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Abstract 

An approach to natural languaqe 
que KY translation is presented 
that is driven mainly by the Se- 
mantics contained in an extended 
database scheme. This approach 
has the advantage of ease of im- 
plementation and thus portability 
since the scheme can easily be ex- 
tended to interface with the 
translation system's natural 
language understanding modules. 
The required extensions consist of 
adding domain specific routines to 
recognize and classify literals 
and a lexicon to recognize context 
keywords. The results from these 
recognizers are then presented to 
a domain independent translator 
for further analysis. A prototype 
system has been implemented and 
Some initial experimentation has 
been done. Observations about the 
effectiveness of the translator 
and its efficiency are reported. 

1. Introduction 

Processing database queries is an 
imprtant application for natural language 
understanding systems. There is a recog- 
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nized need for natural language communica- 
tion especially for database users who are 
noncomputer specialists [Blanning 84, 
Kelly 841. This need, coupled with the 
increased likelihood of 
interpreting database queries 

successfully 
because of 

the limitations imposed on the domain of 
discourse, has encouraged several 
researchers to develop natural language 
query processors [e.g., Woods et al. 72. 
Waltz 76, Harris 77, Hendrix et al. 78, 
Codd 78, Ballard et al. 841. With varying 
degrees of success, these systems apply 
techniques of natural language 
[Tennant 

processing 
811 to analyze requests and gen- 

erate formal database access queries. 

Like these systems, Knemos* generates 
database access queries from natural 
language input. Mnemos differs from these 
systems in its direct use of the database 
scheme as its knowledge base for natural 
language understanding. This approach has 
the advantage of ease of implementation 
and thus portability since the scheme can 
easily be extended to interface with the 
natural language understanding modules of 
Mnemos. In this regard Mnemos is similar 
to CC-OP [Kaplan 841 and INTELLECT [Harris 
77, AIC 821, but differs from these sy s- 
tems in the details of its approach. 

This paper reports our investigation 
of the Mnemos approach for interpreting 
natural languaye queries. In Section 2. 
specifics about the scheme requirements 
are stated and the interpretation 
generation routines are explained. A pro- 
totype Mnemos interpreter has been imple- 
mented, and the extent to which it under- 
stands queries posed by naive database 
users and the speed at which it executes 
have been assessed. The implementation 
and observations about its use and its 
potential are discussed in Section 3. 

--___---_------ -__-.- 
*Mnemosyne, from which the name Mnemos 

('ne mos) was taken, was the goddess of 
memory in Greek mythology. One theory of 
how human memory is used to understand na- 
tural written communication corresponds to 
how Mnemos uses computer memory to inter- 
pret database queries [Anderson and Bower 
731. 
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2. Mnemos 

TraditiCnal database schemes have 
been augmented in various ways to capture 
more information about the organization or 
system being modeled [Smith and Smith 77, 
Coda 79, Borkin 801. The augmented scheme 
for Mnemos is comparatively simple. To a 
large extent, the scheme is a reorganiza- 
tion Of informati0n already part of the 
scheme or database support system. 

MnemOs assumes that the database 
scheme is relational and is derived from 
an entity-relationship model [Chen, 761. 
As an addition to the entity-relationship 
model, each attribute, entity, and rela- 
tionship is described by a data frame 
[Embley 80, Khan et al. 821. A data frame 
encapsulates knowledge about the appear- 
ance, behavior, and context of a data ele- 
ment or collection Of data elements. 
Specific information about the written 
appearance of data-element literals, about 
applicable operations that can be per- 
formed on the data elements, and about 
words that commonly refer to or are found 
in context with data elements, collections 
of data elements, or applicable operations 
are all contained in data frames. 

For Mnemos the role of domain 
descriptior.s for the data elements in the 
scheme is substantially increased. 
Instead of merely specifying the type gen- 
erally as one of integer, real, or charac- 
ter string, data elements are defined with 
more restrictive types such as dollar 
amount, social security number, account 
number, department name, and date. Nar- 
rowly defined input routines recognize and 
classify literals so that $21.43, for 
example, is associated with the dollar 
amount data frame and 630-75-4485 with the 
social security number data frame. Con- 
text keyword recognizers properly associ- 
ate wor ds and phrases with data frames, 
for example amount, cost, price, subtotal, 
and total with the dollar amount data 
frame. Data frames for entities and rela- 
tionships also contain context keyword 
recoqnizers that, for example, would asso- 
ciate teacher, instructor, and professor 
with a data frame for the entity faculty 
member. 

