driven
approaches. We take an expansive view of what “model-driven” means. Model-
driven engineering (MDE) and model-driven development (MDD) are generic
terms describing an approach where we represent systems as models that
conform to metamodels, and we use model transformations to manipulate
the various representations (see, for example, [Ken02, Bro04, Béz05, Oli05]).
We use the terms MDD and MDE interchangeably.

Although the phrase “model-driven” has been used for decades with re-
spect to software development, one of the earliest mentions of a “model-driven
approach” comes from the work done by Embley et al. on Object-oriented Sys-
tems Modeling (OSM) (see [EKW92]; the book’s subtitle is “A Model-Driven
Approach”). Object-oriented methodologies were a topic of lively discussion
in the early 1990’s, and OSM eschewed any specific software process method-
ology in favor of letting model creation drive the development process. This is
analogous to the idea of maps and directions: when someone needs help driv-
ing to an unfamiliar destination, we can either give turn-by-turn instructions
on how to drive from their current location, or we can give them the address
of the destination and let them use their own map to determine a route. If
the path is relatively straightforward and there are no unexpected delays or
impediments along the way, the instructions approach may be superior. But
when exceptions occur, the map approach may be superior. In practice, a
hybrid approach often gives the best of both worlds: expert guidance based
on local knowledge can help travelers avoid common pitfalls, but their ability
to read maps provides an improved mental model of the travel process, and
makes them more resilient in the face of unexpected challenges. By taking a
model-driven approach to software development, OSM focuses developers on
creating models as central artifacts of interest, and remains independent of,
and neutral with respect to, any particular software process methodology.

A notable MDD initiative is the Object Management Group (OMG)
Model Driven Architecture (MDA) [SG03, ME01, ME03]. MDA can be
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viewed as an instance of MDD where the core standards and tools are the
OMG standards—Unified Modeling Language (UML), MetaObject Facility
(MOF), XML Metadata Interchange (XMI), and the Common Warehouse
Metamodel (CWM). Because OMG is an influential industry consortium,
MDA has gathered considerable attention. However, just as UML is not the
only object-oriented modeling language, so also MDA is not the only model-
driven approach. There are numerous non-MDA initiatives—commercial and
academic—that continue to advance the state of the art in MDD.

Metaprogramming, where a program manipulates itself or another pro-
gram, often leads to forms of programming that are arguably model-driven,
or at least model-based. One class of metapgrogramming, template-based
generic programming, starts with a modeling process to create a template
from which programs can be generated. The related field of domain-specific
languages is also inherently a model-based approach. A domain-specific lan-
guage, in contrast with a general-purpose programming language, models as-
pects of a particular problem domain and provides special-purpose constructs
tailored to the needs of that domain.

Similarly, in the field of modeling, domain-specific modeling (DSM) uses a
modeling language customized to a particular domain to represent systems,
and often includes the ability to generate code for corresponding software
systems. CASE tools are forerunners of DSM languages and tools, but they
are not the same. A CASE tool is created by a vendor to address a class of
software engineering problems, whereas DSM tools let clients create custom
domain-specific models and generate code using models and concepts that
are specific to the client’s particular needs.

Another closely related area is generative programming, which seeks to
model families of software systems so that they can be created assembly-line
style; the central idea is to generate code for each of the desired systems in an
automated way from a generative domain model [CE00]. Many researchers
have seen a need to industrialize software production. The software factories
work gives an excellent description of this perspective [GS03, GS04]. Research
in software architecture has demonstrated that we can increase productivity
by developing families of software systems as a product line rather than as
one-off creations [CE00, CN01].

MD is also a potential solution to the problem of integrating inherently
heterogeneous systems whose development requires the multi-disciplinary tal-
ents of workers who are experts in widely differing domains [SK97]. Consider,
for example, the software required in a modern automobile. Physical control
systems may manage the engine, brakes, and passenger-restraint systems in a
mostly automatic and hidden manner, while an in-dash touch-driven display
may give access to a more traditional information system that offers satellite
navigation and mapping features, media playback, and the viewing of statisti-
cal information. The field of model-integrated computing [SK97, Szt01, Spr04]
brings MD techniques to the problem of engineering these types of systems.
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As models become increasingly important, so too does the management
of models and particularly of transformations or mappings between models.
Research on generic model management addresses techniques for treating
models and mappings as first-class objects that have high-level operations
to simplify their management [BHP00]. The Rondo project provides a work-
ing prototype of a programming platform for generic model management
[MRB03, Mel04].

If a model is a representation of a system, then in some sense, program-
ming in any language involves some kind of model. A C++ programmer
thinks about the subject domain in terms of C++ classes and instances.
A SQL programmer views the subject domain through the lens of tables
that have rows and typed columns. Whether we explicitly create artifacts
we call models—especially conceptual models—or whether we implicitly map
between our internal mental models of the world and the systems we produce,
we are nonetheless involved in a modeling process as we construct software.
And so MD is more about raising the level of abstraction of our programming
models rather than introducing models into the process in the first place.1

Indeed, as Brown points out [Bro04], there is a spectrum of modeling
from code-only solutions to model-only solutions (see Figure 1). As we have
argued, even in the code-only scenario, developers still create mental models
and informal models, but the system representation is entirely in the code.
In the second scenario, the developer uses models primarily as a means for
visualizing the code; a reverse engineering tool reads the code and displays a
corresponding model view of what is captured in the code. In the roundtrip
engineering scenario, a tool maintains tight correspondence between model
and code; changes made to the code are immediately reflected in the model
and vice versa. In the model programming scenario, the model is the code, and
the lower level of code is simply generated and compiled behind the scenes;
all changes to the system happen at the model level2 (see Chapter 0 for a
detailed discussion of conceptual model programming). The final scenario is
what happens when either we model without creating an operational system,
or we develop models that are never formally tied to the operational system;
perhaps we start by creating an ER diagram to generate an initial database
schema, but then we evolve the schema independently of the model so that
they become disconnected. We view the roundtrip engineering and model
programming scenarios as model-driven, while the others are at best model-
based or model-aware.

1 Our argument is a special case of the assertion in [Béz05] that “[m]odeling is essential to
human activity because every action is preceded by the construction (implicit or explicit)

of a model” (emphasis added).
2 This is analogous to compiling a FORTRAN program by translating it to assembly

language, which is then assembled and linked. The assembler version is to “code” as the
FORTRAN version is to “model”.
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Fig. 1 The Modeling Spectrum (adapted from [Bro04]).

3 Modeling

To understand model-driven software development, it is helpful to review
some background on models and modeling. What is a model, and why do we
as humans and as software developers build models?

The term model is heavily overloaded. A model may be “a set of designs ...
for a projected building or other structure,” or “a three-dimensional repre-
sentation” of such a building or structure [OED]. In the mathematical logic
sense, a model is a “set of entities that satisfies all the formulae of a given
formal or axiomatic system” [OED]. Within software development, we also
overload the term. In this chapter, when we say “model” without an adjective
we mean a diagram or model instance that conforms to a particular modeling
language.

Models come in many forms. Three useful categories of models include
graphical, mathematical, and textual. A graphical model is a two-dimensional
diagram that graphically depicts concepts using a combination of lines,
shapes, symbols, and (usually) some text (e.g., an ER diagram). A mathe-
matical model describes some aspect of a system as a formula (e.g., A = πr2

is a model for the area of a circle). A textual model describes a portion of a
system using narrative and prose (e.g., we can view a “scenario” description
as a textual model of a process).

