Combining the Best of Global-as-View and Local-as-View
for Data Integration

Li Xu* and David W. Embley*
Department of Computer Science
Brigham Young University
Provo, Utah 84602, U.S.A.
{Ix, embley}@cs.byu.edu

Abstract

Currently, there are two main basic approaches to data integration: Global-as-View (GaV) and
Local-as-View (LaV). However, both GaV and LaV have their limitations. In a GaV approach,
changes in information sources or adding a new information source requires revisions of a global
schema and mappings between the global schema and source schemas. In a LaV approach,
automating query reformulation has exponential time complexity with respect to query and
source schema definitions. To resolve these problems, we offer BGLaV as an alternative point
of view that is neither GaV nor LaV. The approach uses source-to-target mappings based on
a predefined conceptual target schema, which is specified ontologically and independently of
any of the sources. The proposed data integration system is easier to maintain than both
GaV and LaV, and query reformulation reduces to rule unfolding. Compared with other data
integration approaches, our approach combines the advantages of GaV and LaV, mitigates the
disadvantages, and provides an alternative for flexible and scalable data integration.

1 Introduction

Data integration refers the problem of combining data residing at autonomous and heterogeneous
sources, and providing users with a unified global schema [Hal01]. Two main concepts constitute
the architecture of a data integration system [Ull97]: wrappers and mediators. A wrapper wraps
an information source and models the source using a source schema. A mediator maintains a global
schema and mappings between the global and source schemas. As is usual, we focus here on data
integration systems that do not materialize data in the global schema. Whenever a user poses a
query in terms of relations in the global schema, the mediator uses a query-reformulation procedure
to translate the query into sub-queries that can be executed in sources such that the mediator can
collect returned answers from the sources and combine them as the answer to the query.
Currently, there are two main initiatives to integrate data and answer queries without mate-
rializing a global schema: Global-as-view (GaV) [CGMH7'94] and Local-as-View(LaV) [LRO96,
GKD97].! [CLLO1] surveys the most important query processing algorithms proposed in the lit-
erature for LaV, and describes the principle GaV data integration systems and the form of query
processing they adopt. In a GaV approach, query reformulation reduces to simple rule unfolding
(standard execution of views in ordinary databases). However, changes in information sources or
adding a new information source requires a database administrator (DBA) to revise the global

*This material is based upon work supported by the National Science Foundation under grant 1IS-0083127.
! Although “GAV” and “LAV” are common abbreviations [CCGL02, Ull97], we prefer “GaV” and “LaV” because
they better match the phrases to which they refer.

schema and the mappings between the global schema and source schemas. Thus, GaV is not scal-
able for large applications. LaV scales better, and is easier to maintain than GaV because DBAs
create a global schema independently of source schemas. Then, for a new (or changed) source
schema, the DBA only has to give (adjust) a source description that describes source relations as
views of the global schema. Automating query reformulation in LaV, however, has exponential
time complexity with respect to query and source schema definitions. Thus, LaV has low query
performance when users frequently pose complex queries.

As data explodes on the Web, E-business applications such as comparison shopping and knowl-
edge-gathering applications such as vacation planning raise the following issues for approaches to
data integration. (1) The number of sources to access and integrate is large. (2) The sources are
heterogeneous, autonomous, and possibly change frequently. (3) New sources continually become
available and become part of the system. (4) Users frequently pose queries over the system to
retrieve data. (5) As applications evolve, DBAs may wish to change the global schema to include
some new items of interest. To address these issues and the problems of GaV and LaV, we present
an alternative point of view, called BGLaV,? that is neither GaV nor LaV. It aims at combining
the best of the two basic approaches: GaV’s simple query reformulation and LaV’s scalability.

The following characteristics describe our solution.

1. Each relation in a target schema, which is our global schema, is predefined and independent
of any source schema. Moreover, we wrap sources in isolation, without reference to the global
schema.? In contrast, in a GaV approach, DBAs revise the global schema to include all items
in sources, and in a LaV approach, DBAs adjust the source schemas such that they contain
only source relations that can be described by views over the global schema.

2. A set of mapping elements in a source-to-target mapping maps a source schema to a target
schema. Because we wrap sources independently, source and target schemas use different
structures and vocabularies. Automated schema matching techniques have been proven to
be successful in extracting mapping elements between two schemas. [RBO1] surveys these
techniques. Clio [MHHO00] has an extensive tool set to aid users semi-automatically generate
mappings. [XE02] provides many mappings automatically, with accuracies ranging from
92%-100%; these mappings are not just 1-1 mappings, but include many indirect mappings
discussed later in this paper. (See Appendix A.) Thus, BGLaV is capable of specifying views
over source schemas that match with elements in the target schema semi-automatically.

3. When a new information source becomes available (changes), a source-to-target mapping must
be created (adjusted). With the assistance of semi-automatic mapping tools, the maintenance
requires less manual work than either GaV or LaV.

4. Whenever a users poses queries in terms of target relations, query reformulation is rule un-
folding as in GaV by simply applying the generated source-to-target mappings.

