
ONTOLOGY AWARE SOFTWARE SERVICE AGENTS: MEETING

ORDINARY USER NEEDS ON THE SEMANTIC WEB

by

Muhammed J. Al-Muhammed

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Brigham Young University

December 2007

Copyright c© 2007 Muhammed J. Al-Muhammed

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Muhammed J. Al-Muhammed

This dissertation has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date David W. Embley, Chair

Date Charles D. Knutson

Date Michael A. Goodrich

Date Mark J. Clement

Date Bryan S. Morse

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Muhammed
J. Al-Muhammed in its final form and have found that (1) its format, citations, and bib-
liographical style are consistent and acceptable and fulfill university and department style
requirements; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the graduate committee and is ready for
submission to the university library.

Date David W. Embley
Chair, Graduate Committee

Accepted for the
Department Parris K. Egbert

Graduate Coordinator

Accepted for the
College Thomas W. Sederberg

Associate Dean, College of Physical and Mathematical
Sciences

ABSTRACT

ONTOLOGY AWARE SOFTWARE SERVICE AGENTS: MEETING

ORDINARY USER NEEDS ON THE SEMANTIC WEB

Muhammed J. Al-Muhammed

Department of Computer Science

Doctor of Philosophy

To achieve the dream of the semantic web, it must be possible for ordinary users to

invoke services. It is clear that users need simple-to-invoke-and-use services. This disser-

tation offers an ontological approach to declaratively create services that users can invoke

using free-form, natural-language-like specifications. Our approach uses task ontologies as

foundational knowledge. A task ontology consists of a domain ontology and a process on-

tology. The domain ontology encodes domain information such as possible constraints and

instances in terms of object sets, relationship sets among these object sets, and operations

over values in object sets and relationship sets. The process ontology consists of generic

processes that are domain independent—coded once and work for all. Our system recog-

nizes the constraints in a service request, discovers any missing information and obtains

it from users, and formalizes the constraints in the context of the domain ontology. The

system satisfies the constraints by obtaining information from databases associated with

the domain ontology and providing users with solutions or near solutions when there is

no way to satisfy all the constraints. Our experiments with our prototype implementation

show that our approach can create services that satisfy end-user needs.

ACKNOWLEDGMENTS

Many thanks to my God; by his willing I achieved this dissertation.

I am very grateful to my advisor Dr. David W. Embley for his patience, under-

standing, and above all his tolerance. I owe him a lot and will never forget his passion and

guidance. I am very grateful to Dr. Charles D. Knutson and Dr. Michael A. Goodrich who

helped and encouraged me a lot in my research. I am also very grateful to Dr. Mark J.

Clement and Dr. Bryan S. Morse for their time and valuable comments. God bless you all.

I am very grateful for all the people at the Department of Computer Science who

taught me even a word or helped me in any way.

I am very grateful for all the people at BYU especially Dr. Sandra Rogers who is

supporting me to succeed and Kate Andreason for her help. I am also grateful for the great

BYU environment in which I have never felt that I am away from home.

Finally I am grateful for NSF for partially supporting this research under Grants

0083127 and 0414644.

Muhammed J. Al-Muhammed
Brigham Young University

Provo, Utah 84602
USA

Contents

1 Introduction 1

1.1 Related Work . 3

1.1.1 Service-Oriented Architecture . 3

1.1.2 Task Ontologies and Web Service Derivation 5

1.1.3 Personal Software Agents . 6

1.2 Thesis Statement . 8

1.3 Dissertation Contributions . 8

1.4 Dissertation Overview . 9

2 Conceptual Model Based Semantic Web Services 13

2.1 Introduction . 14

2.2 Related Work . 15

2.3 Task Specification . 17

2.4 Task Recognition . 17

2.4.1 Domain Ontology . 17

2.4.2 Process Ontology . 21

2.4.3 Task Ontology Recognition . 23

2.5 Task Execution . 25

2.5.1 Task View Creation . 25

2.5.2 Task Constraint Creation . 26

2.5.3 Obtaining Information from the System 29

2.5.4 Obtaining Information from a User 30

2.5.5 Constraint Satisfaction and Negotiation 31

2.5.6 Process Finalization . 33

vii

2.6 Prototype Implementation Status and Future Work 34

2.7 Concluding Remarks . 35

3 Ontology-Based Constraint Recognition for Service Requests 39

3.1 Introduction . 40

3.2 Domain Knowledge . 42

3.2.1 Semantic Data Model . 43

3.2.2 Data Frames . 46

3.2.3 Implied Knowledge . 48

3.3 Domain Ontology Recognition . 49

3.4 Formal Representation Generation . 52

3.4.1 Relevant Object Set and Relationship Set Identification 53

3.4.2 Relevant Operation Identification . 56

3.4.3 Predicate-Calculus Formula Generation 57

3.5 Performance Analysis . 57

3.6 Related Work . 60

3.7 Conclusions and Future Work . 63

4 Resolving Systems of Conjunctive Constraints for Service Requests 67

4.1 Introduction . 68

4.2 Constraints . 71

4.3 Under-constrained Service Requests . 73

4.3.1 Constraint Elicitation Using Expectations 73

4.3.2 Selecting the Best-m Solutions . 74

4.3.3 Resolution of Under-constrained Requests 76

4.4 Over-constrained Service Requests . 77

4.4.1 Ordering Near Solutions . 77

4.4.2 Constraint Relaxation Using Expectations 78

4.4.3 Resolution of Over-constrained Requests 79

4.5 Performance Analysis . 81

4.6 Conclusions and Future Work . 84

viii

5 Bringing Web Principles to Services: Ontology-Based Web Services 89

5.1 Introduction . 90

5.2 Ontology-Based Web Services . 93

5.2.1 Semantic Data Model . 93

5.2.2 Data Frames . 95

5.2.3 Servicing Requests with Ontology-Based Web Services 97

5.3 Request-Oriented Architecture . 98

5.4 Web-Principled Traditional Web Services 101

5.5 Related Work . 103

5.6 Conclusions and Future Work . 105

6 SerFR: Server for Free-form Requests—A Usability Study 113

6.1 SerFR—Usage Scenario . 114

6.2 SerFR Usability Study . 122

6.2.1 Information Elicitation . 123

6.2.2 SerFR Usability Results . 125

6.2.3 SerFR Usability Results Discussion 130

6.3 Concluding Remarks . 134

7 Conclusions and Future Work 143

7.1 Conclusions . 143

7.2 Future Work . 147

Bibliography 148

ix

List of Figures

2.1 A domain ontology for appointments. 18

2.2 Some sample data frames. 20

2.3 A process ontology specialized for scheduling appointments. 22

2.4 The output of the recognition-process. 24

2.5 The task view for the specified task in Section 2.3. 26

2.6 Generated predicate calculus statement. 28

2.7 Generated predicate calculus statement. 29

2.8 Partial interpretations. 30

2.9 The scheduled appointment. 33

3.1 A free-form appointment request. 41

3.2 The formalism for the appointment request in Figure 3.1. 41

3.3 Semantic-data-model view of a domain ontology for appointments. 43

3.4 Some sample data frames. 47

3.5 Output of the recognition process—the marked-up domain ontology. 50

3.6 Relevant object and relationship sets for the appointment in Figure 3.1. . . 54

3.7 The relevant operations for the appointment request in Figure 3.1. 57

3.8 Instructions for subjects for the appointments domain. 58

4.1 The predicate calculus statement for the appointment request. 69

4.2 Near solutions for the appointment request. 70

4.3 Solutions for the car purchase request. 70

4.4 Solutions for the car purchase request. 77

4.5 Near solutions for the appointment request. 80

x

4.6 Rewards and penalties for the near solutions. 80

4.7 Human solution selection compared to system solution selection. 81

4.8 Human near solution selection compared to the system selection. 82

4.9 Human versus system choices for the car experiment. 82

4.10 Human versus system choices for the appointment experiment. 83

4.11 Statistical summary. 83

5.1 A weather report web service. 91

5.2 A free-form weather report request. 92

5.3 A semantic data model for a weather report service. 94

5.4 Some sample data frames. 96

5.5 An instantiated request and the service’s response to this request. 103

6.1 User interface for specifying service requests. 114

6.2 Highlighted recognized constraints. 115

6.3 The best-5 near solutions. 117

6.4 Constraint elicitation request. 118

6.5 The best-5 solutions. 119

6.6 The advanced specification interface. 121

6.7 The tested system functionalities. 122

6.8 An example of a usability question. 124

6.9 The average time that each subject spent per single request. 125

6.10 The subjects selection frequency. 128

xi

List of Tables

3.1 Number of service requests, predicates, and arguments. 59

3.2 Recall and precision. 60

6.1 The satisfaction degree for the evaluated functionalities. 129

xii

Chapter 1

Introduction

In open and ever-growing environments such as the world wide web, the amount

of information is increasing at a tremendous rate. In addition, users are, or soon will be,

overwhelmed with web services that give information, manage appointment calendars, sell

products, and so on. This incredibly continuing increase in the amount of information and

the number of services makes performing tasks such as finding information and services of

interest quite challenging for web users. The semantic web along with personal software

agents and web service systems purport to offer a solution to this challenge. But exactly

how this solution will play out is still unclear.

The semantic web is an extension to the current web that makes the web not only

human understandable but also “machine understandable.” In particular, the semantic web

is changing the content of the web—both information and services—to be both machine-

interpretable and human-understandable [BLHL01]. This continuing change in the content

of the web is increasing the ability of software agents to reason about the content of the

web and to do tasks on behalf of users [Kun04, DW03, KKS+02, Hen01].

In this dissertation we offer a unique approach to turn the vision of semantic web

pioneers into reality for everyday service requests such as scheduling appointments, selling,

buying, renting apartments, and so forth. Our approach allows users to invoke services

by only specifying their needs in a free-form request, rather than the typical approach of

looking for services and using them. This approach lets users focus only on specifying what

they need rather than on discovering services that can accomplish their needs and then

figuring out how to use them, which is intuitively much harder. Further, our approach

has capabilities to help users reach best solutions (or near solutions) for their requests and

1

therefore reduce the potential overload resulting from having to go through perhaps a long

list of solutions (or near solutions).1

Our approach to allow specification-based service invocation centers around a task

ontology. A task ontology can be thought of as having two component ontologies: a domain

ontology and a process ontology. The domain ontology is (manually) created by a service

developer who wants to provide a service in the domain. This ontology defines concepts in a

domain of a service request along with relationships among these concepts and constraints

and operations over the concepts and relationships. The process ontology defines generic

processes for doing service requests and was pre-coded by the system developer. Interest-

ingly, the process ontology is independent of any domain-specific information in the sense

that it is coded once and works for all domains. The system automatically specializes it

to a domain by passing the hand-crafted domain ontology to the process ontology. With a

task ontology in hand, we address the following fundamental problems.

1. Service-Request Specification. The first key issue to address is how to allow users to

specify their service requests in a simple way. In our system, we let users assume the

existence of an intelligent agent within the system and specify their service requests

textually in any way they wish.

2. Service-Request Recognition. After specification of the service request, our approach

goes through a recognition process of the specified service request. This recognition

process matches a service request specification against task ontologies to identify the

task ontology that matches the service request the best. The system uses the ontol-

ogy that matches best to generate a predicate-calculus formula that represents the

constraints imposed on the service request and then uses this formula to execute the

service request.

3. Service-Request Execution. Given a specified service request and the generated

predicate-calculus formula for this service request, the system generates software that

can do the service request. The software has the ability to gather the information it
1A solution is a fulfillment instance of a service request that satisfies all the imposed constraints while a

near solution is a fulfillment instance that satisfies some (perhaps none) of the constraints. We will precisely
define both a solution and a near solution in Chapter 4.

2

needs by interacting with the system and also the user, in case of incomplete spec-

ification. When a resolution is not immediate (i.e. when there are too many ways

to service the request or there is no way to service the request given the imposed

constraints), the software interacts with and helps a user find a satisfactory resolution

to a request.

The chief objective of this dissertation is to show that our ontology-based approach

can effectively resolve these problems. Our prototype system, which is implemented based

on our ontological approach and which serves as a proof of concept, shows the potential

of our approach for helping to achieve the vision of the semantic web for everyday service

requests.

Before we give the details of our approach, we present an overview of the related

work, the thesis statement, the contributions of the dissertation, and the organization of

the dissertation.

1.1 Related Work

To the best of our knowledge our work is unique. We know of no research trying to satisfy

free-form user service requests by establishing needed relationships within the context of

the constraints imposed by an ontology. We do, however, wish to place our research within

the framework of the current work on web services (Subsection 1.1.1). We also wish to

compare our proposed system with work on task ontologies (Subsection 1.1.2) and software

agents (Subsection 1.1.3), which have similarities to some aspects of our work.

1.1.1 Service-Oriented Architecture

Service-oriented architecture concepts have constituted “best practices” in enterprise-scale

application development for the past three decades [KSB04, Erl05, GBR05, ABdB+06].

The key idea of a service-oriented architecture is that business functionality is packaged

as reusable services that can be invoked through standard interfaces. Recently, the major

standards-based approach to services has centered on web services as described by W3C’s

Web Services Description Language (WSDL) [CCMW01, CMRW07]. With XML as the

3

common underlying message format, WSDL defines a grammar for specifying services, and

it is surrounded by a constellation of related standards including the Simple Object Access

Protocol (SOAP) [W3C03], the Universal Description, Discovery, and Integration (UDDI)

service registry mechanism [UDD03], and other proposals within W3C’s Web Services Ac-

tivity [WS05]. These technologies comprise the common foundation for current web services

research.

However, this foundation is only an initial infrastructure, and advanced applica-

tions of web services require additional layers. WSDL, much like HTTP, is essentially

a stateless protocol and thus requires additional architectural support for service discov-

ery, composition, and transactional execution. For example, the Web Service Modeling

Framework (WSMF) was designed to address decoupling and mediation needs [FB02].

The Internet Reasoning Service defines a framework for automatically publishing, locat-

ing, composing, and executing heterogeneous services [MDCG03]. BPEL4WS (Business

Process Execution Language for Web Services), promoted by the OASIS (Organization for

Advancement of Structured Information Standards) group, recognizes the need for higher

levels of web-services “choreography” including, among other elements, support for trans-

actional features not found in WSDL [ACD+03]. Research efforts related to semantic web

services [MSZ01, SHS+02, PL04, CDM+04] often follow the DAML-S/OWL-S line of work

[MPM+05, KA04, ABH+02, FB02, MA02]. The DAML Services Coalition observed early on

that WSDL does not account for workflow needs, and so to support semantic-web services,

they created what is now called OWL-S [OWL04]. OWL-S is an OWL-based web service

ontology that provides constructs to describe web services in an unambiguous, machine-

interpretable way with the hope to facilitate automatic web service discovery, composition,

and execution.

Web services are characterized by many layers, and our approach builds on the

existing web services stack in a complementary fashion. Our approach shows how ontologies

can be used to provide semantic-web services in a user-friendly, highly automated way. We

are not the first to use task and process ontologies to manage web services, but we do

provide a unique approach that leverages the principles of ontology-based data extraction

to hide complexity from the end user.

4

1.1.2 Task Ontologies and Web Service Derivation

Researchers have suggested the notion of a task ontology to define generic processes that

can be assembled to do tasks. [MTI95] describes a task assembly system, called MULTS.

In this approach, domain experts synthesize problem solving engines for their tasks from

generic processes and building blocks defined in a “task ontology.” [KG03] describes a

system that uses a task ontology to represent web services. Users can compose a set of

services to do a task and use this system to check whether the composition is valid. Our

approach significantly differs from both of these efforts because it does not require either

domain experts or other users to compose services.

Both [KA04] and [MA02] describe an approach for using a process ontology to index

web services. Users can browse the process ontology or create queries using the defined

process query language to find services of interest. Our approach significantly differs from

these two approaches because it does not require users to look for services, and also it goes

further by supporting specified tasks from beginning to end without requiring users to find

or use services.

Researchers have proposed systems for the web that either make available web ser-

vices from which users can choose or allow users to find, select, and compose their own

tasks. [AHS03] describes a system that lets users browse web services and choose a web

service to do a task or choose and compose several web services to do a task. [PKCH05]

describes a prototype that lets users discover and select services of interest. This approach

depends on the existence of a repository of web services described using OWL-S and on

whether users can specify queries for services using OWL-S and can also provide a map-

ping between the terms in their queries and the terms used to describe the services. A

matchmaking algorithm matches the requests against the advertised services and returns

an ordered list of candidate services from which users can choose. [MDCG03] describes a

system with pre-specified tasks that lets users choose from a set of available pre-specified

tasks. [SHP03] describes a system that lets users select services from a list of known ser-

vices and assists them to semi-automatically compose services to do some task. [SPW+04]

describes a system that lets users select from a list of available services; it will then execute

5

the service. Our approach differs significantly from all these approaches in that our system

does not require users to find services from among a set of available services, which is diffi-

cult, even as acknowledged by the authors of the cited papers themselves. In our approach

the only requirements are that users specify their tasks, provide information in the typical

case of incomplete task specification, and interact with the system when there is no solution

because the imposed constraints are too strong or when there are many solutions because

the imposed constraints are too weak. Service composition, however, remains in the hands

of the user.

The METEOR-S [VSS+05] approach is geared toward enabling users to discover web

services of interest. Users specify the web service using a service template, which usually

consists of input and output information about the service. The system then finds the best

matching services. Our approach goes further than just discovering a service of interest.

It services a request for a service from beginning to end, including discovering a service,

invoking the service, and helping users obtain solutions or agreed-upon near solutions.

The IRS-III [CDG+06] approach is a reference implementation for the Web Service

Modeling Ontology (WSMO) [BBD+]. It enables service developers to describe their services

using the WSMO ontology and register these descriptions in the system. Requesters can

specify their requests, called goals, also using the WSMO ontology. The server matches

goals with WSMO service descriptions and returns matches to users. Users then choose

and invoke desired services. This approach differs from our approach in that (1) it requires

users to select appropriate services from potentially lengthy list of services and invoke this

service while in our approach a specification of a service is sufficient to invoke it and (2)

it requires users to make service requests (goals) using the formal WSMO model while our

approach allows them to make free-form requests.