No matter the particular form, common to all models is that they represent
some aspect of a system that the modeler is studying or creating [Sei03]. To
be useful, such a representation abstracts (separates or summarizes) some
aspect of the underlying system. Abstractions are helpful because they let
us focus on specific aspects of a system without needing to simultaneously
consider the complexity of the full system.
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Implicit in our definition of “model” is the fact that it is a written artifact.
As humans we form abstractions of the world around us—we classify, gen-
eralize, associate, and otherwise construct purely mental models. It is in the
writing down of our models that we make it possible to share, discuss, revise,
and implement software systems that conform to those models [Bro04].

Software engineers create models for many of the same reasons architects
and engineers create blueprints and 3D miniatures:

• Models help us communicate more effectively with the many stakeholders
who need to participate in the software development process. For example,
a client usually finds it easier to understand a graphical class diagram
than, say, C++ source code. Improved communication leads to increased
understanding, more reasonable expectations, and a better overall work
product.

• Models let us visualize the finished product without requiring its full con-
struction first. By examining the model we can discover design flaws that
are far less expensive to resolve up-front rather than after construction
has begun (or worse, been completed). In the same way a 3D model of
an automobile can be examined in a wind tunnel to tune its aerodynamic
performance, a model of a graphical user interface can be placed in front
of typical users early on to test usability characteristics.

• Models constitute precise specifications of work to be done. They pro-
vide an accurate roadmap of the work, thus allowing project managers to
estimate, schedule, and otherwise plan the construction phase.

The value of models and abstractions in software is substantial, as the his-
tory of programming languages and operating systems demonstrates [Mah04].
The history of computing is a study in layers of abstraction. Programming
progressed from hard-wired computers to stored-program machines, to assem-
bly languages, to high-level languages, CASE tools, object-oriented systems,
and domain-specific languages. Operating systems were introduced to manage
the complexities of interfacing with the hardware. “Device drivers” abstracted
out the challenges of interfacing to storage devices, printers, and other pe-
ripherals so developers could concentrate on application development, not
low-level hardware control. The abstraction of “processes” introduced multi-
tasking in a way that allowed software developers to avoid dealing with most
of the associated complexity. Each step in the evolution of programming lan-
guages and operating systems has introduced higher level abstractions into
our tools.

Programmers today commonly think in terms of software objects rather
than 0’s and 1’s stored in a particular location. Software developers can focus
on the application domain much more readily because the abstractions they
use to build their products are conceptually much closer to that application
domain. Today’s programmers often develop to highly virtualized platforms—
whether it be a Java virtual machine or a web-browser environment that uses
HTML, CSS, and JavaScript. And not coincidentally, software development
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today is also a study in reuse. Developers commonly leverage large libraries—
both built-in and external—in their software projects. An underlying reason
for these improvements in the state of software development is that models
and abstractions have improved significantly over the years.

4 Software Modeling

Since modeling in general has so many uses and benefits, we should expect
modeling to be a major research topic in computing, and indeed this is the
case. The decade of the 1970’s saw the development of formal approaches
to data modeling. Abrial [Abr74] and Senko [Sen75], among others, explored
binary relationships as an abstraction for data modeling. Falkenberg built
on this work and developed the “object-role model” (ORM) framework that
used n-ary relationships as a fundamental data modeling construct [Fal76].
Meanwhile, Chen proposed the highly successful Entity-Relationship (ER)
model [Che76] that has become nearly synonymous with database design.
Tsichritzis and Lochovski [TL82] and Brodie [BMS84] describe much of the
early work on data models and conceptual modeling well.

During the 1980’s, researchers studied how to improve data models and
experimented with so-called semantic data models that introduced addi-
tional constructs with more semantic richness than the earlier, simpler models
[TYF86, HK91, PM88]. Richer constructs came with more complex notation,
and the results were not always an improvement over the simpler predecessor
data models.3 However, research on semantic data models gave way to work
on object-oriented (OO) models [SM88, Boo91, RBP+91, EKW92], which
researchers debated hotly in the early-to-mid 1990’s.

The so-called OO method wars led to the proposal of a unified OO model,
and the Unified Modeling Language (UML) emerged in 1995 (as the Unified
Method version 0.8) and was subsequently standardized by OMG. The latest
version, UML 2.2 [UML09b], defines fourteen different diagram types (see
Figure 2), including seven that are structural and seven that are behavioral in
nature. As with the work on semantic data models, researchers often criticize
UML for its complexity, among other complaints [Tho04, HS05, FGDTS06,
Küh08, SS09]. However, UML has become not quite universal, but perhaps
ubiquitous, in spite of the criticisms.

Where modeling has worked especially well is in the design of database
schemas. From an ER or OO schema, it is straightforward to generate a corre-
sponding normalized relational database schema. Many practitioners equate
conceptual modeling with database design because the early conceptual mod-
els only addressed structural aspects of information systems. ER and ORM,
for example, do not attempt to model behavior.

3 Bolchini and Garzotto discovered this in the domain of MDWE as well [BG08]; see

Section 8.
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Fig. 2 UML 2.2 Diagram Types (Structural and Behavioral).

In contrast, the OO models have been especially helpful in capturing be-
havioral aspects of systems. Note that fully half of the diagram types in
UML 2.2 address these behavioral aspects (see Figure 2). Generally, the OO
paradigm describes behavior in terms of the lifecycles of objects (often rep-
resented as a state machine) and their interactions with other objects.

When we include system behavior in the model, it becomes possible to
generate more than just the system schema from the model; thus we can gen-
erate source code for the system, whether in the form of code skeletons, or in
the form of fully operational code that compiles into a deployable application.

If we make the behavioral model formal, then it becomes executable. OSM
is an example of a modeling language that supports the creation of fully exe-
cutable models [Lid95, LEW95]. The OSM metamodel is itself expressed for-
mally in OSM [EKW92, Cly93, Lid95, Emb98]. Given a formal metamodel,
it is a straightforward process to interpret any particular model instance for-
mally. OSM model instances can be executed simulation-style in a prototyp-
ing tool [JEW95] or translated automatically to a model-equivalent language
and executed directly [Lid95].

Many other researchers have also advocated software development ap-
proaches that begin with executable models. Notable examples include the
work of (1) Harel et al. on the Statecharts, STATEMATE, and Rhap-
sody research line [Har87, HG97, HP98, Har01, GHP02, Har09], (2) Pas-
tor et al. on the OASIS, OO-Method, and OlivaNova group of projects
[PHB92, PM07, PEPA08], and (3) Mellor et al. on the Executable UML
line of research [MB02, WKC+03, MSUW04, RFW+04]. We address these in
subsequent sections of this chapter.
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Fig. 3 Banking Example Object-Relationship Model Instance.

What is different about executable conceptual models is that they include
behavior and interaction, not just structural components. Furthermore, ex-
ecutable models generally must conform to a precisely, formally specified
metamodel so that the model semantics are clear. We explore this concept
further by introducing OSM as a reference model.

5 OSM: Making Conceptual Models Formal and
Executable

Object-oriented Systems Modeling (OSM) views the software development
process as a set of activities with different concerns: analysis, specification,
design, implementation, and evolution [EKW92, EJLW94, Lid95, Emb98].
The OSM philosophy is that all these activities should share a single core
conceptual modeling language, and shifts in lifecycle phases merely consti-
tute shifts in perspective. Analysis is the study of system, which can be
existing or planned; typical analysis-phase activities center around gathering
and documenting information regarding user requirements and current sys-
tem characteristics. Implementation, on the other hand, involves creating a
running system that delivers required functions. In OSM, a single core model
serves as the basis for all development activities.