It is the ability to recognize and 
classify literals, WOK&r and phrases and 
to make sense of their meaning in the con- 
text of an entity-relationship model that 
allows Mnemos to interpret natural 
language queries. Once Mnemos has made an 
initiz-:l classification of unit words and 
phrases in a query, an attempt is made to 
combine these interpreted low-level units 
into high-level units. This is done in 
one of two ways: 

(1) match operators with operands, and 

(2) embed low-level interpretations in a 
graph of the entity-relationship 
diagram. 

Unit words and phrases such 
"greater than", "total", and "how man;' 
refer to OpeKatOKS. Each operator expects 
certain operands: "greater than" demands 
two quantities that can be compared, 
"total" requires two or more quantities 
that can be summed, and “how many" needs a 
column in a relation so that the distinct 
values in the column can be counted. When 
a query includes an operation, the 
operands should appear either explicitly 
as literals ot implicitly as references to 
attributes in the database where values 
can be found. The data frame in which an 
operator resides contains information 
about the operator's operands and thus 
enables operator-operand matching. 

As an example of matching operators 
with operands to formulate a database 
request, consider the query 

Give me the names of employees in 
the accounting department whose 
salary is greater than $50,000 

in a database with a relation 

EMPLOYEE(ID#, NAME, ADDRESS, 
DEPARTMENT, SALARY). 

Figure 1 shows a low-level interpretation 
that would be generated by Mnemos. Given 
this low-level interpretation, Mnemos 

&srd or Phrase Assoclatlon Prooeru 
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Figure 1. 
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A Sample Low-level Interpretation 
Involving an Operator. 
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would combine SALARY, 5, and $50,000 into 
the expression 

SALARY > 50000 

by matching interpreted fragments from the 
sentence with expected operands for the 
greater-than operation. This interpreta- 
tion is now ready to be converted into the 
expression 

SELECT NAME 

FROM EMPLOYEE 

WHERE SALARY > 50000 AND 
DEPARTMENT = 'ACCOUNTING' 

which can be passed to a database manage- 
ment system to retrieve the results. 

The second method of creating high- 
level interpretations from low-level 
interpretations is by an embedding in an 
entity-relationship diagram. By consider- 
ing entities and relationships as nodes in 
a graph and by marking nodes that are 
referenced in low-level interpretations, 
contiguous paths linking marked entities 
and relationships can be observed. 

fc.r example, consider the query 

HOW many students who have Dr. 
Jones for an advisor are taking 
CS352? 

in the context of the entity-relationship 
diagram and derived relational scheme 
shown in Figure 2. A low-level interpre- 

FACULTY(FNAME, DEPT) 
STUDENT(ID#, SNAME. ADDR, MAJOR, COLLEGE) 
COURSE(COURSE#, CRHRS) 
AWISOR(FNAME, ID#) 
HAS-TAKEN(IDB, WLJRSE#, SEM, GRADE) 
IS-TAKING(ID#, COURSEI) 
HAS-TAUGHT(FNAME, COURSEI, SEM) 
IS-TEACHING(FNAME, COURSE#) 

Figure 2. Entity-Relationship Diagram and Derived 
Scheme for a Sample Database. 
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Figure 3. A Sample Low-level Interpretation 
Involving Several Relations. 

tation generated by Mnemos for this query 
is given in Figure 3. Observe that the 
query covers the nodes FACULTY, ADVISOR, 
STUDENT, IS-TAKING, and COURSE. Hence, 
these relations are joined to form the 
relation from which the results of the 
query can be obtained. The request sent 
to the database management system for this 
query is 

SELECT CUlJNT(ID#) 

FROM FACCJLTY,ADVISOR,STUDENT,IS-TAKING, 
COURSE 

WHERE FNAME = ‘JONES’ AND 
COURSE# = 'CS352' AND 
FACULTY.FNAME = ADVISOR.FNAME AND 
AWISOR.ID# = STUDENT.ID# AND 
STUDENT.ID# = IS-TAKING.ID# AND 
IS-TAKING.C~URSL?# = COURSE.CXIURSE# 

[Chamkzrlin 
general, SQL-like queries 

et al. 761 are generated from 
high-level interpretations as follows: 

The WHERE clause contains a conjunc- 
tion of (1) any explicit boolean 
functions (e.g., SALARY > 50000 in 
the first example above), (2) boolean 
equivalence terms that equate each 
literal not already combined into a 
high-level operation and the attri- 
bute with which it is associated in 
the low-level interpretation (e.g., 
COURSE# = CS352 in the second example 
above), and (3) the join terms for 
the relations in the FROM clause. 