1.1.3 Personal Software Agents

Agent research community has been actively producing methodologies [dSdL07, CGGS07]

and development platforms [BBCP05] to create software agents that deliver services to

end-users. Of these products, personal software agents are closely related to our work.

6

Researchers have described implementations of personal agents that operate on be-

half of their owners to do useful tasks. [Shi06] describes Softgent, a personal software agent,

that provides its user with an interface to email messages or to query databases. Users can,

for instance, make natural language queries that must be grammatical to a database through

the agent interface. The agent parses and submits the query to the database. This radically

differs from our approach in that our approach supports free-form requests, not necessarily

in terms of full grammatical sentences. Further, Softgent lacks the constraint recognition

capabilities of our approach.

The authors of [CPC+04] describe an implementation of personal agents for assisting

people in preparing the physical facilities of a meeting room. For each person attending

a meeting, there is a personal agent that takes the person’s model of preferences, such as

adjustments of the speaker’s sound and the level of lights, and attempts to prepare the

meeting room in an optimal fashion. [WCRS04] describes personal agents that allow a

user to obtain information about the entertainment facilities available in a location. Users

communicate with the system through forms and provide their profiles and preferences

(e.g. what movie they want to see and at what time). The system then provides responses

based on user’s preferences. [PSS02] describes an implementation for a conference attendee’s

personal assistant agent that brings scheduling information about conference schedules to its

user’s calendar. [PKC+01] describes an implementation of ITTalk, an integrated application

using agent mediated services to disseminate event announcement. Users can provide their

profiles, encoded in DAML, about presentations in which they are interested and about

which they would like to be notified. The profiles can be provided either by filling in a

web form or by providing URLs that link to such profiles. Our approach differs from these

approaches in that while these agents in these approaches are preprogrammed to do pre-

specified tasks, our system is more general in the sense that the tasks are defined in terms

of domain knowledge rather than preprogrammed.

7

1.2 Thesis Statement

It is possible to automate everyday service requests whose invocation results in establishing

agreed-upon relationships in the context of a domain ontology. Examples of these services

include scheduling appointments, buying and selling products, renting apartments and cars,

and so forth. These systems use task ontologies as their foundational knowledge to identify

users’ needs and meet these needs. The system’s behavior is limited only by the richness of

task ontologies, which can be independently enriched by system specialists.

Our approach is a significant advancement over current approaches for the following

reasons.

1. The approach does not impose any programming paradigm to specify tasks.

2. Unlike other approaches, there is no set of prespecified tasks from which users choose

and there is no notion of composing task sequences, of which the user is aware.

3. The system dynamically determines the required processes to accomplish a task and

dynamically generates software capable of performing the task.

1.3 Dissertation Contributions

As the number of services on the web continues to increase, users will increasingly suffer from

issues such as finding and using appropriate services. This dissertation uniquely addresses

these issues and makes the following contributions.

1. Specification-based service invocation. End-users can invoke services by only

specifying their needs rather than having to find services and use them.

2. Free-form service specification. End-users can specify service requests using free-

form, natural-language-like specifications.

3. Service execution. Our approach supports the execution of service requests from

beginning to end with minimal required user intervention.

4. Knowledge-level service creation. The ontological basis of our approach renders it

well-suited for creating semantic-web services. In order for service providers to provide

8

services in a new domain, it suffices to create a domain ontology—the cornerstone of

the semantic web; no coding is required.

5. Web-Principled Services. We present a new vision for web services based more

fundamentally on web principles. These web-principled services have two important

characteristics. They decouple services and requesters, and they resolve data hetero-

geneity. The contribution here is threefold. First, we show that our ontology-based

services are web-principled services. Second, we propose a request-oriented archi-

tecture for our vision for web-principled services that allows people to invoke these

web-principled services by only specifying service requests using free-form specifica-

tions without having to discover them. Third, we show that the ontology-based service

approach can bring web principles to traditional web services.

6. Working prototype. A fully implemented, working prototype system exists, which

allows a user to specify service requests and which completely services these requests

if there is an appropriate domain ontology for the request and appropriate domain

data exists.

1.4 Dissertation Overview

Chapters 2, 3, 4, and 5 consist of published papers or papers accepted for publication. Thus,

each chapter has its own abstract, introduction, contributions, experimental results, con-

clusions, and references. Chapter 6 is the usability study for our prototype, and Chapter 7

gives our conclusions and directions for future work.

Chapter 2 [AMEL05] presents a detailed overview of our system. It describes the

components of a task ontology; a domain ontology and the process ontology. It also describes

all the processing steps: a service request specification, task recognition, task execution

including interacting with users to complete the service request if needed, and accomplishing

the request. Further, the paper emphasizes and justifies, whenever appropriate, the domain-

independence of our processing algorithms.

Chapter 3 [AME07] presents our ontological approach for recognition of constraints

in free-form, natural-language-like service request specifications and the transformation of

9

these service request specifications to machine processable representations. In our ontology-

based approach, a domain ontology encodes information such as applicable object sets,

potential constraints over these object sets, and recognizers for instances of these object

sets and constraints. The system recognizes the constraints in a service request by a two-

fold, domain-independent process. (1) It matches a free-form service request against a

collection of ontologies that belong to different domains to find the ontology that matches

best. (2) It then selects from the given and implied constraints in the matched ontology

those that are relevant to the service request to generate the constraints.

Chapter 4 [AME06] presents our approach to resolve under-constrained, and over-

constrained systems of constraints. The paper offers an expectation-based process for elicit-

ing additional constraints for under-constrained requests and for suggesting some constraints

for users to relax for over-constrained requests. Further, the paper offers an ordering over

solutions and an ordering over near solutions, and a selection mechanism based on Pareto

optimality, to choose the best-m, with dominated solutions or dominated near solutions

discarded.

Chapter 5 [AMELT07] presents our vision for web-principled services. Web-

principled services are based on the more fundamental resource publication and access

principles of the web. They enable decoupling among communicating applications, but,

as a result, require heterogeneity resolution. In this paper, we show that ontology-based

services discussed in Chapters 2 and 3 actually are web-principled services. We propose a

request-oriented architecture that allows requesters to only specify their requests without

requiring them to discover and reference any services capable of servicing their requests. We

show that this architecture decouples services and requesters in the sense that requesters do

not have to discover services. Additionally, the paper presents a way to turn a traditional

web service into a web-principled service using the ontology-based service approach. As we

will see, it suffices to describe a traditional web service using an ontology. Interestingly,

turning a traditional web service into a web-principled service requires no changes to the

actual interface and the internal implementation of the traditional web service.

Chapter 6 presents a user-oriented usability study for the fully working prototype

system built on the concepts discussed in Chapters 2, 3, and 4. First, this chapter presents a

10

usage scenario of our system. This usage scenario highlights the interesting functionalities

that we want users to evaluate. Second, we show how we elicit the data necessary for

evaluating the usability of our prototype, present this data, and analyze it. We conclude

the chapter by drawing conclusions about the usability of the prototype based on the data

elicited from users.

Chapter 7 presents our concluding remarks and possible directions for future work.

11

12

Chapter 2

Conceptual Model Based Semantic Web Services

Abstract

To achieve the dream of the semantic web, it must be possible for ordinary users to invoke

services. Exactly how to turn this dream into reality is a challenging opportunity and an

interesting research problem. It is clear that users need simple-to-invoke-and-use services.

This paper shows that an approach strongly based on conceptual modeling can meet this

challenge for a particular type of service—those that involve establishing an agreed-upon

relationship, such as making an appointment, setting up a meeting, selling and purchasing

products, establishing employee job assignments, and many more. For these services, users

can specify their requests as free-form text and then interact with the system in a simple way

to complete the specification of a service request, if necessary, and invoke the service. Behind

the scenes, the system uses a conceptual-model-based information extraction ontology to

(1) recognize the request and match it with an appropriate ontology, (2) discover and

obtain missing information, and (3) establish agreed-upon, conceptual-model-constrained

relationships with respect to the desired service. The paper lays out our vision for this type

of semantic web service, gives the status of our prototype implementation, and explains

how and why it works.

Keywords: Services, semantic web services, service specification, service invocation,

conceptual-model-based services.

13

2.1 Introduction

In open and ever-growing environments such as the world wide web, the amount of informa-

tion and the number of services becoming available makes performing tasks such as finding

information and finding and invoking services of interest quite challenging for web users.

The semantic web along with personal software agents and web service systems purport to

offer a solution to this challenge. But exactly how this solution will play out is still unclear.

In this paper we offer a unique approach to turn the vision of semantic web pioneers

(e.g. [BLHL01]) into reality for everyday tasks such as scheduling appointments, selling,

buying, making job assignments, and so forth. Our approach to this challenge centers

around a task ontology. A task ontology can be thought of as having two component

ontologies: (1) a domain ontology that defines concepts in a domain of a task along with

relationships among these concepts and (2) a process ontology that defines generic processes

for doing tasks. With a task ontology in hand, we address the following fundamental

problems.

1. Task Specification. The first key issue to address is how to allow users to request

services. We intend to let users assume the existence of an intelligent agent within

the system and specify their service requests textually in any way they wish.

2. Task Recognition. Given a service request, our system attempts to recognize the

specified task. This recognition process extracts information from the service request

and matches it against known domain ontologies to find the proper task ontology for

the service request.

3. Task Execution. Given a recognized task ontology and the information extracted from

a service request, the system specializes the process ontology within the recognized

task ontology to perform the service. The specialized process ontology has the ability

to gather the information it needs by interacting with the system or the user or both

to obtain missing required information. The specialized process ontology also has the

ability to recognize specified constraints and determine whether they are satisfied.

There may be a need to negotiate with users to relax task constraints when it is

14

apparent that it is not possible to complete the task given the current constraints.

Finally, the specialized process ontology has the ability to establish the necessary

relationships to complete the service request.

Our contribution in this paper is to show that it is possible to build a system to

automate everyday tasks, such as scheduling appointments, buying and selling, and making

job assignments, whose invocation results in establishing agreed-upon relationships in a

domain ontology. Within this scope of services, the system’s behavior is limited only by

the richness of task ontologies, which can be independently enriched by system specialists.

Our approach contributes to the vision of the semantic web in the sense that it offers the

following significant advantages. (1) The system allows for free-form task specification, and

thus, it does not impose any programming paradigm to specify tasks, nor does it have a

set of pre-specified tasks from which a user can choose. (2) The system reasons about the

request based on a task ontology and synergistically gathers the information it needs to

generate software capable of performing the task.

We present our contributions as follows. We begin in Section 2.2 by placing our work

in the context of other work on web services. We then present our vision for task-ontology-

based services in three major parts: task specification, which allows users to textually

specify tasks (Section 2.3); task recognition, which finds the domain of a specified task and

specializes processes to perform the task (Section 2.4); and task execution (Section 2.5).

We give the status of our prototype implementation along with the future work we are

considering in Section 2.6, and we conclude with Section 2.7.

2.2 Related Work

To the best of our knowledge our work is unique. We know of no research trying to satisfy

free-form user service requests by establishing needed relationships within the context of

the constraints imposed by an ontology. We do, however, wish to place our research within

the framework of the current work on web services.

Service-oriented architecture concepts have constituted “best practices” in

enterprise-scale application development for the past three decades [GBR05]. The key idea

15

of service-oriented architecture is that business functionality is packaged as reusable ser-

vices that can be invoked through standard interfaces. Recently, the major standards-based

approach to services has centered on web services as described by W3C’s Web Services De-

scription Language (WSDL). With XML as the common underlying message format, WSDL

defines a grammar for specifying services, and it is surrounded by a constellation of related

standards including the SOAP communication protocol, the UDDI service registry mecha-

nism, and other proposals within W3C’s Web Services Activity [WS05]. These technologies

comprise the common foundation for current web services research.

However, this foundation is only an initial infrastructure, and advanced applications

of web services require additional layers. WSDL, much like HTTP, is essentially a stateless

protocol and thus requires additional architectural support for service discovery, compo-

sition, and transactional execution. For example, the Web Service Modeling Framework

(WSMF) was designed to address decoupling and mediation needs [FB02]. The Internet

Reasoning Service defines a framework for automatically publishing, locating, composing,

and executing heterogeneous services [MDCG03]. BPEL4WS, promoted by the OASIS

group, recognizes the need for higher levels of web-services “choreography” including, among

other elements, support for transactional features not found in WSDL [ACD+03]. Research

efforts related to semantic web services [MSZ01] often follow the DAML-S/OWL-S line of

work [FB02, MA02, KA04]. The DAML Services Coalition observed early on that WSDL

does not account for workflow needs, and so to support semantic web services they created

what is now called OWL-S [OWL04].

Web services are characterized by many layers, and our approach builds on the

existing web services stack in a complementary fashion. Our approach shows how ontologies

can be used to provide semantic web services in a user-friendly, highly automated way. We

are not the first to use task and process ontologies to manage web services, but we do

provide a unique approach that leverages the principles of ontology-based data extraction

to hide complexity from the end user.

16

2.3 Task Specification

We explain task specification using an example. A typical usage of our approach is to

schedule appointments. We use a somewhat simplified version of the example described by

Berners-Lee, et al., in their vision paper, “The Semantic Web” [BLHL01]. In our example,

a user of the semantic web wants to schedule an appointment with a service provider—a

dermatologist. The user does not have any particular dermatologist in mind, but wants one

that meets some constraints regarding appointment time, date, the location of the service

provider, and the type of insurance the service provider accepts.

To use our approach to accomplish this task, the user first specifies the task by

“simply” stating what needs to be done. Suppose the user states the following.

I want to see a dermatologist next week; any day would be OK for me, at 4:00.

The dermatologist should be within 5 miles from my home and must accept my

insurance.

Before this statement is made, our proposed system has no clue regarding the domain of

the task nor any clue regarding how it can be done. Therefore, this specification needs to

go through a task recognition step, which we discuss next.

2.4 Task Recognition

The objective of task recognition is to determine the domain of a specified task. Our

approach uses a task ontology to meet this objective. Therefore, we first introduce the

two components of a task ontology, namely a domain ontology and a process ontology,

respectively introduced in Sections 2.4.1 and 2.4.2. In Section 2.4.3, we describe how our

approach determines which task ontology to use, among the many we assume exist.1

2.4.1 Domain Ontology

A domain ontology specifies named sets of objects, which we call object sets or concepts, and

named sets of relationships among object sets, which we call relationship sets. Figure 2.1
1These task ontologies can be for different applications, or can even be competing task ontologies for the

same application.

17

Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrcian

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"
->

Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrcian

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"
->

Figure 2.1: A conceptual-model representation of a domain ontology for appointments
(partial).

shows a small part of a conceptual model representation of a domain ontology for scheduling

an appointment.2 The domain ontology consists of concepts such as Date, Time, and

Service Provider that can be used to schedule appointments with service providers such

as doctors and auto mechanics. The conceptual model has two types of concepts, namely

lexical concepts (enclosed in dashed rectangles) and nonlexical concepts (enclosed in solid

rectangles); it also provides for explicit concept instances (denoted as large black dots). A

concept is lexical if its instances are indistinguishable from their representations. Time is

an example of a lexical concept because its instances (e.g. “10:00 a.m.” and “2:00 p.m.”)

represent themselves. A concept is nonlexical if its instances are object identifiers, which

represent real-world objects. Dermatologist is an example of a nonlexical concept because

its instances are identifiers such as, say, “Dermatologist1”, which represents a particular

person in the real world who is a dermatologist. We designate the main concept in a
2In practice, we would need a much larger and richer ontology for service providers. We have limited our

ontology to those concepts needed in our running example, plus a few more to explicitly illustrate concepts
not needed for our sample task. We indicate by having Auto Mechanic in our example, for instance, that
there are many more types of service providers.

18

domain ontology by marking it with “–> •” in the upper right corner.3 We designate the

concept Appointment in Figure 2.1 as the main concept because this domain ontology is for

making appointments. Figure 2.1 also shows relationship sets among concepts, represented

by connecting lines, such as Appointment is on Date. The arrow connections represent

functional relationship sets, from domain to range, and non-arrow connections represent

many-many relationship sets. For example, Service Provider has Name is functional from

Service Provider to Name (i.e. a service provider has only one name), and Service Provider

provides Service is many-many (i.e. a service provider can provide many services and a

service can be provided by many service providers). A small circle near the connection

between an object set O and a relationship set R represents optional, so that an instance of

O need not participate in a relationship in R. For example, the circle on the Appointment

side of the relationship set Appointment has Duration states that an instance of Appointment

may or may not relate to an instance of Duration (i.e. there need not be a specified duration

for an appointment). A triangle in Figure 2.1 defines a generalization/specialization with

a generalization connected to the apex of the triangle and a specialization connected to its

base. For example, Dermatologist is a specialization of Doctor.

The concepts in our domain ontology are augmented with data frames [Emb80]. A

data frame describes the information about a concept. We capture the information about

a concept in terms of its external and internal representation, its contextual keywords

or phrases that may indicate the presence of an instance of the concept, operations that

convert between internal and external representations, and other manipulation operations

that can apply to instances of the concept along with contextual keywords or phrases that

indicate the applicability of an operation. Figure 2.2 shows sample (partial) data frames for

the concepts Time, Date, Address, Distance, Dermatologist, and Appointment. The Time

data frame, for example, captures instances of this concept that end with “AM” or “PM”

(e.g. “2:00 PM” and “2:00 p.m”). As Figure 2.2 shows, we use regular expressions to

capture external representations. A data frame’s context keywords/phrases are also regular

expressions (often simple lists of keywords/phrases separated with “|”). For example, the
3This notation denotes that when this ontology is used to create an appointment, the object set Appoint-

ment becomes (“–>”) an object instance (“•”).