OSM has three major views (diagram types in UML parlance) for describ-
ing object and relationship structure, behavior, and interaction, but all three
can be combined in a single seamless model. Figures 3 through 6 give an
example. Figure 3 shows a simple object-relationship model instance for the
banking domain. Figure 4 shows a simple state net that describes at a high
level the behavior of Account objects. Figure 5 shows how customers and
banks can interact. Figure 6 shows all three views in a single diagram.

OSM notation is fairly consistent with other object-oriented modeling lan-
guages. Rectangles represent object sets and lines represent relationship sets.
Lexical object sets may either have a dashed border or (as Figure 3 shows)
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Fig. 4 Banking Example Object Behavior Model Instance (State Net).
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Fig. 5 Banking Example Object Interaction Model Instance.

no border at all. Min:max numbers near a relationship-set connection indi-
cate participation constraints (e.g., 0:4 near account means that an account
can be associated with at most four customers). Names and reading arrows
indicate relationship-set names (e.g., Bank manages Account and Customer
owns Account are the two explicit relationship-set names in Figure 3). Ar-
row heads on relationship-set lines indicate functional relationships (e.g., a
person has exactly one name and birth date; an account has exactly one ac-
count number and vice versa), while no decoration on the line together with
no participation constraint indicates no limit on the number of associations
(we can also write this as the participation constraint 0:* ). An open triangle
represents generalization/specialization (e.g., customer is a person).

A state net (see Figure 4) describes the behavior of an object—its lifecycle
from creation to destruction. We write states as rounded rectangles (e.g.,
Open and Closed), and transitions as divided rectangles with a transition
trigger written in the upper portion, and an action written in the lower
portion of the transition rectangle. A trigger is a boolean expression, and
an “@” sign on a trigger indicates the occurrence of an event. When the
prior state(s) for a transition are all on, we say that the transition is enabled,
and it can fire when the trigger is true. When a transition fires, it (1) turns
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Fig. 7 Collapsed High-level View Corresponding to a Portion of Figure 6.

off prior states, (2) executes the transition action (if any), and (3) turns
on any subsequent states. Arrows between states and transitions identify
prior and subsequent states, and indicate flow of control. When the tail of
an arrow leaving a state has a half circle slightly separated from the state,
this indicates that the state is not turned off when the transition fires (i.e.,
a new, concurrent thread of control can begin when the transition fires).
For example, when a balance inquiry transition executes, the corresponding
account still remains in the Open state, and the Give the balance action
executes on its own thread. A transition with no prior states indicates an
initial transition that creates an object, while a transition with no subsequent
states indicates a final transition that destroys an object. Initial and final
transitions may be written as vertical bars as in Figure 4.

An object interaction model instance documents communication or in-
teraction between objects, as Figure 5 shows. In this example, banks mail
statements to customers and customers request account balances from banks.
When a customer requests an account balance, he or she also indicates the
corresponding account number. An arrow with a lightning-bolt symbol at the
center of a circle indicates an interaction; the tail of the arrow indicates the
interaction origin, while the head indicates the destination.

Figure 6 shows a unified version of Figures 3 through 5. The primary
difference is that in Figure 6 we have represented Account as a high-level
object set with Account Number, Balance, and two relationship sets nested
inside. OSM has fully-reified high-level constructs, meaning that high-level
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Fig. 8 OSM Three-Tier Seamless Model.

object sets, relationship sets, states, transitions, and interactions are first-
class elements that can be treated just like their non-high-level forms. High-
level components are helpful for organizing a model and displaying simplified
views (see Figure 7, for example).

OSM has a number of features that make it well suited to model execu-
tion. As we observed earlier, OSM has a precise formal foundation; notably,
the OSM metamodel is itself expressed in OSM and translates directly to
first-order predicate calculus [EKW92, Emb98]. Figure 8 shows the layers of
OSM’s modeling hierarchy. The metamodel (level M2) contains constructs
such as Object Set, Relationship Set, State, and Transition. The model in-
stance (level M1) contains domain constructs, such as Bank, Customer, and
Account in our running example. The data instance (level M0), contains ob-
jects and relationships such as particular accounts, their balances, customers,
and relationships among these objects. This three-tier model is seamless be-
cause a single underlying formalism expresses them all, and elements at one
level are directly connected by is-a relationships with elements at the next
level (Account 1 and Account 2 are instances of Account, and Account is
an instance of Object Set). Constraints and expressions in OSM can refer
to elements within any of the three levels as needed. Furthermore, OSM is
computationally complete [Lid95], and so can directly model any algorithm
or data structure.

Additionally, OSM embraces a concept called tunable formalism [CEW92],
allowing users to work at levels ranging from informal to mathematically
rigorous. Formal models generally do not provide enough expressiveness or
allow the varying levels of detail and completion that practioners need to
build real systems. On the other hand, model execution cannot be built on
informal models. Because of OSM’s precise formal foundation, we can inter-
pret any model instance uniformly both at a summary level and at a detailed
level. For example, the model instance in Figure 7 has a completely con-
sistent formal interpretation regardless of whether we include or ignore the
details nested within the high-level Account object set. Similarly, triggers
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associated with transitions could be written in a natural language at first.
In this form the statements are merely incomplete w.r.t. model execution:
they represent propositional statements whose truth cannot be computed
automatically. If we desire automatic computation (as opposed to consulting
an external oracle), we simply replace the incomplete statements with an
executable refinement.

For example, the natural-language action description Give the balance in
Figure 6 could be refined to an executable construction by specifying for
the interaction a return parameter named balance and then replacing the
natural-language phrase with the statement balance := self.Balance. The
right-hand side of the assignment statement is a query that finds the Balance
object associated with the current Account object. Assigning that object to
the return parameter completes the action.

OSM has a rapid prototyping tool, IPOST, that allows developers to be-
gin with an analysis-oriented model instance, and then gradually refine it
with formal expressions for the various triggers and actions [JEW95]. Using
IPOST, a developer can initially populate a model instance with objects and
relationships, and then as the system executes, the developer can successively
refine it. IPOST automatically generates graphical dialogs to simulate inter-
actions and the firing of transitions. IPOST can simulate the model instance
in Figure 7, but it must ask the user (the external oracle) to interpret the
effect of the natural-language expression Give the balance, whereas we can
directly execute the statement balance := self.Balance automatically.

OSM was designed to address the poor integration of OO systems across
several dimensions, including the following:

1. the software development lifecycle and the models, languages, and tools
used to develop software;

2. the so-called impedance mismatches between the semantics of persistent
objects and behavioral protocols for objects, between declarative and im-
perative programming paradigms, and between visual and textual styles
of programming; and

3. the reification of abstract objects, particularly meta-information and high-
level abstractions of low-level modeling components.

OSM addresses the lifecycle issues by using a single modeling and de-
velopment environment for all activities; changes in development phases or
activities are merely shifts in perspective for OSM. Furthermore, the concept
of model-equivalent language addresses the impedance mismatch issues. In
essence, a language L is model-equivalent with respect to a model M if each
progam written in L has a corresponding model instance M whose seman-
tics are one-to-one with the program, and vice versa [LEW95, LEW00]. The
executable statement described above is written in OSM’s model-equivalent
language, OSM-L. Using OSM-L, programming becomes just a shift in per-
spective to focus on efficient algorithms and structures. A “program” is just
an alternative view of a “model”, and it is easy to iterate rapidly from one
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version of the system to another. Also, given OSM’s first-class, fully-reified
abstract elements (high-level object sets, relationship sets, states, transitions,
and interactions), OSM provides the considerable expressiveness and flexi-
bility needed for MDD. OSM does not have high-quality commercial tool
support, but it does serve as a complete reference model for MDD.