The FROM clause is a list of all 
stored relations constituting the 
path (which may be degenerate if only 
one node is covered) in the graph of 
the entity-relationship diagram. 
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The SELECT clause consists of (1) any 
nonboolean functions (e.g., 
COUNT(ID#) in the second example 
above) and (2) the names of all 
attributes referenced and on the path 

the FROM clause that are not com- 
krned into high-level units or 
boolean equivalence terms in the 
WHERE clause (e.g., NAME in the first 
example above). 

Although not yet stated, it should be 
clear that low-level and even high-level 
interpretation routines can assign more 
than one meaning to a word or phrase and 
thus create multiple interpretations and 
possible ambiguities. Whenever Mnemos 
recognizes that more than one interpret?- 
tion can be given to a word or phrase, it 
creates two or more interpretations, each 
with one of the meanings. Since this may 
occur repeatedly, a tree of possible 
interpretations is generated. 

Normally most branches of the 
interpretation tree can be pruned by an 
;y;iicatit~~of domain independent heuris- 

. heuristics are similar to 
those of NFQL [Embley 821 and include max- 
imal involvement of lexical units in the 
queryr minimal path length in the entity- 
relationship diagram, and preference for 
high-level over low-level interpretations. 
The greater than operator in Figure 1, for 
example, would be found in almost every 
data frame describing an ordered value 
set. Because of the possible operands in 
the context, however, only the greater 
than operator in the dollar amount data 
frame would be recognized in a high-level 
interpretation. Thus, many possible 
branches would be pruned from the 
interpretation tree. 

Sometimes the request is ambiguous 
even after the heuristics are applied. For 
the query "List Dr. Jones' courses", which 
courses are wanted - those Dr. Jones 
currently teaches, has taught, or both? 
When there are several equally valid 
interpretations, Mnemos can find them all 
and thus interact intelligently with a 
user to resolve ambiguity. 

There are several advantages of the 
Mnemos approach to generating interpreta- 
tions. ( 1) Ungrammatical sentences are 
easily interpreted. The query "Students 
taking CS352, how many Dr. Jones advisor 
for?", for example, is interpreted in the 
same way and just as easily as the 
corresponding query discussed above. ( 2) 
Local chclllqes to data frames such as the 
addition of context keywords or operators 
do not affect the Nnemos interpretation 
modules. There are no restrictions about 
what keyword associations may be created. 
This tillcws data frames to be tuned 
locally without concern for their larger 
context and enhances portability. (3) 
Since literal and context keyword recogni- 

tion routines can operate independently, 
there is a high degree of natural paral- 
lelism than can potentially be exploited 
by advanced-computer architectures. 

There are also disadvantages; these 
are pointed out in the next section. 
These advantages were enough, however, to 
encourage us to build and experiment with 
a prototype Mnemos system. 

3. Prototype Implementation and Initial 
Experimentation 

Mnemos wi-8s implemented in Pascal on a 
Cyber 170/730 [Kimbrell 821. Most of the 
intelligence of Mnemos is contained in 
routines that operate on a file of data 
frames. For this implementation these 
routines are a collection of deterministic 
finite automata that recognize lexical 
patterns representing the literals, con- 
text keywords, and token patterns of the 
data frames. This approach increases por- 
tability since lexical analyzer generators 
and compiler-compliers such as LEX [Lesk 
751 and YACC [Johnson 781 can be used to 
help augment the database scheme for use 
with Mnemos. A variation of LEX was used 
in the implementation. 

In the implementation patterns are 
run sequentially against all partial 
interpretations. Initially, the only par- 
tial interpretation is the text of the 
input query. After all low-level patterns 
are exhausted, high-level patterns attempt 
to embed partial interpretations into the 
given entity-relationship diagram. For 
this implementation operator-operand pat- 
terns are not recognized. 

For our initial experimentation the 
Student-Instructor-Course database shown 
in Figure 2 was used. Fourteen students 
in an undergraduate database systems class 
were asked to write English language 
queries for this database, which was 
described only as one containing informa- 
tion on faculty, students, and courses at 
a university. The queries were to be 
phrased as questions the students might 
ask of someone who had information on 
faculty, students, and courses. Because 
little was specified about the exact con- 
tents of the database, many of the queries 
asked for information not in the database 
(e. g., meeting places for courses). 