19

Time
…
textual representation: ([2-9]|1[012]?):([0-5]\d)[aApP]\.?[mM]\.? | …
…
end

Date
 …
NextWeek(d: Date)
returns (Boolean)
context keywords/phrases: next week |
 week from now | …
end

Tomorrow (s: String)
returns (Date)
context keywords/phrases: tomorrow | next day | …
…
end

Address
…
DistanceBetween (a1: Address, a2: Address)
returns (Distance)
…
end

Distance
internal representation : real
textual representation: ((\d+(\.\d+)?)|(\.\d+))
context keywords/phrases: miles | mile | mi | kilometers | kilometer | meters | meter | …
…
LessThan(d1: Distance, d2: Distance)
returns (Boolean)
context keywords/phrases: less than | < | …
…
end

LessThanOrEqual(d1: Distance, d2: Distance)
returns (Boolean)
context keywords/phrases: within | not more than |
 ≤ | …
…
end

Dermatologist
internal representation: object id
…
context keywords/phrases: [Dd]ermatologist | skin
 doctor | …
…
end

Appointment
internal representation: object id
…
context keywords/phrases: appointment |
 want to see a[n]? | …
…
end

Figure 2.2: Some sample data frames (partial). (The “...” in the textual-representation
part of the Time data frame in Figure 2.2 indicates that there are other representations of
Time such as military time. In general the presence of ellipses show that there are many
incomplete components of our data frames.)

Distance data frame in Figure 2.2 includes context keywords such as “miles” or “kilometers”.

In the context of one of these keywords, if a number appears, it is likely that this number

is a distance. The operations of a data frame can manipulate a concept’s instances. For

example, the Distance data frame includes the operation LessThan that takes two instances

of Distance and returns a Boolean. The context keywords/phrases of an operation indicate

an operation’s applicability, for example, context keywords/phrases such as “less than” and

20

“<” apply to the LessThan operation. A nonlexical concept such as Dermatologist often

only has context keywords or phrases. Figure 2.2 shows that the Dermatologist data frame

includes a regular expression which includes words and phrases that could indicate the

presence of the concept of a dermatologist.

2.4.2 Process Ontology

A process ontology describes an execution pattern in a domain. Figure 2.3 shows our process

ontology as specialized for scheduling appointments. We represent process ontologies and

specialized process ontologies as statenets [EKW92], a representation that lets us specify

standard Event-Condition-Action (ECA) rules [WC95, PPW03]. The statenet in Figure 2.3

is “specialized” from the general pattern in the sense that (1) all but the two final actions

(schedule and do not schedule) are parameterized by the domain ontology but otherwise

fixed over all services for which the system operates; and (2) given the domain ontology, the

system can fully generate these two final actions. Thus, any specialized process ontology

depends only on the domain ontology. Significantly (and somewhat surprisingly), this means

that system developers need never write code for services of the type our system handles;

specifying domain ontologies is sufficient to fully specify the services.

In this section, we describe the ECA rules used to construct a process ontology and

the execution pattern for the process ontology. We leave the details of the subprocesses

on which the process ontology depends to be discussed in Section 2.5. As we shall see,

all of these subprocesses are domain-independent. Domain-independence is what makes it

possible to automatically generate specialized process ontologies without having to write

any code.

A process ontology consists of states, represented as rounded rectangles (e.g. ready

and initial task-view ready in Figure 2.3), and transitions, represented as divided rectangles

(e.g. the @create/initialize transition in Figure 2.3). In the top part of a transition, we spec-

ify triggers, which are events or conditions or both. Events are prefixed by “@” (read “at”);

examples include @process-ontology(domain-ontology) and @task-view complete, where the

former is a parameterized event that triggers the transition when the event occurs (is called

from some other process), and the latter is a non-parameterized event that triggers the

21

@create

initialize

ready

@task-view complete

task-view, unsatisified-constraints = satisfy-contraints(task-view, task-constraints)

constraint satisfaction checked

task-view complete

missing information

task-view = get-from-system(task-view)
if (still missing values)
 task-view = get-from-user(task-view)

no missing information

unique satisfaction found

schedule-appointment(...)
report that the appointment is scheduled

unique satisfaction not found

report that the appointment cannot be scheduled
negotiation complete

@negotiation required

task-view = negotiate(task-view, unsatisfied contraints)

no constraint satisfaction

negotiation required

multiple constraints satisfaction
possibilities

unique constraint satisfaction

initial task-view ready

@process-ontology(domain-ontology)

task-view = create-task-view(domain-ontology)
task-constraints = create-task-constraints(task-view)

@create

initialize

ready

@task-view complete

task-view, unsatisified-constraints = satisfy-contraints(task-view, task-constraints)

constraint satisfaction checked

task-view complete

missing information

task-view = get-from-system(task-view)
if (still missing values)
 task-view = get-from-user(task-view)

no missing information

unique satisfaction found

schedule-appointment(...)
report that the appointment is scheduled

unique satisfaction not found

report that the appointment cannot be scheduled
negotiation complete

@negotiation required

task-view = negotiate(task-view, unsatisfied contraints)

no constraint satisfaction

negotiation required

multiple constraints satisfaction
possibilities

unique constraint satisfaction

initial task-view ready

@process-ontology(domain-ontology)

task-view = create-task-view(domain-ontology)
task-constraints = create-task-constraints(task-view)

Figure 2.3: A process ontology specialized for scheduling appointments.

22

transition when the task view is complete. Actions appear in the bottom part of divided

rectangles. The actions in a particular transition execute when the trigger of the transition

fires. Examples include create-task-view(domain-ontology) and get-from-system(task-view),

which both invoke subprocesses in our system.

The general flow of the process ontology is as follows. Once triggered and given

a domain ontology, the process ontology invokes the subprocess create-task-view(domain-

ontology) to create a task-view, which is the part of a domain ontology that matches with

the user-specified task, and then invokes the subprocess create-task-constraints(task-view)

to find and list the applicable constraints for the task. If all concepts in the task view

that are required to have values have already obtained their values from the user-given

task specification, the process ontology enters the task-view complete state; otherwise the

process ontology obtains values for these concepts from system repositories using the sub-

process get-from-system(task-view) and obtains values from the user it cannot obtain from

system repositories using the subprocess get-from-user(task-view). Next, the process ontol-

ogy checks for constraint satisfaction using the process satisfy-constraints(task-view, task-

constraints) and enters the constraint satisfaction checked state. If constraint satisfaction is

unique (exactly one set of values satisfies the constraints), no negotiation is necessary, so the

process enters the negotiation complete state; otherwise if there are multiple sets of values

that satisfy the constraints or if there are no sets of values that satisfy the constraints, the

process ontology enters the negotiation required state. During the negotiation phase, the

system and user work together in an attempt to find a unique solution. If a unique solution

is found, the process ontology schedules the appointment; otherwise the process ontology

reports that the appointment cannot be scheduled.

2.4.3 Task Ontology Recognition

The task ontology recognition process selects from among potentially many domain ontolo-

gies deployed on the semantic web the (correct) domain ontology for a task specification.

The recognition process takes the set of available domain ontologies and a task specification

as input, and returns the domain ontology that best matches with the task specification as

output. The recognition process works in two steps. First, for each domain ontology, the

23

�

�

�

�

�

�

Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrcian

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"
->

Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrcian

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"
->

Figure 2.4: The output of the recognition-process.

recognition process applies concept recognizers in the data frames to the task specification

and marks every concept that matches a substring in the task specification. Second, the

process computes a rank value for each domain ontology with respect to the task specifica-

tion and then selects the domain ontology with the highest rank value.

Referring to our running example, when the recognition process executes for the

domain ontology in Figure 2.1, the data frames in Figure 2.2, and the task specification in

Section 2.3, it produces the output in Figure 2.4. The concept recognizer in the data frame

for Dermatologist recognizes the constant value “dermatologist” in the task specification,

and therefore the concept Dermatologist is marked (
√

). Likewise, a recognizer in the

NextWeek operation in the Date data frame recognizes “next week”; in the Time data frame

recognizes the constant value “4:00”; in the Appointment data frame recognizes “want to

see a”; in the Place data frame recognizes “my home”; and would, in the Insurance data

frame, recognize “insurance”; and therefore these concepts are marked. The recognized

substrings cover a large part of the task specification; for our running example, we assume

24

that no other ontology covers the task specification as well and therefore that the system

selects the Appointment task ontology.4

2.5 Task Execution

The process ontology is responsible for executing tasks. As mentioned in Section 2.4.2, the

process ontology invokes subprocesses that either execute the same for all domain ontologies

or can be automatically generated from any given domain ontology. In this section we

discuss these subprocesses and justify our claim that all code needed to execute any service

can be fixed in advance or automatically generated.

2.5.1 Task View Creation

Task view creation takes a marked domain ontology as input and produces a task view as

output. Although not quite so simple because spurious object sets may be marked, the

process basically operates on its input as follows. It keeps the main concept of the domain

ontology (the concept marked with “–> •”), all marked concepts, and all concepts that

mandatorily depend on the main concept. It prunes away all other concepts along with

all their relationships as well as any marked concepts considered to be spurious because

they conflict with other marked concepts in the sense that constraints of the ontology

do not allow both, and these other marked concepts rank higher in applicability to the

task specification. In addition, the process replaces generalization concepts by marked

specializations, if any, and replaces non-lexical concepts by lexical concepts when there

is a one-to-one correspondence. The derived sub-ontology, consisting of the concepts and

relationships among the concepts that remain, is called the task view. Observe that this

process is domain independent—it operates identically for any defined domain ontology.

Referring to our running example, the resulting task view is in Figure 2.5. The

process does not prune Appointment because it is the main concept. It does not prune
4It is interesting to think about possible errors in the selection process. The task specification should

establish enough context for the system to select the right ontology. If the system selects the wrong task
ontology, it will respond in terms foreign to what the user expects, just like humans sometimes do. We can
correct the system by providing more or better context. As another possibility, the system may have no task
ontology for the service being requested; the system should be able to recognize this possibility and respond
by saying the service cannot be provided.

25

Dermatologist Insurance

Appointment

Address

Person

Name

Date Time
is atis on

has

is with

is for

is at

is at

has

->

accepts
Dermatologist Insurance

Appointment

Address

Person

Name

Date Time
is atis on

has

is with

is for

is at

is at

has

->

accepts

Figure 2.5: The task view for the specified task in Section 2.3.

Date, Time, Place, Insurance, and Dermatologist because they are marked, and it does not

prune Person, Name, and Service Provider because they mandatorily depend on the main

concept. Finally, the marked specialization Dermatologist replaces its generalization Service

Provider, and the lexical concept Address replaces the non-lexical concept Place with which

it has a one-to-one correspondence.

2.5.2 Task Constraint Creation

Given the task view and the operations in the data frames associated with the concepts

of a task view, the system generates any additional constraints imposed on a task beyond

those that are already part of the conceptual-modeling constraints of the task view. It then

combines them with the constraints in the task view to produce the full set of constraints.

The result is a formal statement in terms of predicate calculus that must be satisfied in

order to service the request.

Task constraint creation operates as follows.

1. Get the Boolean operations implied by the task specification. The task-constraint-

creation process finds all operations in the data frames whose recognizers match sub-

strings in the task specification and whose return types are Boolean. In our running

example, the process finds the operator NextWeek(d: Date) because, as Figure 2.2

26

shows, it is Boolean and one of its context phrases is “next week”, which appears

in the task specification in Section 2.3. Similarly, the process finds LessThanOrE-

qual(d1: Distance, d2: Distance) based on recognizing “within”, “5”, and “miles”

and recognizes Equal(i1: Insurance, i2: Insurance) based on recognizing “insurance”.

2. Get constant values from the task specification that can serve as parameters of the

Boolean operations. The data frames recognize and extract “5” as a Distance and

“4:00” as a Time. In our running example, we thus obtain LessThanOrEqual(d1:

Distance, “5”) and Time(“4:00”).5

3. Get operations that depend on the task view and can provide values for parameters of

the Boolean operations. For each Boolean operation, the process considers the type(s)

of the input parameter(s). If one or more input parameters has a type that does not

match a concept in the task view, the process tries to find an operation in the data

frames whose input parameter types are concepts in the task view and whose return

type matches the type of the input parameter; if successful, it replaces the input para-

meter with this operation. Referring to our example, LessThanOrEqual(d1: Distance,

“5”) has the input d1 of type Distance, which does not appear in the task view. Since,

however, Address does appear in the task view and the operation DistanceBetween(a1:

Address, a2: Address) returns a Distance, the task-constraint-creation process can

do a substitution, yielding LessThanOrEqual(DistanceBetween(a1: Address, a2: Ad-

dress), “5”).

4. Get sources, within the task view, for values of Boolean operations. To determine

the source of values for the input parameters of the Boolean operations, the process

makes use of the relationships in the task view. For example, the operation Dis-

tanceBetween(a1: Address, a2: Address) has two input parameters of type Address.

According to the relationships between the concepts in the task view, Address is re-

lated to both Dermatologist and Person. The process can therefore infer that the

value of one of the address parameters comes from a relationship in Dermatologist is

at Address and value of the other comes from a relationship in Person is at Address.
5Note that Time(x) is a one-place predicate. Every object set in a domain ontology is a one-place

predicate, and every n-ary relationship set is an n place predicate.

27

Appointment(x0) iswithDermatologist(x1) ∧Appointment(x0) is for Person(x2)
∧Appointment(x0) is on Date(x3) ∧Appointment(x0) is at T ime(“4:00”)
∧Dermatologist(x1)has Name(x4) ∧Dermatologist(x1) is atAddress(x5)
∧ ∃x(Dermatologist(x1) accepts Insurance(x) ∧ Insurance(x6) ∧ Equal(x, x6))
∧ Person(x2)hasName(x7) ∧Person(x2) is at Address(x8)
∧ ...
∧NextWeek(x3) ∧ LessThanOrEqual(DistanceBetween(x5, x8), “5”)
∧ ...
∧ ∀x∀y(Person(x) is atAddress(y) ⇒ Person(x) ∧Address(y))
∧ ∀x(Person(x) ⇒ ∃≤1y(Person(x) is at Address(y)))
∧ ...

Figure 2.6: Generated predicate calculus statement. (The statement is partial—it omits
several more referential integrity constraints, several more participation constraints, and all
unnecessary unary predicates for individual object sets.)

The process leaves any input parameter that it cannot determine as a free variable.

Because Insurance is related only to Dermatologist, the process determines that the

source of the value of one input parameter comes from a relationship in Dermatologist

accepts Insurance and leaves the other as a free variable. Also, since the relationship

set Dermatologist accepts Insurance is many-many, the process binds the parameter

i2 with the existential quantifier to declare that any one value of i2 that satisfies the

generated predicate calculus statement ∃i2(Dermatologist(x)acceptsInsurance(i2)∧
Equal(i1 , i2)) ∧ Insurance(i1) ∧ Insurance(i2)) is enough.

Figure 2.6 shows the resulting predicate calculus statement.6 Our objective, as we

continue, will be to provide values for free variables such that there is one and only one

appointment (i.e. one and only one value for the non-lexical argument x0 in Figure 2.6).

Before continuing, however, observe that the process that generates the predicate calculus

statement is domain independent because its algorithms are the same for all domains. The

process makes use of only the information provided by the task view and the associated

data frames. Once these are available, the process can discover constraints and produce a

predicate calculus statement using fixed algorithms that work for all domains.
6For those acquainted with description logics [BN03], we point out that this expression can be converted

into the language ALCN and its satisfiability is thus decidable and its complexity is ExpTime-complete. With
regard to complexity, we show in the next section that for our special case, we can reduce the execution to
a straightforward select-project-join query over a standard relational database to obtain the result we need.
We conjecture, and will prove as part of our future work, that all predicated-calculus expressions generated
from any domain ontology by the process we have described here will be decidable and, for the results we
need, will reduce to a straightforward relational-database query.

28

{< x1, x3, x4, x5, x > |
Appointment iswith Dermatologist(x1) and is on Date(x3) and is at T ime(“4:00”)

∧Dermatologist(x1)has Name(x4) ∧Dermatologist(x1) is atAddress(x5)
∧Dermatologist(x1) accepts Insurance(x)}

Figure 2.7: Generated predicate calculus statement.

2.5.3 Obtaining Information from the System

Given the predicate calculus statement in Figure 2.6, the system can generate a query for

the system’s appointment databases.7 Assuming that the appointment database has a view

definition that corresponds with its ontology, the generation of a relational calculus query

is straightforward. We simply cut the predicate calculus statement down to include only

those relationship sets that appear in the database’s ontological view, and in one case,

namely for the primary object set, we combine the relationship sets from the database’s

ontological view that are connected to the primary object set. For our running example, the

generated predicate calculus query is in Figure 2.7. In Figure 2.7 the Appointment is with

Dermatologist and is on Date and is at Time is the relationship set obtained by combining

Appointment is with Dermatologist, Appointment is on Date, and Appointment is at Time;

note that we do not also combine Appointment is for Person because this relationship set

is not part of the stored appointment database for making appointments—only available

appointment dates and times are in the database. Observe that given a predicate calculus

statement generated by the task-constraint-creation process and the ontological view of

the selected task ontology, the system can always generate this query; thus, this query

generation process is domain independent.

Execution of the generated query returns a set of partially filled-in interpretations.

For our running example, we show two partial interpretations in Figure 2.8, which we

assume are the only partial interpretations returned as a result of executing the relational

calculus query in in Figure 2.7. The meaning of the first of these interpretations is that

Dermatologist0, who is Dr. Carter has an appointment available on 5 Jan 05, which is

“next week” with respect to our assumed execution date, 30 Dec 04. The meaning of the

second is similar, but is for Dermatologist1 rather than Dermatologist0.
7We assume that the system has databases that store real-world instances of concepts of all domain

ontologies known to the system.

29

Interpretation1 :
Appointment(x0) iswithDermatologist(Dermatologist0)
∧ Appointment(x0) is for Person(x2)

∧ Appointment(x0) is onDate(“5 Jan 05”) ∧ Appointment(x0) is at T ime(“4:00”)
∧ Dermatologist(Dermatologist0)hasName(“Dr.Carter”)
∧ Dermatologist(Dermatologist0) is at Address(“600 State St., Orem”)
∧ (Dermatologist(Dermatologist0) accepts Insurance(“IHC”)

∧ Insurance(x6) ∧ Equal(“IHC”, x6)
∨ Dermatologist(Dermatologist0) accepts Insurance(“DMBA”)

∧ Insurance(x6) ∧ Equal(“DMBA”, x6))
∧ Person(x2)hasName(x7) ∧ Person(x2) is at Address(x8)
∧ ...
∧NextWeek(“5 Jan 05”) ∧ LessThanOrEqual(DistanceBetween(“600State St.,

Orem”, x8), “5”)
∧ ...