6 Model-Driven Architecture (MDA)

We now give an overview of MDA (Section 6.1), discuss the MDA Manifesto
(Section 6.2), describe Executable UML (Section 6.3), and point to further
MDA readings (Section 6.4).

6.1 MDA Overview

The Object Management Group (OMG) is an industry consortium estab-
lished in 1989 with the goal of defining standards for interoperability for
distributed object systems. Their initial effort revolved around the Common
Object Request Broker Architecture (CORBA) middleware standard. Their
next major standard was the Unified Modeling Language (UML), adopted as
a standard at UML version 1.1, in 1997. Following adoption of the UML stan-
dard, OMG began to work on its model-driven architecture initiative. OMG
adopted the Model Driven Architecture (MDA) standard in 2001 [OMG].
In a nutshell, MDA is model-driven development that uses the core OMG
standards (UML, MOF, XMI, CWM).

The three primary goals of MDA are (1) portability, (2) interoperability,
and (3) reusability, and the key abstraction for delivering on these goals is
“architectural separation of concerns” [ME03].

MDA describes three main layers of architectural abstraction, called view-
points: computation independent, platform independent, and platform spe-
cific. As Figure 9 shows, MDA describes systems using models that corre-
spond to the three viewpoints. A computation independent model (CIM) de-
scribes a system environment and its requirements using terminology that is
familiar to practitioners in the system domain. A platform independent model
(PIM) describes a system’s structure and functions formally, and yet without
specifying platform-specific implementation details. At the lowest level of the
MDA architecture, a platform specific model (PSM) includes details that are
important to the implementation of a system on a given platform. By plat-
form, MDA means a cohesive set of subsystems and technologies on which a
system can execute (such as Sun’s Java EE or Microsoft’s .NET platforms,
for example).
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Fig. 9 MDA Architectural Layers and Model Transformations.

As Figure 9 suggests, model mappings or transformations are a key aspect
of MDA. Each arrow in Figure 9 represents a transformation from one model
to another. Mappings happen at many levels and for many purposes, and
MDA does not try to specify precisely how mappings can occur, but a key
aspect of MDA transformations is that each mapping may involve the addi-
tion of information external to the source model. For example, when mapping
from a PIM to a PSM that targets the Java EE platform, the transformation
would likely need to combine a sizeable Java EE model that includes formal
descriptions of various Java EE abstractions—such as messaging and storage
frameworks—with the PIM to generate Java code that implements the PIM
abstractions within the Java EE framework. The resulting PSM could then
be compiled, deployed, and executed on a Java virtual machine.

Transformations are not merely one way, CIM-to-PIM and PIM-to-PSM.
There are mappings between models up and down as Figure 9 suggests. CIM-
to-CIM or PIM-to-PIM mappings represent model refinements, such as the
transformation that occurs when moving from an analysis phase into a design
phase [ME01]. A PSM-to-PSM transformation may be required in order to
configure and package the elements of a PSM for deployment to the desired
target environment. A PSM-to-PIM transformation may be required when
refactoring or reverse-engineering a system.

MDA does not expect that there will be only one CIM, one PIM, and one
PSM for any given system. Each model only captures a single view of the
system, and a complete system may consist of many CIM’s and PIM’s. One
of the main benefits of taking a model-driven approach is that the implemen-
tation step, PIM-to-PSM transformation, can presumably be done relatively
easily for multiple platforms. Thus, there may be many PSM’s corresponding
to each of the target platforms.
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The MDA Guide discusses a wide variety of transformation types, tech-
niques, and patterns [ME03]. As with MDD in general, the concept of model
transformations is central to the MDA philosophy.

Also central to the MDA philosophy is the role of modeling layers and
metamodels. Figure 10 illustrates some important MDA dimensions. UML,
and hence MDA, has four modeling layers:

M3: The meta-metamodel layer; describes concepts that appear in the
metamodel, such as Class. For UML, MOF describes the M3 layer.

M2: The metamodel layer; describes concepts that make up a modeling
language; examples include the UML metamodel, the Executable UML
profile, and a domain-specific metamodel created and customized for a
particular company or industry segment.

M1: The user model or model instance layer; class diagrams, statecharts,
and other such artifacts are M1-layer elements.

M0: The data instance layer; objects, records, data, and related artifacts
exist at this level.

In contrast, recall that OSM has three modeling layers because the OSM
metamodel is itself defined using OSM, and thus the M2 and M3 layers col-
lapse for OSM. Regardless of the specific structure, a formal metamodel is
vital to MDD.

As Figure 10 suggests, an MDA process may use any of a number of dif-
ferent UML profiles or domain-specific metamodels, rather than using UML
exclusively for all modeling activities. While developers usually produce UML
diagrams using UML or UML profiles, it is also possible to create an MDA
process that uses a MOF-conforming domain-specific metamodel to then per-
form domain-specific modeling tasks within the MDA framework.
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Fig. 11 Basic Tenets of the MDA Manifesto (adapted from [BBI+04]).

6.2 An MDA Manifesto

In 2004, proponents of and major contributors to the MDA initiative working
at IBM Rational Software published an “MDA Manifesto” describing the
tenets that motivate MDA [BBI+04]. Figure 11 illustrates the three basic
tenets of the MDA Manifesto: (1) direct representation, (2) automation, and
(3) open standards. We summarize each of these in turn.

The principle of direct representation expresses a desire to shift the focus
of software development away from the technology domain and toward the
concepts and terminology of the problem domain. The goal is to represent a
solution as directly as possible in terms of the problem domain. The expecta-
tion is that this will lead to more accurate designs, improved communication
between various participants in the system development process, and overall
increased productivity.

The principle of automation endorses the concept of using machines to per-
form rote tasks that require no human ingenuity, freeing software developers
to focus on creative problem-solving work. Just as database developers today
give little thought to the implementation of B-trees, so too should MDA de-
velopers be able to ignore technological aspects of graphical interfaces, web
services, or any of a hundred other elements of an underlying technology
platform. It may be nice to know that a database index is implemented us-
ing a B-tree or that a particular communication link is implemented via a
WSDL/SOAP web service, but dealing directly with the underlying imple-
mentation is not productive per se; it is the solving of business problems that
creates value and thus constitutes productivity.

Building on open standards is important not only because standards pro-
mote reuse, but also because they cultivate the building of an ecosystem of
tool vendors addressing the various needs of MDA. Since MDA has such a
large vision, it is difficult—perhaps impossible—for a single vendor to provide
everything that is required to carry out the vision. According to the manifesto
authors, a successful ecosystem requires a few large vendors who can develop
comprehensive tools, along with many medium-sized vendors and hundreds
of small niche vendors. In order to attract such vendors, the ecosystem must
provide standards that form the basis for solid interoperability. This turns
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out to be one of the points of criticism of MDA, i.e., that vendors have im-
plemented MDA in such a way that even though they conform to the UML
and XMI standards, their products are still not interoperable. The mani-
festo authors point out that this was a downfall of the CASE industry of the
1980’s—vendors trying to “go it alone” [BBI+04, FP04].