5. If the target schema evolves, the mapping tool semi-automatically generates (or adjusts)
mapping elements between the new target schema and the source schemas. This involves less
DBA effort than for either GaV or LaV.

BGLaV operates in two phases: design and query processing. In the design phase, the system
synergistically automates the generation of source-to-target mappings. Mapping elements in source-
to-target mappings are expressions over source schema elements that produce virtual target-view

2«BGLaV” is an acrynom for “BYU-Global-Local-as-View.”
30ften these sources are structured, and we simply take the local schema without change [ETLO02].

elements. This leads automatically to a rewriting of every target element as a union of corresponding
virtual target-view elements. In the query processing phase, a user poses queries in terms of target
relations. Query reformulation thus reduces to rule unfolding by applying the view definition
expressions for the target relations in the same way database systems apply view definitions.

BGLaV’s contributions are (1) a unique approach to data integration using source-to-target
mappings based on a predefined target schema that combines the advantages and mitigates the
limitations of GaV and LaV, and (2) an extended relational algebra to describe source-to-target
mappings, whose implementation is readily available based on schema matching techniques de-
scribed in [XE02]. We organize the contributions in this paper as follows. Section 2 presents
the components of BGLaV. Section 3 describes an extended relational algebra for source-to-target
mappings. Section 4 discusses the solution to query reformulation and gives theorems to prove that
BGLaV gives certain answers to a query using a mazimally contained reformulation.* Section 5
reviews the other alternatives to GaV and LaV. In Section 6 we summarize and make concluding
remarks.

2 The Data Integration System

Definition 1. A data integration system Iis a triple (T, {S;}, {M;}), where T'is a target schema,
{Si} is a set of n source schemas, and {M;} is a set of n source-to-target mappings, such that for
each source schema S; there is a mapping M; from S; to T', 1 <14 < n.

We use rooted hypergraphs to represent both target and source schemas in I. A hypergraph
includes a set of object sets O and a set of relationship sets R. Therefore, a schema element is
either an object set or a relationship set. An object set either has associated data values or has
associated object identifiers (OIDs), which we respectively call lezical and non-lexical object sets.
The root node is a designated non-lexical object set of primary interest. Figure 1, for example,
shows two schema hypergraphs (whose roots are house and House). In the hypergraphs, lexical
object sets are dotted boxes, non-lexical object sets are solid boxes, functional relationship sets are
lines with an arrow from domain object set to range object set, and nonfunctional relationship sets
are lines without arrowheads. For a schema H, which is either a source schema or a target schema,
we let X denote the union of O and R. For source views, we let Vi denote the extension of X
with derived object and relationship sets over a source H.

A source-to-target mapping M; for a source schema S; with respect to a target schema T is a
function f;(Vs,) — Xr. Intuitively, a source-to-target mapping M, represents inter-schema corre-
spondences between a source schema S; and a target schema T. If we let Schema 1 in Figure 1(a) be
the target and let Schema 2 in Figure 1(b) be the source, for example, a source-to-target mapping
between the two schemas includes a semantic correspondence, which declares that the lexical object
set Bedrooms in the source semantically corresponds to the lexical object set beds in the target. If
we let Schema 1 be the source and Schema 2 be the target, a source-to-target mapping declares
that the union of the two sets of values in phone_day and phone_evening in the source corresponds
to the values for Phone in the target.

We represent semantic correspondences between a source schema S and a target schema 7T as a
set of mapping elements. A mapping element is either a direct match which binds a schema element
in Y g to a schema element in >7, or an indirect match which binds a virtual schema element in Vg
to a target schema element in Y7 through an appropriate mapping expression over Xg. A mapping
expression specifies how to derive a virtual schema element through manipulation operations over

“The two terms are different from the terms certain answers and mazimally contained rewriting in [Hal01] because
[HalO1] uses the terms for query processing over materialized views, whereas we use them for non-materialized views.

Golf_course

..........

...............................

(a) Schema 1 (b) Schema 2
Figure 1: Source Graphs for Schema 1 and Schema 2

a source schema. We denote a mapping element as (¢t ~ s < 05(Xg)), where 05(Xg) is a mapping
expression that derives a source element s in Vg,® and ¢ is a target schema element in Y.

As part of the mapping declarations, BGLaV derives a set of inclusion dependencies for each
target element based on the collected source-to-target mappings. Each mapping element w, (¢ ~
s < 05(Xg)), implies an inclusion dependency, which we denote as S.s C t. This declares that the
facts for schema element s € Vg, can be loaded into the target as the facts for schema element t. As
is typical for integration systems with non-materialized global schemas, we make an “open world
assumption.” Thus, the facts for the source element s in the mapping element w are only a subset
of facts for the target element ¢; and if there exists a source element s’ € Vg, and another mapping
element W', (t ~ s’ < 604(Xg)), the facts for both s and s’ can be facts for ¢. In general, for each
target schema element ¢ € Y7 in the data integration system I, we denote the set of inclusion
dependencies for t as {S;.s; C t[(t ~ 55 <= 0,,(3s,)) € M, s; € Vs, S; € [,M; € I,T € I}.