Interpretation2 :
Appointment(x0) iswithDermatologist(Dermatologist1)
∧ Appointment(x0) is for Person(x2)

∧ Appointment(x0) is onDate(“6 Jan 05”) ∧ Appointment(x0) is at T ime(“4:00”)
∧ Dermatologist(Dermatologist1)hasName(“Dr.Peterson”)
∧ Dermatologist(Dermatologist1) is at Address(“12 Main St., Lindon”)
∧ (Dermatologist(Dermatologist1) accepts Insurance(“DMBA”) ∧ Insurance(x6)
∧ Equal(“DMBA”, x6))

∧ Person(x2)hasName(x7) ∧ Person(x2) is at Address(x8)
∧ ...
∧ NextWeek(“6 Jan 05”) ∧ LessThanOrEqual(DistanceBetween(“12Main St.,

Lindon”, x8), “5”)
∧ ...

Figure 2.8: Partial interpretations.

2.5.4 Obtaining Information from a User

Observe that the remaining free variables are x0, which is the object we are trying to

establish; x2, which is the person for whom the appointment is being made; x6, which is the

insurance in the request; x7, which is the name of the person for whom the appointment is

being made; and x8, which is the address of the person for whom the appointment is being

made. We can establish the variable x0, which represents the appointment, if we can obtain

the remaining variables, which, of course, are exactly the ones we need to obtain from the

user.

When the system can recognize which which free variables need values (equivalently,

which concepts need values), the process of obtaining values from the user is domain inde-

pendent. Thus, if a lexical concept C requires a value from the user, the system can prompt

30

the user with the standard phrase, “What is the C?” For nonlexical concepts, the system

can generate object identifiers, as needed. For our running example, the system would ask:

(1) “What is the Insurance?”, (2) “What is the Name?”, and (3) “What is the Address?”.

These may well be understood in the context of the task being specified, but it is likely to

be better if the system can ask questions in context by verbalizing8 the context with respect

to the primary concept. In this case, for (2) the system would say, “Appointment is for

Person, and Person has Name. What is the Name?” and for (3) would say, “Appointment

is for Person, and Person has Address. What is the Address?”. There is no context for the

insurance other than the context established in the statement of the task specification in

Section 2.3, so for (1) the system would just say, “What is the Insurance?”.

For our running example, we assume that the user responds by answering the three

questions as: (1) “IHC”, (2) “Lynn Jones”, and (3) “300 State St., Provo”. Observe that

if the user had originally added the sentence, “The appointment is for my daughter, Lynn

Jones; we live at 300 State St. in Provo; and my insurance is IHC.” to the task specification

in Section 2.3, then the system could have extracted this information, and could have

executed without any need for asking the user for additional information.

2.5.5 Constraint Satisfaction and Negotiation

At this point in the process, the system has one free variable, namely the nonlexi-

cal object we are trying to establish (the Appointment for our example). If there is

only one interpretation that satisfies all the constraints, we are ready establish the ob-

ject and finalize the process. In our running example, since the insurance is “IHC”,

the second interpretation in Figure 2.8 cannot be satisfied because the only insur-

ance Dermatologist1 accepts is “DMBA.” The first interpretation can be satisfied if

DistanceBetween(“600State St., Orem”, “300State St., Provo”) is less than 5 miles. In

this case, the system can make the appointment for the user.

For the sake of further discussing constraint satisfaction and negotiation, we assume,

however, that the distance between the addresses is 6 miles. In this case, no interpretation
8Verbalization according to [Hal04] and verbalization with respect to the model-equivalent language for

OSM [LEW00] are examples of worked-out verbalizations that could be used in our application.

31

satisfies the constraints, and the system must either fail to make an appointment or find a

way to relax one or more constraints. One way to negotiate would be to take a generated

potential interpretation that does not satisfy the constraints, output the constraints that

are not satisfied, and ask the user what to do. Note that this way of negotiating is fully

independent of the domain, since the system is able to identify and list each constraint that

is not satisfied. For our running example, the system would display the following (hopefully,

sprinkled with a lot more syntactic sugar than exemplified here):

The following constraint(s) are not satisfied:

LessThanOrEqual(DistanceBetween(“600 State St., Orem”, “300 State St.,

Provo”), “5”)

where DistanceBetween(“600 State St., Orem”, “300 State St., Provo”) = 6

What do you wish to do?

Unfortunately, the system is now beginning a free-form conversation, which it is not in a

position to handle. The system can, however, ask the user to edit the task specification,

giving looser constraints and then reentering it, by adding, “Please respond by editing your

task specification, giving constraints that can be satisfied.” The user may, of course, not

wish to edit the task specification, in which case, the system reports that it cannot make

an appointment satisfying all the constraints.

To further discuss the possibilities, we next consider the system response if there

are two or more interpretations that satisfy all the constraints. For our running example,

if the user had specified “DMBA” as the insurance and “20” as the mileage extent, both

Interpretation1 and Interpretation2 would have satisfied all the constraints. In this case,

the system can respond by offering the two alternatives and allowing the system to select

one. If there are many interpretations that satisfy all the constraints, we must provide a

way to control the potential overload on the user. In the worst case, we can arbitrarily

present any k possibilities, where k is small, and let the user select one. As part of our

future work, we can likely find ways to have the system rank them, and then present the

top-k to the user.

32

 A7

 D0

 “4:00”
 “5 Jan 05”

 P100

 “Orem 600 State St.”
 “Provo 300 State St.”

 “Dr. Carter”
 “Lynn Jones”

 “IHC”
 “DMBA”

 NextWeek(“5 Jan 05”)
 Person(P100) is at Address(“300 State St., Provo”) ∧
 Dermatologist(D0) is at Address(“600 State St., Orem”) ∧
 LessThanOrEqual(DistanceBetween(“600 State St., Orem”, “300 State St., Provo”), “6”)
 ∃ x6 (Dermatologist(D0) accepts Insurance(x6) ∧ Equal(“IHC”, x6))

Figure 2.9: The scheduled appointment.

2.5.6 Process Finalization

At this point in the process, the system either has a single solution or has agreed with the

user that there is no solution. Hence, it is straightforward to know what to do. What is

interesting here is that although this code cannot be written in advance because it does

depend on the domain ontology, it can be generated on-the-fly by code that can be written

in advance.

In our running example, we assume that the user replaces “5 miles” with “6 miles,”

and thus that there is a unique solution. Hence, the process ontology schedules the ap-

pointment using the action schedule-appointment(“Lynn Jones”, ...). Figure 2.9 shows the

scheduled appointment. As shown, Appointment7 is scheduled for Person100 whose name

is “Lynn Jones”, with Dermatologist0 whose name is “Dr. Carter” on date “5 Jan 05” at

time “4:00” at address “600 State St., Orem”. The process ontology notifies the user that

the appointment is successfully scheduled.

The subprocess schedule-appointment(...) is domain dependent because it needs

knowledge about what object sets should be filled in with which objects in order to schedule

an appointment. However, given the ontology and the values for the free variables obtained

from the unique interpretation created by this time during the execution of the process

ontology, the system can use this knowledge to automatically generate code for this last

part of the process. Observe that this holds for any domain so long as the objective is to

insert an object into an object set of interest and then satisfy all applicable constraints.

33

Thus, since this is exactly the kind of service our system provides, it is always possible for

the system to generate the finalization step for any domain ontology.

2.6 Prototype Implementation Status and Future Work

The success of our conceptual-model-based, semantic-web-services system will depend

largely on its ability to successfully extract information from free-form text specifications

of desired services. Our long-standing work on information-extraction ontologies [ECJ+99]

provides the basis for this component of our system. Building on our work on information-

extraction ontologies, we have implemented an initial end-to-end prototype that accepts

free-form text specifications; finds an appropriate task ontology for the specification (if one

exists); produces a task view for the specification; determines whether there is missing in-

formation; and, if not, establishes the primary object and thus performs the service. Our

system does not yet obtain and use task-specified Boolean functions and other functions on

which they depend; does not yet use its system database to obtain values for free variables,

does not yet do negotiation. Adding these features is part of our current work.

As for future work, we expect to investigate more explicitly the boundaries of ap-

plicability. Should the system, for example, be required to handle more complex cases? The

system, as currently envisioned, does not for instance, allow users to compose tasks nor to

specify conditional tasks or iterative tasks. As currently proposed, a user can compose tasks

only by specifying two successive tasks, e.g. make an appointment with a dermatologist and

then make an appointment for a haircut. For conditional tasks, such as “If I can see Dr.

Peterson within a week, make an appointment with Dr. Peterson; otherwise make an ap-

pointment with Dr. Carter.”, the user would have to query the system to determine whether

an appointment could be made with Dr. Peterson within a week and then, depending on

the answer, either make an appointment with Dr. Peterson or Dr. Carter. Further, it is also

not clear whether the system needs to handle complex task specifications that would require

the system to use natural language processing or other techniques to disambiguate sentence

structures or to resolve pronoun references. As the system now stands, users would have

34

to become used to its limited ability to actually understand.9 Whether this is sufficient to

be serviceable for the general public on a broad enough basis to be useful is not yet known,

but there is reason to believe it is, and there is reason to believe that this approach will be

more widely acceptable to ordinary users than systems that allow service selection [AHS03]

or require an artificial, formalized subset of natural language [BKF05].

2.7 Concluding Remarks

We have described a system that makes it possible for ordinary users to invoke services using

form-free task specifications. As salient features, the system strongly relies on (1) conceptual

modeling, which forms the basis for both domain ontologies and process ontologies, (2)

extraction ontologies, which allows the system to obtain the information it needs to match

user requests with an appropriate domain ontology, and (3) domain-independent process

ontologies that can be automatically specialized for any given domain, which makes our

approach work across domains without need for manual configuration.

Acknowledgements

This work is supported in part by the National Science Foundation under grant IIS-0083127

and by the Kevin and Debra Rollins Center for eBusiness at Brigham Young University

under grant EB-05046.

9By analogy, this is not unlike trying to ask for a service such as a taxi ride or a hotel reservation in a
foreign country with only a limited ability to speak the language. People can succeed because they are in
the right context and know enough to say to specify their needs.

35

Bibliography

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,

K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.

Business Process Execution Language for Web Services. Website, May 2003.

http://www-128.ibm.com/developerworks/library/specification/ws-bpel.

[AHS03] S. Agarwal, S. Handschuh, and S. Staab. Surfing the Service Web. Springer-

Verlag Berlin Heidelberg, 2870(3):211–226, 2003.

[BKF05] A. Bernstein, E. Kaufmann, and N. E. Fuchs. Talking to the Semantic Web –

A Controlled English Query Interface for Ontologies. AIS SIGSEMIS Bulletin,

2(1):42–47, January-March 2005.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 284(5):34–43, May 2001.

[BN03] F. Baader and W. Nutt. Basic Description Logics. In F. Baader, D. Calvanese,

D. McGuinness, D. Nardi, and P. Patel-Schneider, editors, The Description

Logic Handbook, chapter 2, pages 43–95. Cambridge University Press, Cam-

bridge, UK, 2003.

[ECJ+99] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, D. W. Lonsdale,

Y. K. Ng, and R. D. Smith. Conceptual-Model-Based Data Extraction from

Multiple-Record Web Pages. Data & Knowledge Engineering, 31(3):227–251,

November 1999.

[EKW92] D. W. Embley, B. K. Kurtiz, and S. N. Woodfield. Object-Oriented Systems

Analysis: A Model Driven Approach. Yourdon Press, Englewood Cliffs, New

Jersey, 1992.

36

[Emb80] D. W. Embley. Programming with Data Frames for Everyday Items. In D. Med-

ley and E. Marie, editors, Proceedings of AFIPS Conference, pages 301–305,

Anheim, California, May 1980.

[FB02] D. Fensel and C. Bussler. The Web Service Modeling Framework (WSMF).

Electronic Commerce Research and Applications, 1(2):113–137, 2002.

[GBR05] B. Gold-Bernstein and W. Ruh. Enterprise Integration. Addison Wesley,

Boston, Massachusetts, 2005.

[Hal04] T. Halpin. Business Rule Verbalization. In Proceedings of the 3rd International

Conference on Information Systems Technology and its Applications, pages 39–

52, Salt Lake City, Utah, July 2004.

[KA04] M. Klein and B. Abraham. Towards High-Precision Service Retrieval. IEEE

Internet Computing, 8(1):30–36, January 2004.

[LEW00] S. W. Liddle, D. W. Embley, and S. N. Woodfield. An Active, Object-Oriented,

Model-Equivalent Programming Language. In M. P. Papazoglou, S. Spaccapi-

etra, and Z. Tari, editors, Advances in Object-Oriented Data Modeling, pages

333–361. MIT Press, Cambridge, Massachusetts, 2000.

[MA02] K. Mark and B. Abraham. Searching for Services on the Semantic Web using

Process Ontologies. In I. Cruz, S. Decker, J. Euzenat, and D. McGuinness,

editors, The Emerging Semantic Web-Selected papers from the first Semantic

Web Working Symposium, pages 159–172. Amsterdam, Netherlands, August

2002.

[MDCG03] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework and

Infrastructure for Semantic Web Services. In Proceedings of the 2nd Interna-

tional Semantic Web Conference (ISWC 2003), pages 306–318, Sanibel Island,

Florida, October 2003.

[MSZ01] S.A. McIlraith, T.C. Son, and H. Zeng. Semantic Web Services. IEEE Intelli-

gent Systems, 16(2):46–53, March-April 2001.

37

[OWL04] OWL-S Coalition, OWL-S 1.0 Release. Website, 2004.

http://www.daml.org/services/owl-s/1.0/.

[PPW03] G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event-Condition-Action

Rule Languages for the Semantic Web. In I. Cruz, V. Kashyap, S. Decker, and

R. Eckstein, editors, Proceedings of the 1st International Workshop on Seman-

tic Web and Databases (SWDB 2003), pages 309–327, Humboldt-Universität,

Berlin, Germany, September 2003.

[WC95] J. Widom and S. Ceri. Active Database Systems. Morgan–Kaufmann, San

Mateo, California, 1995.

[WS05] W3C. Web Services Activity home page. Website, 2005.

http://www.w3.org/2002/ws.

38

Chapter 3

Ontology-Based Constraint Recognition for

Free-Form Service Requests

Abstract

Automatic recognition and formalization of constraints from free-form service requests is

a challenging problem. Its resolution would go a long way toward allowing users to make

requests using free-form, natural-language-like specifications. In this paper, we address

this challenge by offering an ontology-based, semantic-data-modeling approach to recognize

constraints in free-form service requests. We encode domain information such as possible

constraints and instances within a domain ontology in terms of object sets, relationship sets

among these object sets, and operations over values in object sets and relationship sets. Our

system recognizes the constraints in a service request by finding the domain ontology that

best matches the request and then by using relationships and operations relevant to the

request in the matched ontology to generate the service-request constraints. In experiments

conducted with our prototype implementation, our system achieved an average of 96% recall

and 99% precision.

39

3.1 Introduction

Allowing users to specify service requests using fully free-form specifications is likely, if

successful, to enhance their ability to obtain needed services. Consider, for example, the

free-form request for an appointment with a dermatologist in Figure 3.1: “I want to see a

dermatologist between the 5th and the 10th, at 1:00 PM or after. The dermatologist should

be within 5 miles of my home and must accept my IHC insurance.” To handle this request,

a system must somehow recognize the constraints involved and transform them to a formal

specification such as the one in Figure 3.2. If the system can recognize the constraints in

Figure 3.1 and represent them in a predicate-calculus formalism like the one in Figure 3.2,

then servicing this request becomes a matter of instantiating the free variables, the xi’s,

such that the constraints are satisfied.

This paper proposes a particular way to recognize constraints from free-form service

requests such as the request in Figure 3.1. Rather than use traditional natural language ap-

proaches that depend on syntax analysis (e.g. [LYJ06]) or statistical analysis (e.g. [PAE04]),

this paper introduces an ontological approach that depends on the long-standing notion of

a semantic data model. In our ontology-based approach, a domain ontology encodes in-

formation such as applicable object sets, potential constraints over these object sets, and

recognizers for instances of these object sets and constraints. The system recognizes the

constraints in a service request by a two-fold process. (1) It matches a free-form service

request against a collection of ontologies that belong to different domains to find the on-

tology that matches best. (2) It then selects from the given and implied constraints in the

matched ontology those that are relevant to the service request to generate the constraints.

The semantic data model of our approach characterizes the type of service requests

our system is capable of handling. Specifically, our approach handles service requests whose

objective is to instantiate an object set of interest in the domain ontology with a single value

such that all applicable constraints are satisfied. The objective of the appointment request

in Figure 3.1, for example, is to instantiate the variable x0 in Figure 3.2 with a value of type

Appointment such that constraints on Date, Time, Distance, and Insurance are satisfied.

This type of service covers a wide range of everyday service requests. Examples include

40

I want to see a dermatologist between the 5th and the 10th, at 1:00 PM or
after. The dermatologist should be within 5 miles of my home and must
accept my IHC insurance.

Figure 3.1: A free-form appointment request.

//I want to see a dermatologist
Appointment(x0) iswith Dermatologist(x1) ∧Appointment(x0) is for Person(x2)
∧Dermatologist(x1) hasName(x3) ∧ Person(x2) hasName(x4)

//between the 5th and the 10th
∧Appointment(x0) is on Date(x5) ∧DateBetween(x5, “the 5th”, “the 10th”)

//at 1:00 PM or after
∧Appointment(x0) is at T ime(x6) ∧ TimeAtOrAfter(x6, “1:00 PM”)

//within 5 miles from my home
∧Dermatologist(x1) is atAddress(x7) ∧ Person(x2) is at Address(x8)
∧DistanceLessThanOrEqual(DistanceBetweenAddresses(x7, x8), “5”)

//accept my IHC insurance
∧Dermatologist(x1) accepts Insurance(x9) ∧ InsuranceEqual(x9, “IHC”)

Figure 3.2: The predicate-calculus formalism for the appointment request in Figure 3.1.

scheduling appointments, buying and selling products, renting apartments, renting cars,

making hotel reservations, setting up meetings, and many more.1

Further, our initial work is for handling free-form service requests with conjunctive

constraints. Therefore, our system in its current state does not handle service requests with

negated constraints such as “not at 1:00 PM,” disjunctive constraints such as “at 10:00 AM

or after 3:00 PM,” and conditional constraints such as “if the appointment can be next

week, schedule me with Dr. Carter; otherwise with Dr. Jones.” Conjunctive requests are

common, are a restriction to which users can likely adjust, and may be sufficiently useful

by themselves. In any case, they represent a fundamental starting point from which our

approach may be extended to cover other types of constraints.