The manifesto authors describe the MDA ecosystem as a gradually evolv-
ing framework that will improve over time. Indeed, it is clear that an enor-
mous amount of energy has been invested in MDA by a number of vendors,
researchers, and practitioners over the years. Much of that work is available
as open source, such as the Eclipse Modeling Framework (EMF), which inte-
grates with the popular open source Eclipse IDE [Ecl]. An ecosystem of MDA
vendors does exist; what remains to be seen is how effective that ecosystem
will be over time.

In a more recent follow-up to the MDA manifesto, one of the authors
observes that the slow pace of MDA adoption is the result of challenges in
three general areas: (1) technical hurdles such as complex tools, vendor lock-
in, and lack of a sound theory of MDD, (2) cultural hurdles such as insufficient
practitioner awareness of MDD benefits and enormous inertia for alternative
software development tools and techniques, and (3) economic hurdles such as
the long-term nature of payback for an investment in MDD. Selic concludes
that the way forward for MDA may lie in the areas of education, research,
and standardization [Sel08].

6.3 Executable UML

One of the most concrete instances of MDA is Executable UML (xUML,
also sometimes labeled xtUML for Executable/Translatable UML) [MB02,
WKC+03, RFW+04]. The main idea of Executable UML is to define a UML
profile that specifies a well-defined subset of UML that includes a precise ac-
tion semantics language (ASL) [WKC+03] that can be used in the procedures
associated with states in a model’s statechart diagrams. When developers use
ASL to specify the underlying state procedures, we can directly compile and
execute the full xUML model.

Figure 12 shows a portion of an xUML class diagram. Observe that we
associate role names and multiplicity constraints with each association con-
nection. In xUML it is also conventional to name each association with a
simple label of the form Rn so it is easy to refer to associations uniquely.
In our example, R1 refers to the association Bank manages Account (or Ac-
count is managed by Bank), while R2 refers to the Customer owns Account
association. Attributes may have an associated tag as shorthand for an OCL
uniqueness constraint. In Figure 12, for example, id on Bank and Account,
and email on Customer have the tag {I}, which indicates that each corre-
sponding attribute must have a unique value within its class. Additionally,
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Fig. 12 Executable UML Class Diagram Example.

the tag {I2} on accountNumber indicates that it also must be unique within
Account.

Figure 13 illustrates a small portion of a typical xUML statechart dia-
gram for our running banking example. Notice that the state procedures are
all written as formal action-language statements that are straightforward to
compile into an executable system. As Figure 13 shows, when an account is
created it receives an openAccount event with two parameters: a customer
who will own the new account, and an initial balance. After connecting itself
to the given customer, the account initializes its balance to the given amount
and sends itself a ready signal, which causes the account to advance to the
second state, Waiting for Activity. In this state, when a depositOrWithdraw
event occurs, the account updates its balance by the given amount and gen-
erates a done signal, which causes the account to return to the Waiting for
Activity state.

As with OSM, it is possible to represent xUML model instances at vary-
ing degrees of completion [CEW92]. For example, Figure 13 shows compil-
able statements in each of the state procedures. However, it is typical in the
first version of an xUML statechart to write the procedures informally, as
natural-language statements. These can easily be encoded as comments in an
action language (e.g., the comment //Connect new account with customer in
Figure 13). For initial stages of work, it is sufficient to capture this sort of
behavior requirement informally; in later stages developers refine the model
to the point that all requirements are expressed formally. Significantly, even
in the early stages when the model is incomplete, it is still possible to simu-
late the system as far as it is specified. This ability makes it possible to apply
agile software development principles to Executable UML [MB02, MSUW04].

Since ASL looks so much like ordinary programming, how can Executable
UML really claim any advantage over an ordinary high-level language like
C# or Java? The answer may seem subtle, but it is key to understanding
the benefit of model execution: ordinary code links computation inextricably
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Fig. 13 Executable UML Statechart Diagram Example.

with data structure, while action models and languages separate the two.
As Mellor explains (see [MSUW04], p. 95), a common way to find the sum
of the last ten transactions is to loop through the transaction history data
structure and accumulate the sum with each loop iteration. The action se-
mantics approach to this problem is to divide the problem into (1) retrieving
the last ten transaction amounts, and (2) computing their sum. In this way,
with action semantics it is possible to change the underlying data structure
without affecting the algorithm. This is a key benefit to a model-driven ap-
proach: by separating data structures cleanly from algorithms, at translation
(or compile) time we can choose different underlying data structures with-
out impacting the algorithmic specifications. Algorithms written according
to action semantics are thus written at a higher level of abstraction.

Several tools that support Executable UML include BridgePoint by Men-
tor Graphics [Bri], iUML by Kennedy-Carter [iUM], and Kavanagh Consul-
tancy’s OOA Tool [OOA] (which as of this writing could be downloaded at
no charge, but only includes a model editor and not a model compiler).

Executable UML succeeds by narrowing the UML concepts it supports
and by focusing on real-time embedded applications. While it is possible to
do general-purpose modeling and development with xUML, it excels with
applications that have rich and interesting object behavior lifecycles, which
is typical in real-time embedded systems.
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6.4 MDA Readings

There is a large body of literature that describes MDA. In addition to the
OMG publications [OMG, SG03, ME01, ME03], there are a number of helpful
books. Kleppe et al. [KWB03] discuss MDA and walk through an extended
example of how it actually works. Frankel [Fra03] provides a thorough dis-
cussion of strengths and weaknesses of MDA, and especially pays attention
to enterprise-scale issues. Mellor et al. [MSUW04] give a concise and clear
guide to MDA, and advocate an agile approach to MDA that leverages the
strengths of model execution. Nolan et al. [NBB+08] describe MDA from the
perspective of the IBM Rational software group that has invested a signifi-
cant amount of energy in the MDA initiative, including creating commercial
tools and software development methodologies around MDA and related stan-
dards. Stahl et al. [SVC06] give comprehensive practical guidance. Olivé gives
a useful presentation of the underlying concepts, theory, and formalisms of
UML and MDA, along with a practical case study [Oli07].

In The MDA Journal [FP04], Frankel and Parodi capture the lively debate
from a number of blog columns originally published on the BP Trends web
site that elucidate the discussion of general-purpose versus domain-specific
approaches to MDD and respond to various other criticisms of MDA. This
book also contains the MDA manifesto [BBI+04].

Chapter 4 of [GDD06] gives a nice overview of MDA, paying special atten-
tion to metamodeling, UML profiles, and model interchange via XMI. Chap-
ter 16 of [DW05] gives a good discussion of what it means to be platform
independent and offers criticisms of UML and MDA.

Brown et al. have written several excellent summaries of MDA, issues
surrounding MDD in general, and the IBM Rational tools that support MDA
[Bro04, BIJ06, Bro08]. Also see [BBG05], which includes two of Brown’s
MDA papers [BCT05a, BCT05b]. Meservy and Fenstermacher give a concise
summary and analysis of MDA [MF05]. Uhl [Uhl08] deals with practicalities
of implementing MDD in general at the enterprise level.

A 2003 issue of IEEE Software provides a number of helpful articles on
MDD and MDA [MCF03]. Selic identifies a number of pragmatic issues sur-
rounding MDD and discusses how tool vendors are addressing them [Sel03].
Seidewitz explores what models mean, and gives a thorough discussion of
how we use models and metamodels [Sei03]. Atkinson and Kühne describe
the linguistic and ontological dimensions of MDA-style metamodeling and
explain how the second version of MDA improves its clarity with respect
to these dimensions [AK03]. Sendall and Kozaczynski describe various kinds
of model transformations and call for an executable model transformation
language [SK03] (see [Mel04]). Kulkarni and Reddy propose “template ab-
straction” as a means for separating concerns at the model and code levels
for improved reuse and system evolution. Finally, Uhl and Ambler engage in
a point/counterpoint debate over whether MDA is “ready for prime time”,
with Uhl claiming it is and Ambler expressing skepticism and asserting that
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agile MDD is a better approach [Uhl03, Amb03]. Similarly, a 2008 issue of
the UPGRADE journal provides a number of helpful MDA and MDD articles
[BVMGMR08].