3 Algebra for Source-to-Target Mappings

Each object and relationship set (including virtual object and relationship sets) in the target and
source schemas are single-attribute or multiple-attribute relations. Thus, relational algebra directly
applies to the object and relationship sets in a source or target schema. The standard operations,
however, are not enough to capture the operations required to express all the needed source-to-
target mappings. Thus, we extend the relational algebra.

To motivate our use of standard and extended operators, we list the following problems we must
face in creating virtual object and relationship sets over source schemas.

e Union and Selection. The object sets, phone_day and phone_evening in Schema 1 of Figure 1(a) are
both subsets of Phone values in Schema 2 of Figure 1(b), and the relationship sets agent — phone_day
and agent — phone_evening in Schema 1 are both specializations of Agent — Phone values in Schema
2. Thus, if Schema 2 is the target, we need the union of the values in phone_day and phone_evening
and the union of the relationships in agent — phone_day and agent — phone_evening in Schema 1; and
if Schema 1 is the target, we should find a way to separate the day phones from the evening phones
and separate the relationships between agents and day phones from those between agents and evening
phones.

5Note that the mapping expression may be degenerate so that (t ~ s) is possible.

Merged and Split Values. The object sets, Street, City, and State are separate in Schema 2 and merged
as address of house or location of agent in Schema 1. Thus, we need to split the values if Schema 2 is
the target and merge the values if Schema 1 is the target.

Object-Set Name as Value. In Schema 2 the features Water_front and Gol f_course are object-set
names rather than values. The Boolean values “Yes” and “No” associated with them are not the values
but indicate whether the values Water_front and Gol f _course should be included as description values
for location_description of house in Schema 1. Thus, we need to distribute the object-set names as
values for location_description if Schema 1 is the target and make Boolean values for Water_front
and Gol f_course based on the values for location_description if Schema 2 is the target.

Path as Relationship Set. The path house—basic features—beds in Schema 1 semantically corresponds
to the relationship set House — Bedrooms in Schema 2. Thus, we need to join and project on the path
if Schema 2 is the target and make a virtual object set for basic features and virtual relationship sets
for house — basic features and basic features — beds over Schema 2 if Schema 1 is the target.

Currently, we use the following operations over source relations to resolve these problems®. (See
Appendix B for examples that illustrate how the new operators work.)

Standard Operators. Selection o, Union U, Natural Join X, Projection m, and Rename p.

Composition A. The X operator has the form A4, . a,) a7 where each A;, 1 < i < n, is either an
attribute of r or a string, and A is a new attribute. Applying this operation forms a new relation
', where attr(r') = attr(r) U {A} and |r'| = |r|. The value of A for tuple ¢t on row [in 7’ is the
concatenation, in the order specified, of the strings among the A;’s and the string values for attributes
among the A;’s for tuple ¢ on row [in 7.

Decomposition y. The ~ operator has the form vi 47 where A is an attribute of r, and A’ is a new
attribute whose values are obtained from A values by applying a routine R. Applying this operation
forms a new relation r’, where attr(r’) = attr(r) U {4’} and |r'| = |r|. The value of A’ for tuple ¢ on
row [in 7’ is obtained by applying the routine R on the value of A for tuple ¢’ on row [in r.

Boolean (8. The [operator has the form ﬂ};ﬁ,r, where Y and N are two constants representing Yes and
No values in r, A is an attribute of r that has only Y or IV values, and A’ is a new attribute. Applying
this operation forms a new relation /', where attr(r’) = (attr(r) — {A}) U{A'} and |7'| = |oa=y 7|
The value of A’ for tuple ¢ in ' is the literal string A if and only if there exists a tuple ¢ in 7 such
that t'[attr(r) Natir(r')] = tlattr(r) Natir(r’)] and t'[A] is a Y value.

DeBoolean 3. The Q operator has the form QX”JX,T, where Y and N are two constants representing
Yes and No values, A is an attribute of r, and A’ is a new attribute. Applying this operation forms
a new relation ', where attr(r’) = (attr(r) — {A}) U{A'} and |r'| = [Tatr(r)naterq7|- The value
of A" for tuple ¢ in r' is Y if and only if there exists a tuple ¢’ in 7 such that t'[attr(r) N attr(r')] =
tlattr(r) N attr(r’)] and t'[A] is the literal string A’, or is N if and only if there does not exist any
tuple ¢ in r such that t'[attr(r) Natir(r’)] = tlattr(r) Nattr(r’)] and ¢'[A] is the literal string A’.