Our ontology-based approach also has the interesting advantage of being fully declar-

ative. The algorithms to find the ontology that matches best, generate constraints, and

produce a formal representation for the constraints are fixed. They work across domains

with no need for recoding or reconfiguration. As a consequence, to produce formal rep-
1We intend the word “service” to be thought of in accordance with its typical meaning—“an act of

assistance or benefit.” Technically, we define a very special type of service (as described herein). We do not
intend our services to be thought of in other technical ways such as registering services with a broker so that
they can be found by expressing their functionality in terms of inputs, outputs, and capabilities.

41

resentations for service requests belonging to a new domain, it is sufficient to specify the

domain ontology—no coding is necessary.

The paper makes the following contributions. First, it proposes an ontological ap-

proach to recognize and formalize constraints in free-form service requests. Second, it makes

a significant step toward allowing users to invoke services by specifying them using only free-

form specifications. Third, the proposed ontological approach allows service providers to

define services belonging to a domain by only specifying knowledge (a domain ontology)

not behavior (algorithms and code).

We present our contributions as follows. Section 3.2 introduces domain knowl-

edge. It describes the explicitly given domain knowledge encoded in terms of a domain

ontology (Subsections 3.2.1 and 3.2.2) and the knowledge implied by a domain ontology

(Subsection 3.2.3). Section 3.3 shows how to match a free-form service request to a domain

ontology and obtain the ontology that matches best. Section 3.4 explains how to use the

matched ontology to produce formal representations. It shows how to identify the parts of

the best matching domain ontology that are relevant to a service request (Subsection 3.4.1)

and how to identify any needed operations (Subsection 3.4.2). It then shows how to use the

ontology, including both given and implied relationships sets and operations, to generate

predicates (Subsection 3.4.3). In Section 3.5 we evaluate our approach. In Section 3.6 we

compare our approach to other related work, and in Section 3.7 we give concluding remarks

and directions for future work.

3.2 Domain Knowledge

In this section we describe the knowledge our system needs to generate a formal repre-

sentation for a service request in terms of a domain ontology. First, the system requires

explicit knowledge of basic concepts related to the service request. This explicit knowledge

is encoded in terms of a domain ontology, which consists of two major components: (1) a

semantic data model declaring sets of objects, sets of relationships, and constraints over

the object and relationship sets (Subsection 3.2.1) and (2) instance semantics declaring

recognizers for object set data values as well as operations applicable to these data values

42

Doctor

InsuranceInsurance SalespersonService Provider

ServiceDescription

Medical Service Provider

Appointment

Address

Person

Name

Pediatrician
Duration

Auto Service Provider Auto Mechanic

Dermatologist

Cost

Date

Time

has

is at

is on

has

provides

has

is with

is for

is at

is at

has

->

has

sells

accepts

Person Address

Doctor

InsuranceInsurance SalespersonService Provider

ServiceDescription

Medical Service Provider

Appointment

Address

Person

Name

Pediatrician
Duration

Auto Service Provider Auto Mechanic

Dermatologist

Cost

Date

Time

has

is at

is on

has

provides

has

is with

is for

is at

is at

has

->

has

sells

accepts

Person Address

Figure 3.3: Semantic-data-model view of a domain ontology for appointments (partial).

(Subsection 3.2.2). Second, the system includes implicit knowledge—implied object sets,

relationship sets, and constraints, which are based on knowledge explicitly given in the

domain ontology (Subsection 3.2.3).

3.2.1 Semantic Data Model

A semantic data model specifies named sets of objects, which we call object sets, named

sets of relationships among object sets, which we call relationship sets, and constraints

over object and relationship sets. Figure 3.3 shows a small part of a semantic data model

representation of a domain ontology for scheduling an appointment. The semantic data

model consists of object-set concepts such as Date, Time, and Service Provider that can be

used to schedule appointments with service providers such as doctors and auto mechanics.

The semantic data model has two types of object sets, those that are lexical (enclosed in

dashed rectangles) and those that are nonlexical concepts (enclosed in solid rectangles). An

object set is lexical if its instances are indistinguishable from their representations. Time is

an example of a lexical object set because its instances (e.g. “10:00 a.m.” and “2:00 p.m.”)

represent themselves. An object set is nonlexical if its instances are object identifiers, which

43

represent real-world objects. Dermatologist is an example of a nonlexical object set because

its instances are identifiers such as, say, “D1”, which represents a particular person in the

real world who is a dermatologist. Each object set maps to a one-place predicate. For

instance, the predicate Date(x) is derived from the object set Date in Figure 3.3. The

variable x in the predicate Date(x) represents a place holder.

We designate the main object set in a semantic data model by marking it with

“–> •” in the upper right corner. This notation,“–> •”, denotes that when an ontology is

used to satisfy a service request, the main object set becomes (“->”) an object (“•”). We

designate Appointment in Figure 3.3 as the main object set because this domain ontology is

for making appointments. The system satisfies a service request by instantiating the main

object set with a single value.

Figure 3.3 also shows relationship sets among object sets, represented by connecting

lines, such as Appointment is on Date. The arrow connections represent functional relation-

ship sets, from domain to range, and non-arrow connections represent many-many relation-

ship sets. For example, Service Provider has Name is functional from Service Provider to

Name (i.e. a service provider has only one name), and Service Provider provides Service is

many-many (i.e. a service provider can provide many services and a service can be provided

by many service providers). A small circle near the connection between an object set O

and a relationship set R represents optional, so that an instance of O need not participate

in a relationship in R. For example, the small circle on the Appointment side of the re-

lationship set Appointment has Duration states that an instance of Appointment may or

may not relate to an instance of Duration (i.e. there need not be a specified duration for

an appointment). Each relationship set of arty n (n ≥ 2) maps to an n-place predicate.

For instance, Appointment(x0) is with Service Provider(x1) is a two-place predicate derived

from the relationship set Appointment is with Service Provider in Figure 3.3.

Constraints over unary predicates (object sets) and n-ary predicates (relationship

sets) are closed predicate-calculus formulas. Referential integrity holds; thus, for example,

for our ontology in Figure 3.3 we have ∀x∀y(Doctor(x) accepts Insurance(y) ⇒ Doctor(x)

∧ Insurance(y)). Each functional constraint from an object set O to some other object

44

set over a binary2 relationship set R has the form ∀x(O(x) ⇒ ∃≤1yR(x, y)). For instance,

∀x (Service Provider(x) ⇒ ∃≤1y(Service Provider(x) has Name(y))) is the functional con-

straint for the relationship set from Service Provider to Name. Each constraint for a manda-

tory object set O for a binary relationship set R has the form ∀x(O(x) ⇒ ∃≥1yR(x, y)).

For instance, ∀x (Service Provider(x) ⇒ ∃≥1y(Service Provider(x) has Name(y))) is the

mandatory constraint for Service Provider in the Service Provider has Name relationship

set.

A triangle in an ontology diagram (see Figure 3.3) denotes generaliza-

tion/specialization. The generalization object set connects to the apex of the triangle,

and specialization object sets connect to its base. For each generalization/specialization,

we write the constraint ∀x(S1(x) ∨ ... ∨ Sn(x) ⇒ G(x)), where G is the generalization ob-

ject set and S1, ..., Sn are the specialization object sets. If the generalization/specialization

has mutual-exclusion constraint (represented by the “+” in the triangle in Figure 3.3), we

also write the constraints ∀x(Si(x) ⇒ ¬Sj(x)) for 1 ≤ i, j ≤ n, i 6= j. In Figure 3.3,

for example, the constraint ∀x(Dermatologist(x) ∨ Pediatrician(x) ⇒ Doctor(x)) states

that dermatologists and pediatricians are specializations of doctors, and the constraints

∀x(Dermatologist(x) ⇒ ¬Pediatrician(x)) and ∀x(Pediatrician(x) ⇒ ¬Dermatologist(x))

state that dermatologists and pediatricians are mutually exclusive.

Every connection between an object set and a relationship set is a role. A role

designates the set of objects of an object set that participate in a relationship set. If we

wish to name the role, we place the role name near the connection between its object set and

its relationship set. For instance, the role Person Address in Figure 3.3 appears near the

connection between the object set Address and the relationship set Person is at Address. A

named role is a specialization of the object set to which it connects. Person Address thus

represents the subset of addresses that associate with persons.
2The definition of the constraints for binary relationship sets can easily be extended to n-ary relationship

sets for n > 2.

45

3.2.2 Data Frames

Each object set (including each named role) in a domain ontology has an associated data

frame [Emb80], which describes instances for the object set. Data frames capture the

information about object-set instances in terms of their external and internal representation,

their context keywords or phrases that may indicate their presence, operations that convert

between internal and external representations, and other manipulation operations that can

apply to instances of the object set along with context keywords or phrases that indicate

the applicability of an operation and operands in an operation. Figure 3.4 shows sample

(partial) data frames for Time, Date, Address, Person Address, Dermatologist, Appointment,

Insurance, and Distance.

As Figure 3.4 shows, we use regular expressions to capture external textual repre-

sentations. The Time data frame, for example, captures instances that end with “AM” or

“PM” (e.g. “2:00 PM” and “9:30 a.m.”). A data frame’s context keywords/phrases are also

regular expressions. For example, the Distance data frame in Figure 3.4 includes context

keywords such as “miles” or “kilometers”. In the context of one of these keywords, if a

number appears, it is likely that this number is a distance. A nonlexical object set such as

Dermatologist has only context keywords or phrases. Figure 3.4 shows that the Dermatol-

ogist data frame includes a regular expression, which includes keywords and phrases that

could indicate the presence of an instance of a dermatologist.

The operations in data frames manipulate object-set instances. For example, the

operation DistanceBetweenAddresses(a1 : Address, a2 : Address) computes the distance

between its two address arguments a1 and a2. Boolean operations represent possible general

constraints in the domain. For instance, the Boolean operation TimeAtOrAfter(t1 : Time,

t2 : Time) in the Time data frame returns true if time t1 is the same as or comes after

time t2.

The context keywords/phrases for an operation indicate the possible applicabil-

ity of the operation. The context keywords/phrases are regular expressions that include

keywords or phrases and possibly expandable expressions represented by operand names

enclosed in braces. The system expands these expressions by finding the types of their

46

Time
...
text representation:

([2-9]|1[012]?):([0-5]\d)\s*[aApP]\.?[mM]\.?|...
TimeAtOrAfter(t1: Time, t2: Time)

returns (Boolean)
context keywords/phrases:

(at\s+)?{t2}\s+or\s+after|...
TimeEqual(t1: Time, t2: Time)

returns (Boolean)
context keywords/phrases: (at\s+)?{t2}

...
Date

...
text representation:

...|(the\s+)?([1-9]|[12]\d|3[01])\s*(th|...)|...
DateBetween(x1: Date, x2: Date, x3: Date)

returns (Boolean)
context keywords/phrases:

between\s+{x2}\s+and\s+{x3}|...
...

Address
...
DistanceBetweenAddresses(a1: Address, a2: Address)

returns (Distance)
...

Person Address
...
context keywords/phrases:

(my\s+)?home|(my\s+)?house|where\s+I\s+live|...
...

Dermatologist
internal representation: object id
context keywords/phrases:

[Dd]ermatologist|skin\s+doctor|...
...

Appointment
internal representation: object id
context keywords/phrases:

appointment|want\s+to\s+see\s+an?|...
...

Insurance
...
text representation: IHC|DMBA|...
context keywords/Phrases:

insurance|medical\s+insurance|...
InsuranceEqual(i1: Insurance, i2: Insurance)

returns (Boolean)
context keywords/phrases: {i2}

...
Distance

internal representation: real
text representation: \d+(\.\d+)?|(\.\d+)
context keywords/phrases: miles?|kilometers?|...
DistanceLessThanOrEqual(d1: Distance, d2: Distance)

returns (Boolean)
context keywords/phrases: (within|...)\s+{d2}|...

...

Figure 3.4: Some sample data frames (partial). (The “...” in the textual-representation
part of the Time data frame indicates that there are other representations of Time such
as military time. In general the presence of ellipses show omissions needed to complete the
data frames.)

47

operands and substituting the textual representations in the data frames of the types for

these expressions. The advantage of marking these expandable expressions with operands

is that when context keywords/phrases for an operation match substrings in a service re-

quest, the system can record which values are for which operands. For instance, the context

keywords/phrases associated with the operation DateBetween in Figure 3.4 has the regu-

lar expression between\s+{x2}\s+and\s+{x3}, which includes the expandable expressions

{x2} and {x3}. As Figure 3.4 shows, the operands of these two expressions are of type

Date. When this regular expression matches a substring in a request such as “make the

appointment between the 10th and the 15th,” the system can record that the first date

value (“the 10th”) is for x2 and the second date value (“the 15th”) is for x3.

3.2.3 Implied Knowledge

Object sets, relationship sets, and constraints that can be computed from the domain

ontology constitute the implied knowledge. For example, the system can derive a rela-

tionship set between Appointment and Name from the given relationship sets Appoint-

ment is with Service Provider and Service Provider has Name. The system can also

determine that Name mandatorily depends on Appointment from the given constraints

∀x(Appointment(x) ⇒ ∃≥1y(Appointment(x) is with Service Provider(y))) and ∀x(Service

Provider(x)⇒ ∃≥1z (Service Provider(x) has Name(z))), where the former states that Ser-

vice Provider is mandatory for Appointment and the latter states that Name is mandatory

for Service Provider. Further, the system can determine that Name functionally depends

on Appointment from the given constraints ∀x(Appointment(x) ⇒ ∃≤1y(Appointment(x)

is with Service Provider(y))) and ∀x(Service Provider(x) ⇒ ∃≤1z (Service Provider(x) has

Name(z))). As additional examples, there are many implied generalization/specialization

constraints derivable from the constraints in Figure 3.3. For instance, the system can derive

the implied constraint ∀x(Dermatologist(x)⇒ Service Provider(x)) by transitivity from the

following given constraints: ∀x(Dermatologist(x) ⇒ Doctor(x)), ∀x(Doctor(x) ⇒ Medical

Service Provider(x)), and ∀x(Medical Service Provider(x) ⇒ Service Provider(x)).

The connections between operands of an operation in a data frame and the re-

lationship sets of a semantic data model may be implicit. Consider, for example, the

48

operation DistanceBetweenAddresses in the Address data frame, which computes the dis-

tance between two addresses. It is not explicitly given in the domain ontology, Figures 3.3

and 3.4, whether this operation computes the distance given two service-provider ad-

dresses, two person addresses, or a service-provider address and a person address. The

system, however, can reason that for an appointment, if there is a constraint on dis-

tance, then it must be between a service-provider address and a person address. The

system reasons as follows. The constraints ∀x(Appointment(x) ⇒ ∃≤1y(Appointment(x) is

with Service Provider(y))) and ∀x(Appointment(x) ⇒ ∃≥1y(Appointment(x) is with Ser-

vice Provider(y))) allow the system to infer the implicit constraint ∀x(Appointment(x)

⇒ ∃1y(Appointment(x) is with Service Provider(y))), which states that for any appoint-

ment there exists exactly one service provider. The system can derive from the constraints

∀x(Service Provider(x) ⇒ ∃≤1y(Service Provider(x) is at Address(y))) and ∀x(Service

Provider(x) ⇒ ∃≥1y(Service Provider(x) is at Address(y))) the constraint ∀x(Service

Provider(x) ⇒ ∃1y(Service Provider(x) is at Address(y))), which states that there is ex-

actly one address for a service provider. Given these two derived constraints, since there is

at most one service-provider address for an appointment, the system can certainly exclude

the possibility that DistanceBetweenAddresses computes distances between two addresses

of service providers when it makes an appointment. Likewise, the system can exclude

the possibility that DistanceBetweenAddresses computes the distance between addresses of

persons. Thus, the system can infer that the two operands a1 and a2 of the operation

DistanceBetweenAddresses must obtain their values from addresses in the relationship sets

Service Provider is at Address and Person is at Address.

3.3 Domain Ontology Recognition

In our ontology-based approach, the objective of the domain ontology recognition process

is to find a domain ontology that best matches a service request. The process takes a set

of available ontologies belonging to different domains and a service request as input and

returns a marked-up domain ontology that best matches the service request as output.

49

�

�

�

�

�

�

�

Doctor

InsuranceInsurance SalespersonService Provider

ServiceDescription

Medical Service Provider

Appointment

Address

Person

Name

Pediatrician
Duration

Auto Service Provider Auto Mechanic

Dermatologist

Cost

Date

Time

has

is at

is on

has

provides

has

is with

is for

is at

is at

has

->

has

sells

accepts

Person Address

Doctor

InsuranceInsurance SalespersonService Provider

ServiceDescription

Medical Service Provider

Appointment

Address

Person

Name

Pediatrician
Duration

Auto Service Provider Auto Mechanic

Dermatologist

Cost

Date

Time

has

is at

is on

has

provides

has

is with

is for

is at

is at

has

->

has

sells

accepts

Person Address

(a) Matched (
√

) object sets in the semantic data model in Figure 3.3.

√
Distance√
TimeAtOrAfter(t1: Time, “1:00 PM”)√
DateBetween(x1: Date, “the 5th”, “the 10th”)√
DistanceLessThanOrEqual(d1: Distance, “5”)√
InsuranceEqual(i1: Insurance, “IHC”)

(b) Matched (
√

) object sets and operations in the data frames
in Figure 3.4.

Figure 3.5: Output of the recognition process—the marked-up domain ontology.

For each domain ontology, the system applies all the recognizers in the data frames

of every object set in the domain ontology to the service request. It marks every object

set whose recognizers match a substring in the service request and every operation whose

applicability recognizers match a substring in the service request. The result of the matching

is a set of marked-up domain ontologies.3

When the recognition process executes for the domain ontology in Figures 3.3 and 3.4

and the appointment request in Figure 3.1, it produces as output the marked-up ontology in

Figure 3.5. Figure 3.5(a) shows the matched (
√

) object sets in the semantic data model in
3To scale this part of the ontology recognition process to a large set of ontologies, we would need to use

some form of indexing or do some light-weight filtering to reduce the large set of ontologies to a small set of
candidate ontologies.