Finally, Milicev’s work [Mil09] is really about an executable UML, not
Mellor’s Executable UML. Milicev links Java, OQL, and other PSM-specific
elements into an end-to-end approach to MDD. It is comprehensive, but more
platform-specific than most approaches.

7 OO-Method

A significant MDD initiative is OO-Method [PM07] and its realization as
the OlivaNova tool suite [CAR]. OO-Method builds on the OASIS formal
specification language, which is based on dynamic logic and process algebra
[PHB92] and supports precise specification of modeling constructs, or concep-
tual patterns. OO-Method emphasizes the specification of conceptual patterns
in precise, unambiguous terms, followed by the combination of architectural
patterns with the system model. As with OSM and xUML, formal underlying
semantics in combination with a sufficient execution model give OO-Method
the abilty to compile and execute models directly. The OlivaNova tool in-
cludes two main components: the modeler for developing system models, and
the transformation engine, which is a model compiler. The OlivaNova trans-
formation engine is one of the most robust commercially available model
compilers, and is able to target a number of platforms and architectures.

OO-Method defines four main model types: object model, dynamic model,
functional model, and presentation model. The first three constitute the core
with which developers create a conceptual schema, and the fourth lets devel-
opers model how users can interact with the modeled system.

The OO-Method object model contains primitives for capturing structural
information. It uses a mostly UML-like notation, with the notable addition
of constructs that capture agent relationships. In order to invoke a method,
an object must first be classified as an agent for that method. In this way,
OO-Method supports non-uniform service availability [Nie93], a key aspect
of dynamic OO types that some approaches ignore. Agent relationships add
another dimension of richness to the encapsulation structure of a system.
Figure 14 illustrates the graphical notation for an agent relationship between
Customer and the depositFunds and withdrawFunds methods of Account.

The OO-Method dynamic model includes fairly typical state transition and
object interaction diagrams, but unlike UML statecharts, OO-Method places
the specification of service functionality in a separate functional-model layer.
Whereas xUML associates procedures with states, OO-Method places these
service specifications, which it calls evaluations, in the functional model. The
functional model specifies how the state of objects can change during their
lifecycles. An evaluation has an event that triggers it, an attribute (of some
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Fig. 14 Agent Relationships in the OO-Method Object Model.

class) that it affects, a condition that may modify when the evaluation can
occur, and an evaluation effect that describes the result of performing the
evaluation. For example, given the partial class diagram in Figure 14 we may
wish to specify an evaluation that automatically issues a service charge when
an account that has a negative balance attempts a funds withdrawal. Such an
evaluation could specify event withdrawFunds, attribute balance, evaluation
condition balance < 0, and evaluation effect balance = balance − 10.

A distinctive aspect of OO-Method is its presentation model, which spec-
ifies and describes how users can interact with the system. The OO-Method
presentation model is essentially a collection of patterns that specifies the user
interface as an abstract model that has three levels of patterns: (1) system
access structure, (2) interaction units, and (3) basic supporting elements. The
framework for the presentation model is an action hierarchy tree that defines
the hierarchical structure through which users access system functions (e.g.,
it could be implemented as a menu hierarchy in a typical GUI application).
Nodes of the action hierarchy tree are interaction units that describe scenar-
ios through which users interact with the system to carry out specific tasks.
Basic element patterns support further specification of the user interface as
we illustrate below.

OO-Method includes four general kinds of interaction units: service, pop-
ulation, instance, and master/detail. A service interaction unit (SIU) models
human/computer interaction that results in the execution of a service in the
system. Figure 15 shows a simple SIU for depositing funds into an account.
Input fields allow the user to specify the account number, amount to deposit,
and an explanatory note. A button next to the account entry field lets the
user look up the account number from a list. Lower level patterns may also
be associated with SIU’s. For example, we could add several patterns to the
amount field in Figure 15, such as (1) an edit mask ##,###.##, (2) a help
message Please enter the amount you want to deposit, and (3) an underlying
datatype of Real for the entered value.

A population interaction unit (PIU) specifies patterns for displaying and
interacting with collections of objects (such as lists). Figure 16 shows an
example for a list of accounts. In addition to displaying the details of an
underlying collection (population), this PIU has a filter pattern that lets
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the user display only accounts whose owner name matches some expression
(“La*” in the example) and an order criteria button that allows the user to
sort the results according to various terms. The PIU in Figure 16 also has
a set of action buttons that invoke specific SIU’s (e.g. to add or remove an
account) and a set of navigation buttons that move from the current dialog to
some other interaction unit (e.g. a transaction history PIU). The other basic-
element pattern in Figure 16 is a display-set pattern that indicates which
fields associated with accounts should appear in the user interface.

Instance interaction units specify patterns for displaying and interacting
with individual objects. Instance and population interaction units are sim-
ilar, with the exception that the former displays information only about a
single object, while the latter displays information about a collection of simi-
lar objects. The fourth major category of interaction unit is the master/detail
interaction unit (MDIU), which models the common scenario where a collec-
tion of objects is associated with some other object (e.g., a list of transac-
tions associated with a particular account). Often, the “master” portion of an
MDIU is an instance interaction unit and the “detail” portion is a population
interaction unit.

With its presentation model, OO-Method is suitable for modeling general-
purpose applications that perform typical graphical user interface interac-
tions. Further developing the presentation model to cover additional in-
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teraction scenarios is a particularly interesting area of ongoing research
[MMP02, PVE+07, PEPA08, AVP10].

OO-Method constitutes an MDA-like approach to model-driven develop-
ment. It does not use the OMG standards, and so it is not pure MDA. How-
ever, we believe that OO-Method could be recast as a UML profile, and thus
become pure MDA should its creators choose such a strategy. CARE Tech-
nologies [CAR] has put a significant amount of resources into commercializing
OO-Method and refining the OlivaNova model execution tool. We see this as
one of the more promising model-driven software development projects. It is
possible to compile models into complete, operational business systems today
using the OlivaNova technology.

8 Model-Driven Web Engineering (MDWE)

Web engineering is a discipline that is ripe for model-driven development
because web applications fall into a fairly small set of typical patterns (such
as document-centric, workflow-based, transactional, and so forth [KPRR06])
and the architectural concerns of web applications—as opposed to appli-
cations in general—are relatively narrow. In response, researchers have cre-
ated a number of comprehensive approaches to model-driven web engineering
(MDWE). Figure 17, adapted from [SK06] and [WSSK07], gives a concise
history of many prominent MDWE initiatives, showing how web modeling
languages have evolved over time. Wimmer and Schwinger et al. identify five
major groupings of MDWE methods:

• Data-oriented approaches such as RMM [ISB95], WebML [CFB00, CFB+03,
BCFM08], and Hera [Hou00, FHV01, VFHB03, HvdSB+08] have their ori-
gins in database systems, and focus on data-intensive web applications.

• Hypertext-oriented methods such as HDM [GPS93], HDM-lite [FP00],
WSDM [TL98, TCP08], and W2000 [BGP01] originate from work in hyper-
media design, and handle nicely the hypertext nature of web applications.