Skolemization . The ¢ operator has the form ¢y, (r), where f4 is a skolem function, and A is a
new attribute. Applying this operation forms a new relation 7/, where attr(r’) = attr(r) U {A} and
[r'| = |r|. The value of A for tuple ¢ on line [in 7’ is a functional term that computes a value by
applying the skolem function f4 over tuple ¢ on line [in .7

As an example, let Schema 1 in Figure 1 be a target schema T, and let Schema 2 be a source
schema S. Figure 2 shows the derivation over the source schema and the source elements in the
source-to-target mapping. The shaded boxes denote virtual object sets, and the dashed lines denote
virtual relationship sets. There are two main steps in the derivation (see [EJX01, XE02] for details).

In the notation, a relation r has a set of attributes, which corresponds to the names of lexical or non-lexical
object sets; attr(r) denotes the set of attributes in r; and |r| denotes the number of tuples in r.

"When applying Skolemization operations, we introduce functional terms based only on tuple values that do not
contain functional terms. This leads to a finite evaluation.

Square_feet

Golf_course

Golf_course Square_feet

Street i

Figure 2: Derivation of Virtual Object and Relationship Sets from Schema 2 for Schema 1

Step 1: Use instance-level information to derive virtual object and relationship sets. The imple-
mented matching system applies expected-data-value techniques [EJX01] to derive virtual object
and relationship sets. Figure 2(a) shows the virtual object and relationship sets derived after
applying the following instance-level transformations.

e Derivation of location_description’ and House — location_description’.

“Yes” “No”
Golf_course,Gol f _course’
¢ BOAN o

pWa,ter_f'ront’Hlocation_description’/gwater_fTont7Wate,r_f7,0nt/ (House - Water_fromf)
location_description’ < Tlocation_description’ (House — location_description')

. oy
House — location_description’ <= pcolf_course! —location_description’ 3, (House — Gol f _course)U

e Derivation of Address’ and Address — Address’.

/
Address — Address <:7rAddress,Address’A(Street,“, 7, City, %, 7,State),Address’ (Add?"ess — Street

X Address — City X Address — State)
Address’ <= T aqqress' (Address — Address’)

e Derivation of phone_day’, Agent —phone_day’, phone_evening', and Agent—phone_evening' .8

Agent - phone—dayl ~ pPhonehphone_day’UKEYWORD(day)(Agent - PhO’I’L@)
phone_day’ < Tphone_day (Agent — phone_day’)

- /
Agent - phone_evenzng <~ PPhone«—phone_evening’ O K EY WO RD (evening) (Agent - Phone)
phone_evening’ < Tphone_cvening’ (Agent — phone_evening')

Step 2: Use schema-level information to derive virtual object and relationship sets. The matching
techniques apply source and target schema structural characteristics to derive virtual object and
relationship sets. Figure 2(b) shows the object and relationship sets in Vg after applying the
following schema-level transformations.

e Derivation of Agent — location’, location’, House — address’, and address’.

House — address’ < PAddress' —address' T House, Address' (House — Address X Address — Address’)
Agent — location' <= pagdress' —iocation’ T Agent, Address’ (Agent — Address X Address — Address’)
address’ < Taqqress' (House — address’)
location’ <= Tiocation’ (Agent — location’)

e Derivation of basic features’, House — basic features', basic features’ — Square_feet,
basic features’' — Bedrooms, and basic features’ — Bathrooms.”

- /
House — basic features’ < @gp, .0 (House)
basic features’ — Bathrooms <= Tpqsic features’, Bathrooms(House — basic features’ X House — Bathrooms)
basic features’ — Bedrooms <= Tpqsic features’, Bedrooms (House — basic features’ X House — Bedrooms)
. / . ’
basic features’ — Square_feet <= Tpasic features’,Square_feet (House — basic features’ X House — Square_feet)

e Specializations of Agent — phone_day’' and Agent — phone_evening'.*°

Agent - phOne—day/ <~ OCOMPATIBLE (agent—phone_day) (Agent - phOne—de,)
Agent — phone_evening’ < OCOMPATIBLE (agent—phone_cvening) (Agent — phone_evening’)

At this point, the object and relationship sets in Figure 2(c) correspond exactly to the source
elements in the mapping elements between T' and S. For example, (house ~ House), (address ~
address’), (house — address ~ House — address’), and so forth.

8We may be able to recognize keywords such as day-time, day, work phone, evening, or home associated with
each listed phone in the source. If so, we can apply the selection operator to sort out which phones belong in which
set (if not, a human expert may not be able to sort these out either). We implement the KEYWORD predicate by
applying data-extraction techniques described in [ECJ™99].

When applying the Skolemization operator to derive the virtual object set basic features’, the system makes
basic features’ functionally dependent on House to match the functional dependency between basic features and
house in the target schema.

10The system specializes the relationship sets in the source so that they are compatible with the functional de-
pendencies in the corresponding relationship sets in the target. The predicate COM PATIBLE defaults to the first
one or allows a user to decide how the selection should work. See [BE03] for a full explanation about source-target
constraint incompatibilities.

4 Query Reformulation

The data integration system I collects the information in the design phase. In the query-processing
phase, the system reformulates user queries in polynomial time.