50

Figure 3.3, and Figure 3.5(b) shows the matched (
√

) operations and the additional object

sets from Figure 3.4. The recognizers in the data frame in Figure 3.4 for Dermatologist

recognize the context keyword “dermatologist” in the service request in Figure 3.1, and

therefore Dermatologist is marked (
√

). Likewise, as Figure 3.4 makes evident, recognizers

in the Date data frame recognize “between the 5th and the 10th”; in the Time data frame

recognize “at 1:00 PM or after”; in the Distance data frame recognize “within 5 miles”;

in the Appointment data frame recognize “want to see a”; in the Insurance data frame

recognize the context keyword “insurance” and the constant value “IHC”; and in the Person

Address data frame recognize the context phrase “my home”. Therefore these object sets

are marked. Although not included in Figure 3.4, we assume that the recognizer for context

keywords in the Insurance Salesperson data frame would recognize “insurance”. Therefore

Insurance Salesperson is marked.

Given the data frames in Figure 3.4, additional matched operations and object sets

may have been expected. For example, the context keywords/phrases for the operation

TimeEqual in the Time data frame would match “at 1:00 PM” and the Cost data frame

may have recognizers that match “within 5”. We eliminate these matches, however, based

on a subsumption heuristic. This heuristic uses the positions of the matched substrings

in a service request to determine whether a matched substring subsumes another matched

substring. The system does not mark an object set or an operation if its matched substring

is properly subsumed by another matched substring. We assume that there is only one

match for a string and that the subsuming substring is a better match. Thus, although the

context keywords/phrases for the operation TimeEqual would recognize “at 1:00 PM”, the

system would not mark the operation TimeEqual because it matches with only the substring

“at 1:00 PM”, which is subsumed by the substring “at 1:00 PM or after”, matched by the

operation TimeAtOrAfter.

To choose the marked-up domain ontology that best matches the service request,

the system ranks them. In our approach, the system grants rank values for each marked-

up domain ontology based on the marked object sets. The marked main object set of

the marked-up ontology has the highest weight for obvious reasons. Marked mandatory

object sets contribute with the next highest weight because they represent the necessary

51

requirements to establish the main concept. Marked optional object sets contribute with

lower weights because they are not necessary for establishing the main concept.4 To continue

with our running example, we assume that the system selects our appointment ontology as

the best matched ontology for the service request in Figure 3.1.

3.4 Formal Representation Generation

A formal representation of a free-form service request is a predicate-calculus formula. The

system generates the predicates of a formal representation for a free-form service request

only from the given and implied knowledge. It cannot generate predicates for constraints

in a service request that refer to object sets, relationship sets, constraints, or operations

beyond this knowledge. For instance, if the appointment ontology designer leaves out the

Insurance object set, any constraint in a service request about insurance such as “must

accept my IHC insurance” will be ignored.

The input to the formal representation generation process is a marked-up ontology.

The output is a predicate-calculus formula. Not all knowledge in a marked-up ontology is

relevant. Irrelevant knowledge should be pruned away. Otherwise, the system will generate

an overconstrained predicate-calculus formula. The system, therefore, should find the sub-

ontology including object sets, relationship sets, and operations that are relevant to the

service request. We call this sub-ontology the service request view. In Subsections 3.4.1

and 3.4.2, we explain how the system generates the components of the service request view.

In Subsection 3.4.3, we show how the system uses the service request view to generate the

formal representation.
4The actual weights that we used in our experiments were 3 for the main object set, 2 for each object

set that mandatorily depends on the main object set, and 1 for each optional object set with respect to the
main object set. Our system was able to uniquely select the right ontology using these weights. However,
more sophisticated weights and heuristics may be necessary as the number of ontologies and the overlap
among these ontologies increase.

52

3.4.1 Relevant Object Set and Relationship Set Identification

In this section, we explain how the system uses the explicit and implicit knowledge in a

marked-up ontology to find the object sets and the relationship sets that are relevant for a

service request. In general, the relevant object sets and relationship sets are:

1. the main object set (the object set marked with “–> •”) because we must establish

an object in this object set to satisfy the service request;

2. the object sets that mandatorily depend on the main object set either directly or

transitively because they are the essential requirements to establish an object in the

main object set;

3. the marked optional object sets because they represent additional, user-chosen re-

quirements on the requested service; and

4. the relationship sets that connect these object sets.

All other object sets and relationship sets are pruned away.

The system obtains the object sets that mandatorily depend on the main object set

from the given and implied relationship sets that involve the main object set and from the

given and implied constraints for these relationship sets. In our running example, the given

relationship set Appointment is with Service Provider shows that Service Provider is related

to Appointment, and the given constraint ∀x (Appointment(x) ⇒ ∃≥1y(Appointment(x)

is with Service Provider(y))) shows that Service Provider is mandatory. Further, as we

discussed in Subsection 3.2.3, there is an implied relationship set between Appointment

and service-provider Name, and an implied constraint for this implied relationship set that

makes Name mandatorily depend on Appointment. Likewise, the system can infer that

Date, Time, Person, service-provider Address, and person Name are all mandatory.

The object set Duration optionally depends on the main object set because of the

absence of the constraint ∀x (Appointment(x) ⇒ ∃≥1y(Appointment(x) has Duration(y))),

which allows the object set Duration to be optional. Since Duration is not marked, the

system does not include it as a relevant concept for the service request. Likewise, since the

object sets Service, Price, and Description are optional with respect to the main object set

53

Dermatologist Insurance

Appointment

Address

Person

Name

Date Time
is atis on

has

is with

is for

is at

is at

has

->

Person Address

accepts
Dermatologist Insurance

Appointment

Address

Person

Name

Date Time
is atis on

has

is with

is for

is at

is at

has

->

Person Address

accepts

Figure 3.6: The relevant object sets and relationship sets for the appointment in Figure 3.1.

and unmarked, the system does not included them. Although Person Address optionally

depends on the main object set Appointment, the system keeps it because it is marked.

To determine what the system keeps in a generalization/specialization (is-a) hi-

erarchy, the system considers the constraints imposed by the main object set on an is-a

hierarchy and the constraints that the hierarchy imposes on its object sets. If the con-

straints imposed by the main object set on the is-a hierarchy allow only one instance of

a marked specialization and the marked specializations are mutually exclusive, the system

keeps only one marked specialization. The reason is that the instance in this case can be

in only one marked specialization.

Referring to our example, the implied constraint ∀x (Appointment(x) ⇒
∃1y(Appointment(x) is with Service Provider(y))) requires exactly one instance value in the

is-a hierarchy to be associated with an appointment. Further, the implied mutual exclusion

constraint between the marked specializations, Dermatologist and Insurance Salesperson,

allows the system to infer that the single instance must belong to only one of these marked

specializations. To determine which one of the marked specializations, the system ranks

them. Each marked specialization receives a rank value according to: (1) the number of

strings in a service request matched by the data frame recognizers of the specialization,

(2) the number of the marked object sets directly related to the specialization, and (3) the

distance between the locations of the strings in the service request matched by the special-

54

ization and the locations of the strings in the service request matched by the main object

set. For the first criterion for our example, Dermatologist matches with more strings (two

occurrences of “dermatologist”) than does Insurance Salesperson (matches with the single

string “insurance”). For the second criterion, both the marked specializations relate to one

marked object set, Insurance. (Observe that since Dermatologist in Figure 3.5 is a Doctor,

it inherits all the relationship sets in which Doctor is involved, and thus Dermatologist is

connected to Insurance.) For the third criterion, the location of the first occurrence of

“dermatologist” in the service request is closer to the location of the string “want to see a”,

matched by the main object set than is the location of the string “insurance”, matched by

Insurance Salesperson. Thus, the system keeps only the marked specialization Dermatol-

ogist in the is-a hierarchy. The system removes all the other specializations and collapses

the is-a hierarchy. Figure 3.6 shows the resulting relevant object sets and relationship sets

for the appointment request in Figure 3.1.

When the constraints imposed by the main object set allow only one marked spe-

cialization, but mutual-exclusion constraints in the is-a hierarchy do not force the single

instance to be in only one marked specialization, it is possible that the single instance could

belong to one or more of the marked specializations. For this case we find the least upper

bound object set OLUB in the is-a hierarchy to which instances of all marked specializations

belong. We then prune away all unmarked specializations in the is-a hierarchy, collapse all

specializations to OLUB, and replace the root object set with OLUB. In doing so, we also

keep all relationship sets that lead from object sets in the is-a hierarchy that are not pruned

away to other marked object sets. These other marked object sets are related mandatorily

or optionally to OLUB depending on given or implied constraints.

When the constraints imposed by the main object set allow more than one marked

specialization, we find the least upper bound object set OLUB for the marked specializations.

We then prune away all the other specializations from the is-a hierarchy and collapse the

is-a hierarchy as described for the previous case.

Finally, if there is no marked specialization in an is-a hierarchy but an element in

the is-a hierarchy is mandatory, we keep the root of the is-a hierarchy and prune away all

its specializations. We also keep all relationship sets that lead to marked object sets, if any,

55

and optionally connect them to the root. If no element in the is-a hierarchy is mandatory

and none is marked, we discard the entire hierarchy and all connected relationship sets.

3.4.2 Relevant Operation Identification

The operations relevant to a service request are the Boolean operations whose applicability

recognizers match strings in the service request and operations on which operands of these

Boolean operations may depend for values. For our appointment example, the Boolean

operations in Figure 3.5(b) are the relevant Boolean operations.

The system needs to bind the operands of the operations that, as of yet, are not

instantiated to value sources. Value sources can be the relevant object sets for the service

request or operations in the data frames that compute values for the operands. In our

running example, the operation DateBetween has the uninstantiated operand x1 of type

Date. Since Date is involved in one relationship set Appointment is on Date, the system

binds x1 to this relationship set yielding the constraints Appointment(x0) is on Date(x1)

∧ DateBetween(x1, “the 5th”, “the 10th”).5 Similarly, the system binds the uninstantiated

operands t1 in TimeAtOrAfter to yield the constraint Appointment(x0) is at Time(t1) ∧
TimeAtOrAfter(t1, “1:00 PM ”) and the uninstantiated operand i1 in InsuranceEqual to

yield the constraint Dermatologist(x3) accepts Insurance(i1) ∧ InsuranceEqual(i1, “IHC”).

The operand d1 of the operation DistanceLessThanOrEqual is of type Distance,

which is not involved in any given relevant object set in Figure 3.6. The system, therefore,

must find an operation that depends on the relevant object sets and computes values for

this input parameter. If the system cannot find such an operation, the operation is ignored.

The operand d1 can potentially be computed by the operation DistanceBetweenAddresses,

which depends on the relevant object set Address. The system, therefore, binds d1 to the

operation DistanceBetweenAddresses. As we discussed in Subsection 3.2.3, the system can

infer from constraints on the relationship sets on which the operation DistanceBetweenAd-

dresses depends that the address values a1 and a2 come respectively from the Address

object sets in Dermatologist is at Address and Person is at Address.
5Note that it is important here to be able to assign values recognized by expandable expressions to their

respective operands.

56

• Appointment(x0) is at Date(x1) ∧ DateBetween(x1, “the 5th”, “the 10th”)
• Appointment(x0) is at Time(t1) ∧ TimeAtOrAfter(t1, “1:00 PM ”)
• Dermatologist(x3) is at Address(a1) ∧ Person(x2) is at Address(a2)
∧ DistanceLessThanOrEqual(DistanceBetweenAddresses(a1, a2), “5”)

• Dermatologist(x3) accepts Insurance(i1) ∧ InsuranceEqual(i1, “IHC”)

Figure 3.7: The relevant operations for the appointment request in Figure 3.1.

Figure 3.7 shows the relevant operations for the appointment request in Figure 3.1.

Each input parameter is either instantiated with a value or bound to an operation that

yields a value or to a (possibly unknown but nevertheless specific) value in an object set.

3.4.3 Predicate-Calculus Formula Generation

The system conjoins the predicates generated as described in Subsection 3.4.1 and Sub-

section 3.4.2 to generate the formal representation for a free-form service request. For our

running example, the system conjoins the predicates for each relationship set in Figure 3.6

with the formulas in Figure 3.7 to produce the formal representation for the service request

in Figure 3.1. After renaming variables, we have exactly the predicate-calculus formula in

Figure 3.2.

We point out that the algorithms to identify the relevant object sets, relationship

sets, and the operations work on general ontological knowledge. The algorithms consider

whether object sets are marked or not, and they consider constraints over relationships and

among operations in data frames. The knowledge the algorithms consider is independent of

a specific domain. As a significant consequence, these algorithms are fixed and work across

domains with no need to recode them.

3.5 Performance Analysis

We conducted experiments to evaluate our system. The objective was to evaluate the

system performance in finding the predicates of a formal representation for a free-form

service request and values for predicate arguments. We tested the system on service re-

quests belonging to the following domains: scheduling appointments with medical doctors,

purchasing cars, and renting apartments.

57

Assume that you want make an appointment with some doctor. Assume further that you have software that
can schedule the appointment by allowing you to specify your appointment using natural language
(English). Use your own words to write an appointment request for some doctor (use only one of these
doctor specialties: dermatologist, pediatrician, dentist, gynecologist, and neurologist). You can specify
constraints on the requested appointment such as date, time, how far are you willing to go, type of
insurance that the doctor should accept, and so forth.

In your request, please do not include alternative-choice constraints such as “I want the appointment at
10:00 AM or after 3:00 PM” or negated constraints such as “the appointment should not be at 9:00 AM.”

Figure 3.8: Instructions for subjects for the appointments domain.

We asked subjects from Brigham Young University to make free-form, natural-

language-like service requests belonging to these domains using their own words. The sub-

jects ranged from savvy computer users and online shoppers to users with limited computer

skills. We provided the subjects with no information about the structure of the underlying

domain ontologies or the recognizers or operations in the data frames. We asked the sub-

jects to make service requests with only conjunctive constraints and positive literals—the

type of constraints that our system is capable of recognizing. To avoid technical terms (e.g.

“conjunctive” and “positive literals”), we provided users with illustrative examples to use

for formulating their requests. Figure 3.8 shows the instructions we provided for subjects

to write appointment requests for medical doctors.

Table 3.1 shows the number of service requests and the number of included predicates

and values in these requests for each of the three domains. We received a total of 31

requests, which included a total of 548 constraints and a total of 170 constant values.

We reviewed all service requests we received, manually extracted the included constraints

and constant values in each service request, assigned each constant value to its respective

operand, manually generated a formal representation for each request, and stored it in a

format similar to the way the system records results. We then fed each service request to

the system, which created the formal representation for the request, compared this formal

representation against the manually generated request, and automatically computed the

recall and precision.

58

Table 3.1: Number of service requests, predicates, and arguments.
Requests Predicates Arguments

Appointment 10 126 34
Car Purchase 15 315 98
Apt. Rental 6 107 38
Totals 31 548 170

Table 3.2 shows the performance of the system in finding predicates and constant

values in terms of the recall and precision for each one of the three domains along with the

overall recall and precision. The system performed surprisingly well.

As Table 3.2 shows, the recall for predicates was high for all three domains. The

recall numbers for constant values (arguments) were a little lower, but nevertheless quite

high. The system did not recognize these variations of date for appointments: “any Mon-

day of this month” and “most days of the week”, these features for cars: “power doors

and windows” and “v6” (the engine size), and these features for apartments: “a nook”,

“dryer hookups”, and “extra storage”. Therefore, the recall for arguments in the appoint-

ments, cars, and apartments rental domains dropped off from 100%. Further, missing these

constant values caused the system to miss the constraints over these values causing the

recall for predicates in the appointments, cars, and apartments rental to be lower than they

otherwise would have been.

We can fix these recall problems by providing better recognizers that can better

cover the space of possible values for the object sets. We recognize, however, that this may

not always be easy. In [KCGS96], for example, the authors describe an automaton with

1,223 states and 21,006 arcs to correctly recognize strings representing a date. Although

not always easy to obtain full coverage, it is possible, with reasonable effort, to obtain near

full coverage. The advantage gained may very well be worth the effort.

The precision was near 100% for both predicates and arguments. When the system

selects the right ontology for a service request, the system almost cannot obtain irrele-

vant constraints because our ontology is narrowly focussed on the service. The only way

the system can produce an irrelevant predicate is when the system incorrectly marks an

operation or an object set based on the appearance of some constant value or a context

59

Table 3.2: Recall and precision.
Recall Precision

Appointment predicates 0.978 1.000
arguments 0.941 1.000

Car Purchase predicates 0.998 0.999
arguments 0.979 0.997

Apt. Rental predicates 0.968 1.000
arguments 0.921 1.000

All predicates 0.981 0.999
arguments 0.947 0.999

keyword/phrase and the ontological knowledge is not enough to enable the system to prune

it away. Consider, for example, this constraint “I want a Toyota with a cheap price, 2000

would be great ...”, which was taken from one of the requests and for which our system

incorrectly generated the constraint, PriceEqual(p1 : Price, “2000”). The appearance of

the contextual keyword “price” close to the number 2000 makes our system recognize 2000

as a price value rather than a year value. The type of ambiguity in this constraint is not

easy to handle (perhaps not even easy for humans) because it is not so clear whether the

subject meant the price to be 2000 or the year to be 2000.6

3.6 Related Work

Some researchers in the natural language processing community work on systems that

transform natural language to a formal specification such as predicate calculus, as

we do here. These systems, called logic form generation or transformation systems

[BBGW04, AP04, MMP04], use parsers to parse a syntactically correct sentence and iden-

tify its constituents such as nouns, verbs, and adjectives. Each constituent defines a pred-

icate. The syntactic structure of a parsed sentence defines the relationships among the

constituents, which are captured through shared arguments among the predicates. Based

on reported results in [BBGW04], [AP04], and [MMP04] and in [Rus04], which compares

the performance of three other approaches, these systems are able to achieve a recall within
6Note that the “a” that would usually have appeared in front of “2000” really is missing. If it had been

there, our system would have correctly extracted the “2000” as a year.