• Object-oriented approaches follow in the tradition of OO modeling, and
include such methods as OOHDM [SR95b, SR95a, RS08], UWE [HK00,
KKZB08], OOWS [PAF01, FPP+08], and OO-H [GCP01].

• Software-oriented methods take an approach similar to traditional software
development. Web Application Extension (WAE) and its WAE2 extension
exemplify this approach [Con03].

• MDE-oriented methods explicitly take a model-driven approach to web ap-
plication development and emphasize the automatic generation of source
code from web application models. Examples of this category include We-
bile [RMP04], WebSA [MG06], MIDAS [VnM04], and Netsilon [MSFB05].

Moreno et al. divide the various MDWE initiatives into two broad groups:
those that follow the ER modeling style and those that take an object-
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Fig. 17 History of Web Modeling Languages, adapted from [SK06, WSSK07].

oriented approach [MRV08]. In any case, the different categories of MDWE
methods reflect diversity both in modeling-language origins and target web
application types.

What distinguishes web applications from other types of applications is the
prominence of navigation as a construct that should be modeled explicitly
and carefully [RSL99]. Navigation modeling essentially consists of describing
the information units that users need to navigate along with the structure
of the navigation space (which nodes are reachable from which other nodes).
It is important to note that the structure of navigation nodes is not the
same as the structure of conceptual items in the problem domain. Navigation
nodes are likely to consist of views that combine information from parts of
multiple domain objects. Furthermore, the navigation space structure is not
ideally characterized merely by nodes and links. That works well for simple
navigation structures, but typical web applications are more complex and are
better modeled by higher-level abstractions such as sets, lists, and navigation
chains [RPSO08].

There are other distinguishing aspects of web applications as well. For
example, personalization is quite common in web applications now, whereas
it is less common in traditional application development. Presentation issues
tend to be emphasized in web applications, though the same issues also exist
for traditional applications. Web applications typically combine rich media
from various sources, and must run properly on a wide variety of differ-
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ent browsers, operating systems, and physical devices. The context within
which web applications operate evolves quickly, and so do web applications
themselves [Mur08]. A repeating them of MDWE is that there are common
patterns associated with web applications, and it is helpful to document and
reuse these common patterns [GPBV99].

To illustrate MDWE, we examine OOHDM, one of the earliest MDWE
methods. The OOHDM method specifies four activities: (1) conceptual mod-
eling, (2) navigation design, (3) abstract interface design, and (4) implemen-
tation. After identifying actors, performing use case analysis, and creating a
conceptual model of the problem domain—all of which are common to other
types of OO development—the OOHDM developer moves to navigation de-
sign, which is of particular interest for MDWE. The details are extensive
[GSV00, RS08], but briefly, for each user profile, the OOHDM developer cre-
ates a navigational class schema and then a context schema that describes
web application’s navigation design.

An OOHDM navigational class schema consists of nodes, which are views
over conceptual classes that contain information we want the user to perceive,
and anchors, which are objects that allow the triggering of links. OOHDM
structures the navigational space into sets of nodes it calls navigational con-
texts. A unique aspect of navigational contexts is that intra-set navigation
is often desirable, as so we define each navigational context in terms of (1)
its elements, (2) its internal navigational structure (e.g., can the set be ac-
cessed sequentially with next/previous links), and (3) its associated access
structures, called indexes.

Figure 18 shows an abbreviated example of an OOHDM navigation context
diagram for a part of our running banking example. Rectangles with solid
borders indicate navigational contexts, while dashed rectangles denote access
structures (indexes). Shaded rectangles represent classes (Account, Summary,
and Activity in the example). The arrows with black dots at the origin lead-
ing from Main Menu indicate landmarks that are accessible globally from all
contexts (implemented, perhaps, as a global menu of links on the top or side
of the page). The small black box on By Account is a shorthand notation
indicating that there is an associated index for this context. Since Summary
and Activity are nested in the same scope, the user can navigate freely be-
tween the two views (if this were not desired, we would draw a dashed line
between the two).

The various MDWE methods have different levels of support for model-
driven development (see especially [RMP04, VnM04, MSFB05, SD05, MG06,
SK06, SRS+08, Mur08]). UWE and WebML have some of the more compre-
hensive tool sets for MDD, though most methods have some tool support.
WebRatio Enterprise Edition [WR], by Web Models, is an XML and Java-
centric tool that integrates with the Eclipse IDE and supports WebML mod-
eling [WR]. WebRatio generates Java Enterprise Edition (JEE) code from
WebML and BPMN models. UWE has a MagicDraw plugin called Mag-
icUWE and an Eclipse plugin called UWE4JSF, among other tools [UWE].
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Main Menu
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Summary

By Account Type

Activity

By Account

...

... ...

Fig. 18 OOHDM Navigation Context Diagram Abbreviated Example

VisualWade generates PHP code for OO-H web application models [VW],
but is a bit dated. The HyperDE tool for OOHDM generates systems for the
Ruby on Rails platform, and is suitable for “creating semantic web prototype
applications” [HDE].

As MDWE methods have evolved and matured, researchers have expressed
increasing concern over macro-level issues such as whether new refinements
make the method too complex and cumbersome [MMKV08, SRS+08]. Some
have also expressed concern that MDWE is in a state similar to the OO
“method wars” of the 1990’s and now call for consolidation and standard-
ization efforts [VKC+07, WSSK07]. The MDWEnet initiative [VKC+07] is
working on responding to some of these concerns, and we anticipate that re-
searchers will continue to work to bring together the various approaches where
feasible. Interestingly, some of the researchers behind HDM and W2000 sub-
sequently decided that a simpler approach would be more effective for various
aspects of design, and they proposed the significantly simpler IDM [BG08],
which takes a dialog-oriented perspective and advocates conceptual, logical,
and page-design activities. We expect that there will be a fair amount of
continued refinement and consolidation research in MDWE.

Many workshops and conferences that have published significant MDWE-
related work including workshops on the World Wide Web and Conceptual
Modeling (WWWCM’99 [CEK+99] and WCM2000 [LMT00]), Web-Oriented
Software Technology (IWWOST 2001–present), and Model-Driven Web En-
gineering (MDWE 2005–present), and the International Conference on Web
Engineering (ICWE 2001–present), among others. Several books nicely sum-
marize the state of the art in MDWE [KPRR06, MM06, RPSO08] (note es-
pecially that [RPSO08] distills the work published in IWWOST and WCM).
Furthermore, an extensive survey by Schwinger et al. [SRS+08] provides ex-
cellent details and analysis of MDWE initiatives.



Model-Driven Software Development 29

9 Agile MDD

A criticism often leveled against MDD in general, and MDA in particular,
is that it is too complex and difficult to use. Ambler argues that the so-
called “generative” approaches to MDD, such as MDA, are too complex for
the current generation of developers [Amb03]. His argument is that only
after a large up-front effort—including a steep learning curve for the chosen
modeling languages and tools—can we create the sophisticated models that
are required to be able to generate code for the various platforms we want to
target.

In contrast, the agile software development movement advocates making
customer satisfaction the highest priority, and agilists see early and continu-
ous delivery of useful software as the path to achieving this goal. They value
“individuals and interactions over processes and tools, working soft-
ware over comprehensive documentation, customer collaboration over
contract negotiation, and responding to change over following a plan”
[Agi]. The whole premise of creating complex models and then generating
code from those models seems completely counter to these agile principles.