To specify the semantics of I, we start with a valid interpretation Dg, of a source schema
S; € I, 1 <i <n. For an interpretation of a schema H to be wvalid, each tuple in Dy must satisfy
the constraints specified for H. In our running example, assume we have a valid interpretation
for Schema 2 in Figure 1. A target interpretation Dg,7 with respect to Dg, in I (1) is a valid
interpretation of 7', and (2) satisfies the mapping M; between S; and T" with respect to Dg,.
Assume that the mapping function for M; is f;. If f; matches s; with ¢;, ¢ is a tuple for ¢; in Dg,r
if and only if ¢ is a tuple for s; derived through applying the mapping expression 6, (Xg,) over
Dg,. The semantics of I, denoted as sem(I), are defined as follows: sem(I) = {Dg,r | Ds,r is
a target interpretation with respect to Dg,, S; € I}. We are able to prove that if a source has
a valid interpretation, then we can load data from the source into the target such that the part of
the target populated from the source will necessarily have a valid interpretation [BE03].!!

Assume that a query language used to express user queries is relational algebra. Here, the
queries are Select-Project-Join queries over elements in 7. Let ¢ be a user query and ¢; denote
the result of evaluating q on sem(I). We formalize g; using the notion of certain answers for q.

When evaluating certain answers g for ¢, the data integration system transparently reformulates

q as ¢F*t, a query over the source schemas in I. Let a query ¢ be W(Y)O'p(rl M org M ... X 7ry),

where for 1 <i < N, attr(q) = X, attr(r;)) = X; UY;, X; CX,Y,NX =0, Y = UY,(Y;), and P
is a predicate over X UY. The data integration system reformulates ¢ on I to obtain ¢®** based
on inclusion dependencies collected for each target element in the design phase. Since ¢ is in terms
of elements in Y7, each target relation r; in ¢ corresponds to a set of inclusion dependencies ID;,
1 <4 < N, collected in the design phase. Each member in ID; has the form S;.es C r;, where
es € Vs;, 1 < j < n, and n is the number of sources. Then, to obtain qP*t we substitute each 7;
in g by Us,.egcryerp, (Sj-€s). Note that a source element eg may be virtual, derived by applying
the mapping expression 035(25].).12 Thus, when sending a sub-query decomposed from ¢Z** to the
information source S;, the system also sends the mapping expression HES(ZSJ.) such that the source
S; correctly derives source facts for r; in the target.

With query reformulation in place, we can now prove that query answers are certain—every
answer to a user query is a fact according to the source(s)—and that query answers contain all the
facts the sources have to offer—maximal for the query reformulation.

Theorem 1. Let I = (T,{S;},{M;}) be a data integration system. Let D = {Dg,|S; € I} be
the set of valid interpretations of source schemas in I and let qg“t be the query answers obtained by
evaluating g* over D. Given a user query q in terms of target relations, a tuple < a1, as, ..., ay >
m qg“t s a certain answer in qy for q.

Proof. (See Appendix C.)

Theorem 2. Let I = (T,{S;},{M;}) be a data integration system. If ¢“' is a reformulated
query in I for a query q in terms of target relations, ¢t is a mazimally contained reformulation

for q with respect to I.
Proof. (See Appendix D.)

"The theorem in [BE03] is for individual sources. When sources share objects, both the object-identification
problem and the data-merge problem need a resolution. (Note that neither this paper nor other papers that focus
on GaV/LaV resolve these problems. The focus of GaV/LaV is on mediation, mappings, and query reformulation.)

12yWe keep non-lexical objects in different sources separate by consistently introducing new OIDs for target objects.

5 Related Work—Other Alternatives to GaV and LaV

[FLM99] proposed a Global-Local-as-View (GLaV) approach, which combines expressive powers of
both LaV and GaV. In a GLaV approach, the independence of a global schema, the maintenance
to accommodate new sources, and the complexity to reformulate queries are the same as in LaV.
However, instead using a restricted form of first-order logical sentences as in LaV and GaV to
define view definitions, GLaV uses flexible first-order sentences such that it allows a view over source
relations to be a view over global relations in source descriptions. Thus, GLaV can derive data using
views over source relations, which is beyond the expressive ability of LaV, and it allows conjunctions
of global relations, which is beyond the expressive ability of GaV. Our solution, BGLaV, also has
the ability to derive views over source schemas. The sets of view-creation operators, however, are
incompatible—in BGLaV we do not have a recursive operator, and GLaV has nothing comparable
to merge/split or Boolean operators. Moreover, GLaV claims no ability to semi-automate the
specification of source descriptions.

[CCGLO02] proposed a translation algorithm to turn LaV into GaV such that it can keep LaV’s
scalability and obtain GaV’s simple query reformulation. The translation results in a logic program
that can be used to answer queries using rule unfolding. However, even though the translation to
obtain the logic program is in polynomial time, the evaluation of the logic program could produce
an exponential number of facts because of recomputing source relations over all source data. In
contrast, BGLaV encapsulates views for source relations in mapping elements. Since the view
definitions are immediately available, query processing in BGLaV has better query performance
than the translation approach. As in [FLM99], [CCGLO02] claims no ability to semi-automate the
specification of source descriptions.