60

the interval [78%, 90%] and a precision within [81%, 87%] at the predicate level, and a

recall within [65%, 77%] and a precision within [72%, 77%] at the argument level.

For many years, researchers in the database community have also worked on gen-

erating constraints from natural language queries. Older approaches, surveyed in [ART95],

parse their input using either syntactic parsers or sematic parsers to produce parse trees.

The main difference between syntactic and semantic parsing is that the grammar categories

for semantic parsing directly correspond to database elements such as table names and

attributes names rather than syntactic concepts such as noun phrases. In both cases, the

parse tree is used to generate a database query with the help of mapping rules that specify

how each element in the parse tree maps to an element in the database query.

Newer approaches build on these older approaches by introducing additional tech-

niques that improve results. The approach proposed in [LYJ06] uses a dependency parser

to determine how the words in a sentence depend on each other. A query is parsed to create

the parse tree, which captures the dependencies between the query tokens, and then each

node in the parse tree is classified according to XQuery components (e.g. a return clause).

If the system cannot classify some node in the parse tree, it asks a user to rephrase the

query. The where clause constraints are created based on patterns that appear in a de-

pendency tree. For instance, the appearance of the pattern “〈variable〉 + 〈constant〉”—i.e.

a variable followed by a constant value—maps to the constraint “variable = constant” in

where clause. Experiments reported in [LYJ06] show that this approach is able to achieve

95.1% precision and 97.6% recall. These results are for queries that are correctly parsed

and whose resulting parse-tree nodes are correctly classified. With respect to all queries,

however, the reported recall and precision were respectively 90.1% and 83%.

The PRECISE system, proposed first in [PEK03] and later enhanced with a se-

mantic model to correct some parser errors [PAE04], uses a statistical parser and lexicons,

consisting of names of relations, attributes, and values of the attributes as well as wh-

designators (what, which, where, who, and when designators) attached to the attributes. A

natural language query is parsed with respect to the lexicon that matches each main word

in the query to one or more database elements (table name, attribute name, value, and

wh-designator). The system then constructs attribute-value mappings, which are validated

61

by the relationships produced by the parser. The where clause in the generated SQL query

is a conjunction of attributes with mapped values along with join conditions that reflect the

join paths among tables. The reported results for experiments on three domains show that

PRECISE is able to achieve 100% precision and a recall within the interval [∼75%, ∼93%]

for “semantically tractable queries.” Like our proposed system, PRECISE extensively ex-

ploits the schema of the database. Since neither system generates constraints beyond its

schema, precision tends to be high. Improper constraints can only be generated by false

positives within the purview of the database schema.

The approach described in [MC99] is quite close to our approach. It uses a semantic

model of an underlying database, which is a graph that consists of nodes representing data-

base relations and attributes and edges representing connections among relations. Keywords

or keyword phrases are attached as labels to nodes and operators (standard operators such

as “<”, “>”, or “=”). Operators are attached to the attributes if these operators apply

to values of the attributes. The system matches a natural language query to the keywords

attached to semantic-model elements and uses a statistical approach (n-grams) to disam-

biguate matches. As with our approach, this approach does not seem to require syntactically

correct queries. No empirical results are reported in [MC99], and therefore it is hard to

assess its performance.

All these approaches, except [MC99], expect syntactically correct sentences. We do

not. Further, generally speaking, our approach performed with better recall and precision.

We believe that our approach has two important novelties that contribute to its performance.

First, the semantic data model captures the relationships among objects and constraints

over these objects in the domain, and therefore we avoid precision errors introduced when

parsers try to determine relationships among constituent parts of the input. Further, as an

added benefit of our particular service-oriented paradigm, the semantic data model allows

the system to derive relationships that are necessary for satisfying a service request even

though the service request does not specify them at all. Second, the semantics associated

with the object sets through data frames allow our approach to capture constraints through

operations in these data frames. This means that once a constraint in a service request is

recognized by the applicability recognizers of an operation, then this constraint is correctly

62

formalized by means of this operation. Our approach, however, does require designers

of service-request ontologies to produce a proper semantic data model that appropriately

covers the scope of the service and to produce recognizers in data frames that correctly

recognize appropriate value and keyword instances. We believe, however, that because of

the narrow focus of a particular service, this task is as easy (and possibly easier) than

producing required lexicons, parsers, and similar components for alternative approaches.

3.7 Conclusions and Future Work

We proposed an ontology-based approach for recognizing constraints in a free-form, fully

unconstrained service requests and formally representing them in terms of predicate calculus

formulas. We tested our proposed approach and found that it achieved a recall averaging

98.1% for predicates and 94.7% for arguments, and achieved a precision of near 100% for

both predicates and arguments. Thus, we believe that our approach is likely to be a valuable

alternative in situations where (1) the input is a free-form service request with conjunctive

constraints, (2) the request provides enough of a hint to allow our system to find a matching

domain ontology, and (3) the request can be satisfied by inserting a single object in an object

set of interest in a domain ontology and then by inserting other mandatory and optional

objects required for the request.

We have two main objectives for future work. First, we have recently extended

the capabilities of our system to recognize and process disjunctive and negated constraints.

We intend to conduct a user study to evaluate the performance of our augmented system.

Second, we plan to integrate the work reported here with other work we have done [AME06]

to produce the overall system we have envisioned [AMEL05]. The system we have envisioned

transforms a service request into a predicate-calculus formula as explained here. It uses the

predicate-calculus formula to create a query to a databases associated with the domain

ontology from which the formula was generated to instantiate as many variables of the

formula as possible. The system then discovers the variables in the predicate-calculus

formula that are yet to be instantiated and interacts with a user to obtain values for these

variables. When all the variables are instantiated, the system checks whether the constraints

63

of the formula are satisfied. Constraint satisfaction can yield too many solutions or no

solution. As reported in [AME06], the system controls the potential overload on users when

there are too many solutions by returning the best-m solutions rather than all of them or

offers users the best-m near solutions when there is no solution. When a user chooses one

of the suggested solutions or near solutions, the system completes the service request by

inserting an object of interest (e.g. an appointment) in the main object set of the domain

ontology and by inserting other mandatory and optional objects and relationships and thus

satisfies the service request.

Acknowledgements

This work is supported in part by the National Science Foundation under grants 0083127

and 0414644. Also, we would like to appreciate the help of all the subjects from Brigham

Young University who participated in the experiments.

64

Bibliography

[AME06] M. J. Al-Muhammed and D. W. Embley. Resolving Underconstrained and

Overconstrained Systems of Conjunctive Constraints for Service Requests. In

Proceedings of the 18th International Conference on Advanced Information Sys-

tems Engineering (CAiSE 2006), pages 223–238, Luxembourg, June 2006.

[AMEL05] M. J. Al-Muhammed, D. W. Embley, and S. W. Liddle. Conceptual Model

Based Semantic Web Services. In Proceedings of the 24th International Confer-

ence on Conceptual Modeling (ER 2005), pages 288–303, Klagenfurt, Austria,

October 2005.

[AP04] S. Anthony and J. Patrick. Dependency Based Logical Form Transformation.

In Proceedings of the 3rd International Workshop on the Evaluation of Systems

for the Semantic Analysis of Text, pages 54–57, Barcelona, Spain, July 2004.

[ART95] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural Language Inter-

faces to Database: An Introduction. Journal of Natural Language Engineering,

1(1):29–81, March 1995.

[BBGW04] S. Bayer, J. Burger, W. Greiff, and B. Wellner. The MITRE Logical Form Gen-

eration System. In Proceedings of the 3rd International Workshop on the Eval-

uation of Systems for the Semantic Analysis of Text, pages 69–72, Barcelona,

Spain, July 2004.

[Emb80] D. W. Embley. Programming with Data Frames for Everyday Items. In D. Med-

ley and E. Marie, editors, Proceedings of AFIPS Conference, pages 301–305,

Anheim, California, May 1980.

65

[KCGS96] L. Karttunen, J. P. Chanod, G. Grefenstette, and A. Schille. Regular Expres-

sions for Language Engineering. Natural Langauge Engineering, 2(4):305–328,

December 1996.

[LYJ06] Y. Li, H. Yang, and H.V. Jagadish. Constructing a Generic Natural Lan-

guage Interface for an XML Database. In Proceedings of the 10th International

Conference on Extending Database Technology (EDBT 2006), pages 737–754,

Munich, Germany, March 2006.

[MC99] F. Meng and W. W. Chu. Database Query Formation from Natural Language

using Semantic Modeling and Statistical Keyword Meaning Disambiguation.

Technical Report CSD-TR 990003, University of California, Los Angeles, Cali-

fornia, 1999.

[MMP04] A. Mohammed, D. Moldovan, and P. Parker. Sensevale 3 Logic Form: A System

and Possible Improvements. In Proceedings of the 3rd International Workshop

on the Evaluation of Systems for the Semantic Analysis of Text, pages 163–166,

Barcelona, Spain, July 2004.

[PAE04] A. M. Popescu, A. Armanasu, and O. Etzioni. Modern Natural Language Inter-

faces to Databases: Composing Statistical Parsing with Semantic Tractability.

In Proceedings of the 20th International Confereence on Computational Lin-

guistics, pages 30–39, University of Geneva, Switzerland, August 2004.

[PEK03] A. M. Popescu, O. Etzioni, and H. Kautz. Toward a Theory of Natural Lan-

guages Interfaces to Databases. In Proceedings of the 8th International Con-

ference on Intelligent User Interfaces, pages 149–157, Miami, Florida, January

2003.

[Rus04] V. Rus. A First Evaluation of Logic Form Identification Systems. In Proceed-

ings of the 3rd International Workshop on Evaluation of Systems for Semnatic

Analysis for Text, pages 37–40, Barcelona, Spain, July 2004.

66

Chapter 4

Resolving Under-constrained and Over-constrained

Systems of Conjunctive Constraints for Service Requests

Abstract

Given a service request such as scheduling an appointment or purchasing a product, it

is possible that the invocation of the service results in too many solutions that all satisfy

the constraints of the request or in no solution that satisfies all the constraints. When

the invocation results in too many solutions or no solution, a resolution process becomes

necessary for agreeing on one of the solutions or finding some agreeable resolution. We

address this problem by imposing an ordering over all solutions and over all near solutions.

This ordering provides a way to select the best-m with dominated solutions or dominated

near solutions eliminated. Further, we provide an expectation-based resolution process that

can take the initiative and either elicit additional constraints or suggest which constraints

should be relaxed. Experiments with our prototype implementation show that this reso-

lution process correlates substantially with human behavior and thus can be effective in

helping users reach an acceptable resolution for their service requests.

Keywords: Service requests, under-constrained systems of constraints, over-constrained

systems of constraints, ordered solutions and near solutions, dominance, expectation-based

resolution.

67

4.1 Introduction

We described in a previous paper [AMEL05] a system that allows users to specify service

requests and invoke services. This approach is strongly based on conceptual modeling

and supports a particular type of service whose invocation involves establishing an agreed-

upon relationship in the conceptual model. Examples of these types of services include

scheduling appointments, setting up meetings, selling and purchasing products, making

travel arrangements, and many more.1 It is possible that the invocation of service requests

for any of these services results in too many satisfying solutions or in no solution at all

although there may be near solutions.

In our approach users can specify services such as the following request for scheduling

an appointment with a dermatologist.

I want to see a dermatologist on the 20th, 1:00 PM or after. The dermatologist

should be within 5 miles from my home and must accept my IHC insurance.

Our approach uses conceptual-model-based information extraction to map service requests

to a domain ontology. This mapping transforms the service request into a formal represen-

tation, which consists of concepts along with relationships among these concepts and con-

straints over the values of these concepts in a domain ontology. Figure 4.1 shows the formal

representation of the appointment request as a conjunctive predicate calculus statement—

we added some comments prefixed with “//” to provide more readability and to correlate

the request with the predicate calculus statement. To resolve the appointment request, the

system tries to instantiate each variable in the formal representation with values such that

all the constraints are satisfied. The values come from a databases associated with the

domain ontology, or are extracted from the service request, or are obtained interactively

from users.2

1We intend the word “service” to be thought of in accordance with its typical meaning—“an act of
assistance or benefit.” Technically, we define a very special type of service (as described herein). We do not
intend our services to be thought of in other technical ways such as registering services with a broker so that
they can be found by expressing their functionality in terms of inputs, outputs, and capabilities.

2The details of producing formal representations and instantiating them are not the focus of this paper
and can be found elsewhere [AMEL05].

68

//I want to see a dermatologist
Appointment(x0) iswith Dermatologist(x1) ∧Appointment(x0) is for Person(x2)

//on the 20th
∧Appointment(x0) is on Date(“the 20th”)

//1:00 PM or after
∧Appointment(x0) is at T ime(x3) ∧ TimeAtOrAfter(x3, “1:00”)

//within 5 miles from my home
∧Dermatologist(x1) is atAddress(x4) ∧ Person(x2) is atAddress(x5)
∧ LessThanOrEqual(DistanceBetween(x4, x5), “5”)

//accept my IHC insurance
∧Dermatologist(x1) accepts Insurance(“IHC”)

Figure 4.1: The predicate calculus statement for the appointment request.

A solution for a request is an instantiation for all the variables that satisfies all the

constraints. A near solution is an instantiation for all the variables that satisfies a proper

subset (maybe empty) of the constraints and, in a way to be made precise later, comes

close to satisfying the constraints not (yet) satisfied. Ideally, our system would find just

one solution or would find a handful of solutions from which a user could select a desired

one. More typically, however, our system may return no solution or too many solutions.

When our system returns no solution, the request is over-constrained, and when it returns

too many solutions, the request is under-constrained.

A resolution for over-constrained requests is to offer the best-m near solutions.

Figure 4.2 shows three near solutions for our appointment request. Both s1 and s2 violate

the date and distance constraints at different degrees in the sense that s1 is closer to the

20th and violates the distance constraint less than s2. Consequently, it is reasonable to

impose a greater penalty on s2 than on s1. Further, the penalty provides a way to recognize

dominated near solutions. Near solution s1 dominates near solution s2 because s1 has

less of a penalty for each violated constraint. Penalties provide a way to offer the best-m

near solutions by ordering the near solutions based on their penalties and discarding the

dominated ones. Additionally, suggesting constraints for users to relax provides another

way to offer the best-m near solutions. For instance, if prior appointment requests reveal

that users are more likely to impose constraints on date and time than on distance, it makes

sense to suggest that users relax constraints on distance. Thus, for example, the resolution

69

Date Time Distance
s1 the 21th 1:00 PM 6 miles
s2 the 22th 1:30 PM 8 miles
s3 the 20th 2:20 PM 20 miles

Figure 4.2: Near solutions for the appointment request.

Make Price Year Mileage
s1 Dodge $13,999 2005 15,775 miles
s2 Dodge $13,999 2004 30,038 miles

Figure 4.3: Solutions for the car purchase request.

process can suggest the relaxation of the constraint on distance and possibly offer s3 as the

best near solution in Figure 4.2.

A resolution for under-constrained requests is to offer the best-m solutions. Con-

sider, for example, the following request for a car purchase.

I want to buy a Dodge, a 2002 or newer. The mileage should be less than 80,000,

and the price should not be more than $15,000.

For this request, www.cars.com offered 168 solutions when probed in November 2005, two

of which are in Figure 4.3. Presenting all the solutions or m arbitrarily chosen ones to

users is not likely to be very helpful. A way to reduce the number of solutions and offer

the best-m solutions is to elicit additional constraints. If prior car purchase requests reveal

that users often impose constraints on the car model, for example, it makes sense that a

resolution process elicits a constraint on the model of the car. In addition, some solutions

satisfy constraints better than others. As Figure 4.3 shows, s1 better satisfies the year

constraint than s2 because the car in s1 is newer. Therefore, we can grant s1 a reward for

better satisfying the request. Further, the reward can provide a way to recognize dominated

solutions. As Figure 4.3 shows, the solution s2 is dominated by s1 because the car in s1

is newer and has less mileage although both have the same price. Rewards provide a way

to offer the best-m solutions by ordering the solutions in a decreasing order based on their

rewards and discarding the dominated ones.

This paper offers ways to handle under-constrained and over-constrained service

requests. First, the paper offers an expectation-based process for eliciting additional con-

70

straints for under-constrained requests and for suggesting some constraints for users to

relax for over-constrained requests. Second, the paper offers an ordering over solutions

and an ordering over near solutions, and a selection mechanism based on Pareto opti-

mality [Par97, Fel80], developed in the late 1800’s, to choose the best-m, with dominated

solutions or dominated near solutions discarded.

We present these contributions as follows. Section 4.2 discusses an extension to

constraints that allows for ordering solutions based on the degree of satisfiability and for

ordering near solutions based on how close they are to satisfying the constraints. For under-

constrained requests, Section 4.3 introduces expectation declarations as domain knowledge

and proposes an expectation-based process to select concepts for which to elicit constraints.

In addition, we define an ordering of solutions based on the extension to constraint satisfac-

tion introduced in Section 4.2 and use it along with Pareto optimality to select the best-m

solutions. For over-constrained requests, Section 4.4 shows how to define an ordering over

near solutions and use it along with Pareto optimality to select the best-m near solutions.

It also introduces an expectation-based process to suggest constraints for users to relax. We

evaluate our proposed techniques in Section 4.5, and give concluding remarks and directions

for future work in Section 4.6.

4.2 Constraints

A constraint is an n-place predicate, which for a tuple t of n values evaluates to either true

or false depending on whether t satisfies or violates the constraint. This true-false binary

view of a constraint allows us to only differentiate tuples based on whether they satisfy or

violate a constraint. Researchers have extended this view to differentiate between tuples

that violate a constraint by assigning to these tuples increasing positive real numbers that

represent different degrees of violation [LHL97, Arn02]. Although this extension allows for

distinguishing between tuples that violate a constraint, it does not allow for distinguishing

between tuples that satisfy a constraint because this extension lacks the notion of degree

of satisfiability. A constraint evaluates to zero for all tuples that satisfy that constraint,

which means all the tuples necessarily have the same degree of satisfiability. We, therefore,

71

further extend the binary view to not only consider degree of violation, but also to consider

degree of satisfiability by granting tuples increasing rewards based on how well they satisfy

a constraint.