Before submitting the queries for 
analysis by Mnemos, the literals of many 
queries were modified to fit the limited 
domains recognized 
type version. 

by the initial proto- 

iers 
For example, class identif- 

were changed to two letters followed 
by three digits, department names were 
limited to Computer Science, Anthropology, 
and English, all faculty names were 
faced by Dr. or Prof., and only three !$:I 
dent names were used, Tom, Dick, and 
Harry. 
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Except for names, these modifications 
were not significant either because the 
domain size is small so that literals can 
be exhaustively listed in a data frame 
(e. g., department name) or the pattern has 
only a few standard variations (e.g., stu- 
dent id#'s and course identifiers). If 
names are prefaced by titles, they are 
easily recognized and can often be further 
classified (e.g., as faculty member;;, ;f 
the number of names is expected 
small, a list can be stored in the name 
recognizer of a data frame, but large 
lists would need to be stored in the data- 
base resulting in obvious inefficiencies. 
As a compromise, a heuristic that yields 
good results is to classify a word as a 
name if it is not a common word (standard 
lists are available) and not classified by 
some other data frame.** 

Of the 139 queries submitted, 134 
were processed (5 were not processed 
because of a failure at the operating sys- 
tem level). Of these, 32 were outside the 
scope of the information contained in the 
database (e. 9. , "How old is the oldest 
student?"). Of the remaining 102, Mnemos 
generated correct responses for 51%. 
Examples of queries not correctly inter- 
preted include "Does every student have an 
advisor?" and "what students are enrolled 
in CS400?“. Of these incorrectly inter- 
preted queries, 78% (39 of 50) would have 
been properly interpreted had the context 
keywords in the data frames been more com- 
plete. For example, "What students are 
enrolled in CS400?" would have been prop- 
erly interpreted if "enrolled" would have 
appeared as a context keyword associated 
with the relation IS-TAKING. Thus, the 
total correct responses generated after 
some initial tuning would have been 89%. 

Understanding the remainder of these 
improperly interpreted queries would have 
required knowledge beyond that of Mnemos. 
For example, Elnemos thinks it should 
return a list of students who have advi- 
sors for the query "Does every student 
have an advisor?". It does not recognize 
that the question concerns the existence 
of the complement of this list. 

I----------- _---___ 

** "My name is Alice, but -- ' 

"It's a stupid name enough!" Huw?ty 
Dumpty interrupted impatiently. "What 
does it mean?” 

“#ust a name mean something?" Al ice 
asked doubtfull,y. 

"Of co.:rse it must,” HumW Dumpty 
said with a short laugh: "my name means 
the shape I am -- and a good handsome 
shape it is too. With a name like yours, 
you might be any shape, almost." 

-- From Lewis Carroll's Through the 
Looking Glass 

In addition to correctly interpreting 
natural language queries, the time 
required is also important. Mnemos was 
designed to run on a machine capable of 
supporting many routines executing in 
parallel. Implemented serially, it inter- 
prets requests slowly, but the pattern 
matching routines can and should all run 
independently. 

To obtain some idea of how long it 
might take to interpret a query on an 
advanced-architecture, parallel machine, 
the code was instrumented to count calls 
and time procedure execution. About 90% 
Of the calls and 93% of the run time were 
attributed to only three procedures. 
These three procedures are precisely those 
that would normally execute in parallel. 
If these routines were run in parallel, 
the run time could be reduced consider- 
ably. Using the timing values obtained, 
it was estimated that the average query 
submitted to Mnemos in the initial experi- 
ment would take about 10 CPU seconds to 
interpret. Further reductions would be 
likely in an efficiency-conscious imple- 
mentation, and it js expected that 
respectable response times for interactive 
operation can be achieved. 

4. Concluding Remarks 

Experience to date is encouraging. 
Mnemos performs somewhat satisfactorily 
even in its current, rudimentary state. 
More significantly, it has been shown that 
a natural language translation system 
driven mainly by the semantics of a data- 
base scheme augmented by domain specific 
data frames is worthy of serious con- 
sideration and can serve as the basic 
framework for interpreting natural 
language queries. Although much remains 
to be done, there are positive indications 
that the Mnemos approach to natural 
language query understanding may prove to 
be acceptable. 
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