6 Conclusion

This paper describes BGLaV, an approach to data integration based on a predefined target schema,
which combines the advantages and avoids the limitations of both GaV and LaV. This solution
has polynomial-time query reformulation and is scalable for large applications. DBAs create the
target schema and wrap source schemas independently, so that neither the target schema nor the
source schemas are contingent respectively on the source schemas or the target schema. Moreover,
we have an implementation that either creates or helps create the needed mappings. Thus, BGLaV
increases both scalability and usability over previously proposed approaches.

References

[BEO3] J. Biskup and D.W. Embley. Extracting information from heterogeneous information
sources using ontologically specified target views. Information Systems, 28(1), 2003.
To appear, currently at http://www.deg.byu.edu/papers/int.pdf.

[CCGL02] A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini. On the expressive power
of data integration systems. In Proceedings of 21st International Conference on Con-
ceptual Modeling (ER2002), pages 338-350, Tampere, Finland, October 2002.

[CGMH'94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ull-
man, and J Widom. The TSIMMIS project: Integration of heterogeneous information
sources. In Proceedings of the 10th Meeting of the Information Processing Society of
Japan, pages 7-18, Tokyo, Japan, October 1994.

[CLLO1]

[DDHO1]

[ECJ+99]

[EJX01]

[ETLO02]

[FLM99)

[GKD97]

[Hal01]

[LRO9G6]

[MHHO0]

[RBO1]

[U1197]

[XE02]

D. Calvanese, D. Lembo, and M. Lenerini. Survey on methods for query rewriting
and query answering using views. Technical report, University of Rome, Roma, Italy,
April 2001.

A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. In Proceedings of the 2001 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 509-520, Santa Barbara, California,
May 2001.

D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,
and R.D. Smith. Conceptual-model-based data extraction from multiple-record Web
pages. Data & Knowledge Engineering, 31(3):227-251, November 1999.

D.W. Embley, D. Jackman, and Li Xu. Multifaceted exploitation of metadata for
attribute match discovery in information integration. In Proceedings of the Interna-
tional Workshop on Information Integration on the Web (WIIW’01), pages 110-117,
Rio de Janeiro, Brazil, April 2001.

D.W. Embley, C. Tao, and S.W. Liddle. Automatically extracting ontologically spec-
ified data from HTML tables with unknown structure. In Proceedings of the 21th
International Conference on Conceptual Modeling (ER2002), pages 322-337, Tam-
pere, Finland, October 2002.

M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration.
In Proceedings of the 16th National Conference on Artificial Intelligence (AAAI’99),
pages 67-73, Orlando, Florida, 1999.

M.R. Genesereth, A.M. Keller, and O.M. Duschka. Infomaster: An information inte-
gration system. In Proceedings of 1997 ACM SIGMOD International Conference on
Management of Data, pages 539-542, Tucson, Arizona, May 1997.

A.Y. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4):270—
294, 2001.

AY. Levy, A. Rajaraman, and J.J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proceedings of the Twenty-second International
Conference on Very Large Data Bases (VLDB’96), pages 251-262, Mumbai (Bom-
bay), India, September 1996.

R. Miller, L. Haas, and M.A. Hernandez. Schema mapping as query discovery. In Pro-
ceedings of the 26th International Conference on Very Large Databases (VLDB’00),
pages 77-88, Cairo, Egypt, September 2000.

E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema matching.
The VLDB Journal, 10(4):334-350, 2001.

J.D. Ullman. Information integration using logical views. In F.N. Afrati and P. Ko-
laitis, editors, Proceedings of the 6th International Conference on Database Theory
(ICDT’97), volume 1186 of Lecture Notes in Computer Science, pages 19-40, Delphi,
Greece, January 1997.

L. Xu and D.W. Embley. Discovering direct and indirect matches for schema elements.
2002. Submitted for publication, currently at http://www.deg.byu.edu/papers.

10

A Experimental Results of Source-to-Target Mappings

We evaluated the performance of source-to-target mappings'® based on three measures: precision,
recall, and the F-measure, a standard measure for recall and precision together. Given (1) the
number of direct and indirect matches N determined by a human expert, (2) the number of correct
direct and indirect matches C' selected by our process, and (3) the number of incorrect matches
I selected by our process, we computed the recall ratio as R = C'/N, the precision ratio as P =
C/(C+1), and the F-measure as F' = 2/(1/R+1/P). We reported all these values as percentages.

We considered three applications: Course Schedule, Faculty, and Real Estate to evaluate our
schema mapping approach. We used a data set downloaded from the LSD homepage [DDHO1]
for these three applications, and we faithfully translated the schemas from DTDs used by LSD
to rooted hypergraphs. For testing these applications, we decided to let any one of the schema
graphs for an application be the target and let any other schema graph for the same application
be the source. Because our tests were nearly symmetrical, however, we decided not to test any
target-source pair also as a source-target pair. We also decided not to test any single schema as
both a target and a source. Since for each application there were five schemas, we tested each
application 10 times. All together we tested 30 target-source pairs.