However, as one of the original signatories to the Agile Manifesto points
out, there is no conflict between “agile” and “modeling” per se [Mel05]. The
conflict is in how we often use models. If models are not executable, the
reasoning goes, then they cannot be agile. If a model is supposed to be a
blueprint against which we later build a software system, then we must first
go through the effort of creating the blueprint, and then we must go through
a second process of construction. This is a heavyweight, non-agile approach.
However, if our models are executable, then we can immediately use them
in the way we typically use code (prototyping early and often), and thus
the same agile principles that apply to programming apply equally well to
modeling [MB02, MSUW04, Mel05].

Ambler believes that MDA is flawed and will not succeed for most or-
ganizations. He takes a pragmatic approach and questions MDA along the
following dimensions (among others) [Amb]:

• It takes a high level of education and training for developers to use MDA
tools. UML (and related standards) are overly complex and may not be
what the industry really needs anyway. The MDA standards are incom-
plete and still evolving.

• Tool vendors have historically been unwilling to create truly interopera-
ble model-sharing standards (CORBA, also an OMG standard, suffered
from tool vendors who would announce support and then implement the
standard in a proprietary way).

• The industry has seen other approaches, like I-CASE in the 1980’s and
CORBA in the 1990’s, that made similar promises but never fully deliv-
ered. Why will MDA be any different?
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• Business stakeholders do not ask us to develop detailed, sophisticated,
platform-independent models using a precise industry-standard modeling
language to describe their business. Developing complex models is not
what they request—they want working systems that deliver value.

Ambler’s answer is to advocate agile MDD, which replaces the task of creating
extensive models with agile models that are “just barely good enough” to
drive the software development process.

We share most of the concerns Ambler expressed. MDA is built on a com-
plex set of standards, and those standards do indeed continue to evolve. It
is difficult to achieve true interoperability between different vendors’ prod-
ucts in spite of their implementation of XMI import/export. History is full
of failures in this arena. However, it is possible to apply agile techniques in
an MDA framework, and indeed it has been done successfully [MB02]. When
we shift from the use of models as sketches or blueprints to the use of models
as the executable system itself, many of the difficulties Ambler points out
simply go away. Furthermore, we caution readers not to confuse MDA, which
Ambler specifically criticizes, with the broader concept of MDD; weaknesses
(or strengths) of MDA do not necessarily apply to MDD in general.

10 Conclusions

A wide variety of model-driven methods have been proposed over the years
and continue to be developed. MDA is certainly one of the more prominent
approaches to model-driven software development, but it is by no means
the only method. Model-driven techniques have been applied in a range of
domains, and have been particularly well accepted in the field of web engi-
neering. Some researchers advocate an agile approach to MDD because the
traditional approach to modeling suffers from the same problems as the wa-
terfall approach to software development.

There is an ecosystem of model-driven software development researchers,
vendors, and practitioners. IBM Rational has been a major player in this field,
creating many research advances and commercial tools for MDD. The Eclipse
project has been prominent as well, with the Eclipse Modeling Framework
and numerous related plugins. Some types of MDD have better tool support
than others. For example, Executable UML has several good tools (Bridge-
Point, Rhapsody, and iUML), and the OlivaNova suite is an excellent and
comprehensive model compiler.

On the other hand, many tool vendors have struggled to make sustain-
able model-driven tools. OptimalJ by Compuware was recently discontinued
by its vendor, Compuware, even though OptimalJ was generally regarded as
technically strong. A search of the web for model-driven tools yields many
links to projects that are no longer active. Nonetheless, there are a number of
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active vendors with high quality tools available today. Altova’s UModel, Ar-
tisan’s Studio, Borland’s Together, Gentleware’s Apollo and Poseidon tools,
IBM Rational’s various tools (e.g., Rhapsody, Rose, and Software Archi-
tect), No Magic’s MagicDraw, SparxSystems’ Enterprise Architect, and Vi-
sual Paradigm’s tool suite are some (but not all) of the active vendors with
quality tools. We expect to see continued energy and innovation in the MDD
tool vendor market in the coming years.

The question remains whether model-driven approaches to software devel-
opment can deliver on the promise of increased productivity, quality, reusabil-
ity, and maintainability. The skeptics are abundant, particularly among pro-
ponents of agile techniques, and the vast majority of software today is still
developed using non-model-driven methods. However, the industry has been
moving inevitably toward model-driven approaches, and we expect it will
continue to do so. We answer the skeptics by taking an expansive view of
what “model-driven” means; the phrase is not owned by any one vendor or
consortium, and it does not require cumbersome or unwieldy solutions, even
though that is what many early MDD proponents delivered. The move to-
ward model-driven approaches is really the same phenomenon that has been
occurring in computing for decades—a move to ever higher levels of abstrac-
tion.

In his classic essay on software engineering, “No Silver Bullet—Essence
and Accidents of Software Engineering”, Fred Brooks observed that there
are two kinds of complexity: “essential” and “accidental” [Bro95]. His cen-
tral point was that some complexity aspects of software systems are intrinsic
or inherent (essential), while other aspects are artificially (accidentally) com-
plex. Furthermore, essential complexity cannot be removed from the software
development process. Therefore, unless accidental complexity accounts for at
least 90% of the effort required to develop complex systems, we will never
see a “silver bullet” that increases productivity be an order of magnitude.

For example, a software system capable of making highly accurate weather
forecasts has significant inherent complexity because the environmental model
is quite involved, gathering the many necessary inputs is a difficult distributed
process, and the algorithms that manipulate that model and its inputs are
computationally complex. However, the particular tools we might use today
to build such a system have some measure of accidental complexity. Consider
the productivity improvement that comes with using an integrated develop-
ment environment to develop in a modern object-oriented programming lan-
guage with its extensive libraries of functions as compared to programming
in COBOL or FORTRAN on punch cards. By introducing an environment
that conveniently speeds up the edit-compile-run-test cycle, we remove some
of the accidental programming complexity that software developers of the
1970’s and 1980’s experienced. Much of that complexity is now removed with
graphical toolbar buttons and library objects. We can store our programs on
convenient, stable, solid-state storage that fits in our pockets rather than on
paper cards and bulky reels of magnetic tape.
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Have we seen order-of-magnitude-scale productivity increases over the
years? Yes, certainly we have; but Brooks is still correct. First, he limited
his prediction to a one-decade timespan, so if the ten-fold productivity im-
provement comes over a period of more than ten years, his thesis holds.
Second, because our tools improve dramatically over time, we are able to
tackle increasingly difficult and challenging tasks, and so we shift the ratio
of essential to accidental complexity gradually and quite naturally. Thus, as
our capabilities increase, so too does the essential complexity of the systems
we choose to build. As the essential complexity increases, we naturally begin
to devise additional mechanisms for dealing with that complexity, and conse-
quently the accidental complexity increases as well. Consider the case of the
OMG standards: the UML 2.2 specification [UML09a, UML09b] is 966 pages
long! As many critics have argued, there is certainly considerable accidental
complexity in UML and the other standards around which MDA is built.

This is the context in which we should examine today’s model-driven soft-
ware development approaches. Just as with evolution in nature, ideas in the
model-driven arena have variable quality, with only a subset leading to im-
provements. Nevertheless, the industry has been moving inexorably toward
improved abstractions, and it will continue to do so. This is the natural arc
of evolution for software development.
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[GCP01] J. Gómez, C. Cachero, and O. Pastor. Conceptual modeling of device-

independent web applications. IEEE MultiMedia, 8(2):26–39, 2001.
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