Application Number of | Number | Number | Recall | Precision | F-Measure
Matches | Correct | Incorrect % % %
Course Schedule 128 119 1 93% 99% 96%
Faculty 140 140 0 100% 100% 100%
Real Estate 245 229 22 93% 91% 92%
All Applications 513 488 23 95% 95% 95%

Table 1: Test Results

Table 1 shows a summary of the results for the data. In two of the three applications, Course
Schedule and Faculty, there were no indirect matches. The Real Estate application exhibited
several indirect matches. The problem of Merged/Split Values appeared twice, the problem of
Union/Selection appeared 24 times, and the problem of Object-Set Name as Value appeared 5 times.
Our process successfully found all the indirect matches related to the problems of Merged/Split
Values and Object-Set Name as Value. For the problem of Union/Selection, our process correctly
found 22 of the 24 indirect matches and declared two extra indirect matches.'® Over all the indirect
element mappings, the three measures (recall, precision, and F-measure) were (coincidentally) all
94%.

13The data presented here measures the performance of mapping elements between object sets of source and target
schemas. At the time we performed these tests, relationship-set matching had not been implemented.

1 0Of these four, three of them were ambiguous, making it nearly impossible for a human to decide, let alone a
machine. In two cases there were various kinds of phones for firms, agents, contacts, and phones with and without
message features, and in another case there were various kinds of descriptions and comments about a house written in
free-form text. The one clear incorrect match happened when our process unioned office and cell phones together and
mapped them to phones for a firm instead of just mapping office phones to firm phones and discarding cell phones,
which had no match in the other schema.

11

B Examples for New Operators in the Mapping Algebra

B.1 Composition
Let r be the following relation, where attr(r) = { House, Street, City, State}.

House Street City State
hl 339 Wymount Terrace Provo Utah
h2 15 S 900 E Provo Utah
h3 1175 Tiger Eye Salt Lake City Utah

Applying the operation A(gyreet,«, » City,«, 7 Street), Address” yields a new relation ', where attr(r') =
{House, Street, City, State, Address}.

House Street City State Address
hl 339 Wymount Terrace Provo Utah 339 Wymount Terrace, Provo, Utah
h2 15 S 900 E Provo Utah 15 S 900 E, Provo, Utah
h3 1175 Tiger Eye Salt Lake City Utah 1175 Tiger Eye, Salt Lake City, Utah

B.2 Decomposition

Let r be the following relation, where attr(r) = { House, Address}.

House Address
hl Provo, Utah
h2 339 Wymount Terrace, Provo, Utah
h3 1175 Tiger Eye, Salt Lake City, Utah

Applying the operation Vfddmss’smeetr, where R is a routine that obtains values of Street from
values of Address, yields a new relation r1, where attr(r;) = {House, Address, Street}.

House Address Street
hl Provo, Utah
h2 339 Wymount Terrace, Provo, Utah 339 Wymount Terrace
h3 1175 Tiger Eye, Salt Lake City, Utah 1175 Tiger Eye

Similarly, applying the operation VQ;dress,Cityra where R’ is a routine that obtains values of Clity
from values of Address, yields a new relation rq, where attr(re) = {House, Address, City}.

House Address City
hl Provo, Utah Provo
h2 339 Wymount Terrace, Provo, Utah Provo

h3 1175 Tiger Eye, Salt Lake City, Utah Salt Lake City

B.3 Boolean
Let r be the following relation, where attr(r) = { House, Water Front}.

House Water Front

h1 Yes
h2 No
h3 Yes

12

Applying the operation By > Ne”

. . , N
Water Front, Lot Description” Yields a new relation 7/, where attr(r’) = {House, Lot
Description}.

House Lot Description
hl Water Front
h3 Water Front

B.4 DeBoolean

Let r be the following relation, where attr(r) = {House, Lot Description}.

House Lot Description
hl Water Front

hl Golf Course
h1 Mountain View
h2 Water Front

h3 Golf Course

‘) Y es” SNg” .)
Applying the operation Q; ./ “B;scroiption Water Front” vields a new relation 71, where attr(r;) =

{House, Water Front}.

House Water Front

hl Yes
h2 Yes
h3 No

[7eC a3l

Similarly, applying the operation 3%’ Description,Golf Course!” yields a new relation 72, where attr(rs)
= {House, Golf Course}.

House Golf Course

h1 X
h2
h3 X

B.5 Skolemization

Let r be the following relation, where attr(r) = {House}.

House
hl
h2
h3

Applying the operation @, .. reoure.” vields a new relation ', where attr(r’) = { House, Basic Features}.

House Basic Features
h1 fBasic Features (hl)
h2 fBasic Features (h2)
h3 fBasic Features (h3)

13

C Theorem 1.

Let I = (T,{S;},{M;}) be a data integration system. Let D = {Dg,|S; € I} be the set of valid
interpretations of source schemas in I and let qg“t be the query answers obtained by evaluating
¥ over D. Given a user query q in terms of target relations, a tuple < a1, as,...,ay > in qg“

s a certain answer in qy for q.

Proof (sketch). Let a query g be W(Y)O'P(Tl Moy ML ry), where for 1 < ¢ < N, r; is

X
a target relation, attr(q) = X, attr(r;) = X, UY;, X; C X, V,NX =0, Y = UY,(V}), and

P is a predicate over X UY. Assume that a tuple a = < ay,as,...,ay > is a tuple in qut

and a is not a tuple in ¢;. In I, the query reformulation procedure translates ¢ into ¢©*' as

T30 P(U(s;.esCr)ern, (Sj-€5) X U(s; egCrayern, (Sj-€5) M ... X U(g; eocry)erpy (Sj-€s)), where for
1 <i< N, ID;is a set of inclusion dependencies collected for r; in the design phase of I, and for
1 <j < n,S;is asource schema collected from one of the n sources in I and eg in Sj.eg is a source
element in Vg;. Thus, since a € qg“, there must exist N source relations, s, s9, ..., and sy, and
N tuples, cq, co, ..., and cp, such that ¢; € s; and a = 7T(7)0'P(61 X ... X ¢y), where s; € Vg].,
Sj.8; Cr;, 1 <1< N,and S; € I. Since S;.s; C r; in 1 D;, based on the derivation of an inclusion
dependency, there must exist a mapping element (r; ~ s; <= 05,(Xs;)) € M;, where M; is a source-
to-target mapping between S; and T"in I. Since ¢; € s; and (r; ~ s; <= 05,(3s;)) € M;, based on the
semantics of a mapping element, ¢; € r; and the tuple ¢; is derived from Dg,; by evaluating 65, (X Sj).
Since ¢; € 7; and (r; ~ 5; <= 05,(Xs;)) € M; and ¢; is derived by evaluating 0, (Xs,) on Dg,, based
on the definition of a target interpretation with respect to Dg;, ¢i € Dg,r. Since ¢; € Ds;r, based
on the definition of sem(I), ¢; € sem(I). Since ¢; € sem(l), a = W(y)ap(cl X ... X cy), and
c; €1;, 1 <14 < N, therefore a € q;. This is contrary to the assumption that a is not a tuple in g;.

D Theorem 2.

Let I = (T,{S;},{M;}) be a data integration system. If ¢¥** is a reformulated query in I for a query q in
terms of target relations, ¢F*t is a mazimally contained reformulation for q with respect to I.

Proof (sketch). Let a query ¢ be w(y)ap(rl X g X ... Xry), where for 1 < i < N, r; is a target relation,

attr(q) = X, attr(r;) = X; UY;, X; C X, Y, NX =0, Y = UY,(Y;), and P is a predicate over X UY.
Assume that a tuple a = < ay,a9,...,ap; > is a tuple in ¢; and a is not a tuple in qg“. Since a is a
tuple in ¢y, there must exist at least N tuples c1, ¢2, ..., cy in sem(I) such that ¢; € r;, 1 < i < N, and
a = W(Y)ap(cl M cog M ... M ¢p). Therefore, since ¢; € sem(I), 1 < i < N, based on the definition of
sem([l), a target interpretation Dg,r with respect to Dg, must exist such that ¢; € Dg, 7, where S; € I
and Dg, is a valid interpretation of S; and T' € I. Since ¢; € Dg,r and ¢; € r;, 1 < i < N, based on the
definition of D7, there must exist a mapping element (r; ~ s; <= 05,(Xs;)) € M;, where M; € I and Mj is
a source-to-target mapping between S; and T'. Since (r; ~ s; <= 05,(Xs;)) and ¢; € r;, 1 <i < N, based on
the semantics of a mapping element, ¢; € s; and ¢; is derived by evaluating the mapping expression 0, (s,)
over Dj;. Moreover, since (r; ~ s; < 05,(3s,;)), 1 < i < N, there must exist an inclusion dependency
(S;.si Cr;) € ID;, where ID; is the set of inclusion dependencies collected for r; in the design phase of I.
Therefore, when the query reformulation procedure translates ¢ into ¢®*?, Sj.s; is a member in the union
set that replaces r; in ¢, 1 <4 < N, and S; € I. Thus, the query answer to W(Y)O'p(sl X...Xsy) over D is

a subset of ¢5%t. When evaluating W(Y)ap(sl X...Xsy), since a = 7'('(7)0'13(01 X...Xcn) and ¢; € s; and

¢; is derived by applying the mapping expression 6, (Xs,) over D;, where S; € I and Dj € D, 1 <i < N,

therefore a is a tuple of the query answer to W(Y)O'P(Sl X ... X sy) over D. Since the query answer to
w(y)ap(sl M ... X sy) over D is a subset of ¢5% and a is a tuple of query answer to W(Y)UP(Sl X ... X sy)

over D, a € qg“. This is contrary to the assumption that a is not a tuple in qg“.

14