Definition 1 Let C be an n-place constraint and let Di be the domain of the ith place of

C, 1 ≤ i ≤ n. A constraint is a function C : D1 × ... × Dn −→ R that maps a tuple

t = 〈v1, ..., vn〉 ∈ D1× ...×Dn to a real number in R. An evaluation of the constraint C on

a tuple t is defined as C(t) = α, where α ∈ R+ ∪ {0}, which is a positive real number R+

or zero, is the value of the evaluation if t satisfies C, and C(t) = β, where β ∈ R−, which

is a negative real number R−, is the value of the evaluation if t violates C.

The value α in Definition 1 represents the reward granted to a tuple t for satisfying a

constraint C. A higher value for the reward α denotes greater satisfaction. The value β

represents the penalty imposed on a tuple t for violating the constraint. A lower negative

value for α denotes a greater degree of violation. Observe that in Definition 1, we try

to capture the intuitive idea behind a reward and a penalty by letting the reward be a

non-negative real number (rewards are positive) and the penalty be a negative real number

(penalties are negative).

Designers should make domain decisions about the amount of a reward α and a

penalty β. For instance, in a car purchase domain, designers may give a greater reward for

newer cars. Therefore, they may define the evaluation for a constraint on a year in which

a car was made such as “a 2000 or later” as ≥(y, 2000) = y − 2000. Observe that a 2001

car has a reward of 1 and a 2002 car has a reward of 2, which means that a 2002 car has a

greater satisfiability degree according to this evaluation. Also observe that a 1999 car has a

penalty of −1 and a 1980 car has a penalty of −20, which means that a 1999 car has much

less of a penalty than a 1980 car.

An evaluation function can also impose a fixed penalty when ordering between values

is not obvious. As an example, a constraint of the form “Brand = Canon” on digital camera

brands can be defined as

BrandEqual(x, “Canon”) =





0, if x = “Canon”;

−1, otherwise

72

We imposed a fixed penalty for any brand other than “Cannon”, as Arnal suggested [Arn02],

because it is not obvious how we can order penalties between brands other than “Cannon”.

For equality constraints over which a penalty ordering is possible, designers can

declare penalties. For instance, a designer may choose the evaluation for EqualAppoint-

mentTime(t, 10:00 AM) to be −(f(t) − f(10:00 AM))2, where f is a function that converts

a time to a unitless number. For example, the time 2:15 PM, which is the military time

14:15, could be converted to the integer 1415. For illustration purposes, we have assumed

that the designer has chosen to square the difference to give proportionally less of a penalty

to times close to 10:00 AM.

4.3 Under-constrained Service Requests

Under-constrained service requests admit too many solutions. In this section, we discuss

two ways to provide users with the best-m solutions out of n solutions. First, we propose

an expectation-based elicitation process to elicit additional constraints and apply them to

solutions. Applying additional constraints to solutions may reduce the number of solutions

and may also make the resulting solutions more desirable [SL01, FPTV04]. Second, we

propose an ordering over solutions based on our extension for constraints in Definition 1

along with Pareto optimality based on this ordering to select the best-m solutions.

4.3.1 Constraint Elicitation Using Expectations

We associate expectations with concepts of a domain ontology. An expectation is the proba-

bility that value(s) for a concept appear in a service request. The expectation is, therefore,

a number in the interval [0, 1], where the low and high extremes of the interval mean,

respectively, that a value for the concept is not and is certainly expected to appear in a

service request. Values in the open interval (0, 1) represent varying degrees of expectations.

Domain ontology designers estimate the expectations associated with concepts. Al-

though there may be several ways to estimate the expectations, we suggest two general

ways. First, designers can estimate the expectation using their knowledge of the domain.

Second, designers can analyze service requests in the domain of the ontology and count

73

the frequency of appearance for each concept in the domain ontology. Further, this latter

method leads to the possibility that the expectations can be adjusted as the system runs.

Unlike other approaches to constraint elicitation (e.g. [LHL97, SL01, PFK03]), which

are built on an assumption that users can impose additional constraints if they review

some examples of solutions, we let the resolution process take the initiative and suggest the

concepts on which to impose constraints according to the associated expectations with these

concepts. The intuitive idea is that the resolution process can order the concepts based on

their associated expectations and make reasonable suggestions to users to constrain concept

values, starting from the concept associated with the highest expectation for which there

is, as of yet, no constraint.

The elicitation process terminates when one of the following three conditions holds.

First, the most recent elicited constraint is unsatisfiable in which case the service request

becomes over-constrained and the resolution process uses the techniques in Section 4.4 to

handle this situation. Second, the solution space is reduced to m or fewer solutions, in

which case the system offers these solutions to users to evaluate and choose one. Third,

there is no other concept in the ordering of concepts associated with an expectation that

exceeds a prespecified threshold.

To demonstrate the idea of constraint elicitation using expectations, note that the

car purchase request in Section 4.1 does not specify a constraint on the model of the car.

Assuming that the expectation associated with Model, say 0.6, is the highest among the

unconstrained concepts and is above the threshold, say 0.5, the resolution process suggests

that the user could impose a constraint on the model. If a user wishes to constrain Model

to be “Stratus” the resolution process can restrict the solutions to Dodge Stratuses.

4.3.2 Selecting the Best-m Solutions

Our extension to the binary view of constraints (Definition 1) provides a way to impose an

ordering over solutions based on rewards granted to each solution for satisfying the service

request constraints. Let S ={s1, ..., sn} be a set of solutions each of which satisfies every

constraint in the set of constraints C = {C1, ..., Ck}, which are imposed on a service request.

74

The evaluation of the set of constraints C for a solution si ∈ S returns a set of real numbers

{C1(si), ..., Ck(si)}, which are the rewards granted to si for satisfying the constraints.

Before computing an aggregate reward for a solution si over all constraints in C, we

first divide each reward Cj(si), 1 ≤ j ≤ k, by max1≤i≤nCj(si), the maximum reward value

over all solutions for constraint Cj . This normalizes the rewards to the interval [0, 1]. The

purpose of the normalization is to discard the relative effects of large magnitude rewards

across different constraints and thus to make it unnecessary to correlate values across differ-

ent constraints. Let us denote the set {C1(si), ..., Ck(si)} after doing the normalization by

C∗ = {C∗
1 (si), ..., C∗

k(si)}. Researchers have suggested several ways to compute combined

evaluations (see [MA04] for a thorough survey). We linearly combine rewards in C∗ yielding

a combined reward ρ for a solution si as follows:

ρ
C∗ (si) =

∑k
j=1 C∗

j (si); for i = 1, ..., n.

Definition 2 Let si and sj be two solutions and C = {C1, ..., Ck} be a set of constraints.

We say that si is better than or equivalent to sj, si ºρ sj, with respect to C if ρ
C∗ (si) ≥

ρ
C∗ (sj).

To demonstrate the idea of reward-based ordering, let us suppose that we have a set

of constraints C = {≤(mileage, “30,000 miles”), ≤(price, “$20,000”)} and two solutions

s1 = {mileage = “29,000 miles”, price = “$19,000”} and s2 = {mileage = “29,900 miles”,

price = “$18,000”}, then designers might decide to grant a reward of 1000 for s1 and of 100

for s2 for satisfying the mileage constraint, and a reward of 1000 for s1 and a reward of 2000

for s2 for satisfying the price constraint. Given these rewards, we can normalize them to

[0, 1] by dividing the mileage rewards by 1000 and the price rewards by 2000, yielding the

normalized rewards 1 and 0.1 for s1 and s2 respectively for satisfying the mileage constraint

and the normalized rewards 0.5 and 1 for s1 and s2 respectively for satisfying the price

constraint. Based on Definition 2, s1 ºρ s2 because ρ
C∗ (s1) = 1.5 and ρ

C∗ (s2) = 1.1.

The ordering ºρ sorts the solutions according to their combined rewards from the

solution with the highest combined reward to the lowest. (Any solutions with identical

rewards appear in a random order within their own equality group.) Although this ordering

does sort the solutions, it does not necessarily imply that the first m solutions are the best-m

75

solutions. The sorting procedure considers only the combined rewards, but does not consider

the rewards granted to the solutions for satisfying each individual constraint. The rewards

of the individual constraints, C1, ..., Ck, in C provide additional knowledge to differentiate

among solutions based on Pareto optimality, which divides solutions into dominating and

dominated solutions based on a dominance relation.

Definition 3 Let C = {C1, ..., Ck} be a set of constraints and S = {s1, s2, ..., sn} be a set

of solutions. Let si, sj ∈ S be any two distinct solutions, we say that si dominates sj if

∀p∈{1, ..., k}(Cp(si) ≥ Cp(sj)) and ∃q∈{1, ..., k}(Cq(si) > Cq(sj)).

Definition 3 says that the solution si, which dominates sj , has rewards from all the

constraints that are at least equal to the rewards for sj and for at least one of the constraints

si has a strictly higher reward. Observe the that Definition 3 does not explicitly consider

the combined reward ρ
C∗ (sk). However, the combined reward is implicit in this definition

in the sense that a solution can never dominate another solution with a higher combined

reward.

Definition 3 provides the basis for our variation of Pareto optimality, a concept

which Pareto defined over a century ago [Par97].

Definition 4 Let S = {s1, s2, ..., sn} be a set of solutions for a service request. A solution

si ∈ S is said to be Pareto optimal if there does not exist an sj ∈ S such that sj dominates

si.

The key idea in Definition 4 is that a solution cannot be Pareto optimal if it is dominated

by another solution.

4.3.3 Resolution of Under-constrained Requests

To demonstrate our resolution procedure, consider our request for a Dodge (in the intro-

duction). The system first uses expectations to elicit additional constraints to reduce the

number of solutions. Since the request does not constrain the model of the car and the

expectation associated with the model is the highest among all the unconstrained concepts,

the system suggests that the user constrains the model. Adding the constraint that the

76

Solution Make Model Price Year Mileage ρ
C∗ (si) Pareto Optimal

s1 Dodge Stratus 13,999.00 2005 15,775 2.499
√

s2 Dodge Stratus 11,998.00 2004 23,404 2.497
√

s3 Dodge Stratus 14,200.00 2005 16,008 2.476 ×
s4 Dodge Stratus 14,557.00 2005 16,954 2.431 ×
s5 Dodge Stratus 10,590.00 2003 38,608 2.360

√
s6 Dodge Stratus 14,253.00 2004 17,457 2.332 ×
s7 Dodge Stratus 10,987.00 2004 56,377 2.267

√
s8 Dodge Stratus 13,999.00 2004 30,038 2.230 ×
s9 Dodge Stratus 12,995.00 2004 40,477 2.226 ×
s10 Dodge Stratus 12,577.00 2003 33,163 2.216 ×
s11 Dodge Stratus 14,620.00 2004 32,406 2.149 ×
s12 Dodge Stratus 8,975.00 2003 75,689 2.140

√

Figure 4.4: Solutions for the car purchase request.

model be a “Stratus” drops the number of solutions to 53, which is still too many. Since

there are no more concepts with an expectation higher than the threshold, 0.5, the system

uses the ordering ºρ and Pareto optimality to return the best-m solutions. Figure 4.4 shows

the top 12 solutions ordered in ascending order based on their combined rewards ρ
C∗ (si).

The rightmost column in Figure 4.4 shows whether a solution is Pareto optimal (
√

) or not

(×). For instance, the solution s3 is not Pareto optimal because s1 dominates it—s1 is

cheaper and has a lower mileage, although both have the same year. Since we have chosen

m = 5, the system returns the first five Pareto optimal solutions, s1, s2, s5, s7, and s12.

4.4 Over-constrained Service Requests

Over-constrained service requests admit no solution. As in Section 4.3, we discuss two ways

to provide the best-m near solutions. First, we propose an ordering over near solutions and

use it along with Pareto optimality to offer the best-m near solutions. Second, we propose

an expectation-based relaxation process that suggests unsatisfied constraints for a user to

relax.

4.4.1 Ordering Near Solutions

We combine the penalties and rewards, if any, of each near solution, and order the near

solutions according to their combined penalties and rewards. Let S ={s1, ..., sn} be a set

of near solutions each of which violates one or more constraints from a set of constraints

77

C = {C1, ..., Ck}. The evaluation of a set of constraints C for a near solution si ∈ S

returns a set of real numbers {C1(si), ..., Ck(si)}, where each Ck(si) is either a reward or a

penalty. We divide these real numbers Cj(si), 1 ≤ j ≤ k by max
1≤i≤n

|Cj(si)|, the maximum

absolute reward or penalty value over all near solutions for constraint Cj . This normalizes

the rewards and penalties to the interval [-1, 1]. Let us denote the set {C1(si), ..., Ck(si)}
after normalization by C∗ = {C∗

1 (si), ..., C∗
k(si)}. We combine each C∗

j (si) in C∗ linearly,

as before, yielding a combined penalty/reward φ for each near solution si as follows:

φ
C∗ (si) =

∑k
j=1 C∗

j (si); for i = 1, ..., n.

Greater values of φ
C∗ (si) indicate lower penalties on si and (possibly) higher rewards. Thus,

a high value of φ
C∗ (si) denotes a better near solution si.

Definition 5 Let si and sj be two distinct near solutions and C = {C1, ..., Ck} be a set of

constraints. We say that si is better than or equivalent to sj, si ºφ
sj, with respect to C if

φ
C∗ (si) ≥ φ

C∗ (sj).

We define a dominance relation and Pareto optimality based on the ordering º
φ

in Defini-

tion 5 in the same way as we defined them in Definitions 3 and 4.

4.4.2 Constraint Relaxation Using Expectations

For constraint relaxation we use the same expectation values for constraints as discussed in

Subsection 4.3.1, but consider the lowest expectation values, rather than the highest, to be

the candidates for relaxation. In addition, we consider the violation degree when we suggest

constraints for relaxation. For instance, it is likely to be better to suggest relaxing a time

constraint violated by 10 minutes than to suggest relaxing a distance constraint violated by

50 miles even though a distance constraint is likely to be associated with a lower expectation

value. Further, since we should not badger the user with questions, the number of suggested

unsatisfied constraints should not exceed a prespecified threshold. Taking all these ideas

into consideration, the system selects the constraints to suggest for relaxation based on the

following procedure.

78

1. To avoid overloading the user with suggestions, select only near solutions that violate

fewer constraints than a prespecified threshold.

2. To take the expectation values into account, compute the cost of the relaxation for

each near solution based on the expectation using the equation r(si) =
∑

k ekC
∗
k(si),

where ek is the expectation value associated with the constraint Ck and C∗
k(si) is the

normalized penalty imposed on si for Ck.

3. To take the overall degree of violation into account, select the near solution si with

the lowest absolute value of r(si) and suggest relaxing the constraints that si violates

only to the degree necessary to satisfy the constraints of si.

We give an example in the next subsection.

4.4.3 Resolution of Over-constrained Requests

To demonstrate our resolution procedure, consider our request for an appointment (in the

introduction). Figure 4.5 shows 8 near solutions for the request ordered in ascending order

based on the combined penalty/reward φ
C∗ (si), which appears in the second column from

the right. The system tries first to suggest some constraints to relax using the expectations

associated with the constraints. Figure 4.6 shows the constraints along with their associated

expectation values and their rewards/penalties for each near solution. The rightmost column

in Figure 4.6 shows the computed relaxation cost r(si) for each near solution. Based on

our relaxation procedure, the system could consider the near solution s4 for suggesting

relaxation because it has the lowest relaxation cost r(si). The system does not, however,

because s4 violates three constraints, which exceeds the threshold we set, namely fewer than

three constraints. The near solution s3 satisfies our procedure requirements in the sense

that s3 violates two constraints and has the next lowest relaxation cost r(si). The system

therefore suggests letting the time be 12:40 PM instead of 1:00 PM and letting the date be

the 19th instead of the 20th. If the user accepts these relaxed constraints, the system can

offer s3 as the best solution.

For the sake of further discussing the possibilities, we assume that the user does not

accept the suggestion to relax the time and date constraints. To compute the best-m near

79

Near Solution Insurance Distance Time Date φ
C∗(si) Pareto Optimal

s1 IHC 16 1:00 PM the 19th −0.160
√

s2 IHC 18 1:10 PM the 19th −0.180 ×
s3 IHC 4 12:40 PM the 19th −0.257

√
s4 IHC 6 12:50 PM the 19th −0.264

√
s5 IHC 20 3:00 PM the 19th −0.271 ×
s6 IHC 8 1:40 PM the 18th −0.382

√
s7 IHC 18 2:20 PM the 22nd −0.479 ×
s8 IHC 3 11:30 AM the 16th −1.049

√

Figure 4.5: Near solutions for the appointment request.

Insurance=“IHC” Distance≤ 5 Time≥(“1:00 PM”) Date=“the 20th” r(si)
Expectation=0.4 Expectation=0.3 Expectation=0.8 Expectation=0.9

s1 0.000 −0.076 0.167 −0.250 −0.248
s2 0.000 −0.090 0.160 −0.250 −0.252
s3 0.000 0.007 −0.014 −0.250 −0.236
s4 0.000 −0.007 −0.007 −0.250 −0.233
s5 0.000 −0.102 0.083 −0.250 −0.256
s6 0.000 −0.021 0.139 −0.500 −0.456
s7 0.000 −0.090 0.111 −0.500 −0.477
s8 0.000 0.014 −0.062 −1.000 −0.950

Figure 4.6: Rewards and penalties for the near solutions.

solutions, the system sorts the near solutions based on the combined penalty/reward φ
C∗ (si)

and discards the dominated near solutions using the rewards and penalties information in

Figure 4.6, i.e. φ
C∗ (s1) = −0.160 = −0.076 + 0.167 − 0.250; φ

C∗ (s2) = −0.180 = −0.090

+ 0.160 − 0.250; and so forth. The rightmost column in Figure 4.5 shows whether a near

solution si is Pareto optimal (
√

) or not (×). Since m = 5, the system returns the first 5

Pareto optimal near solutions, which in our example are s1, s3, s4, s6, and s8.

A closer look at the results in Figures 4.5 and 4.6 reveals that the returned near

solutions are better than the ones filtered out. For instance, comparing the near solution s1

to the discarded near solution s2, we find that although both violate the date constraint to

the same degree and satisfy the time constraint, s1 violates the distance constraint less than

s2 and is closer to the requested time, 1:00 PM. Therefore, from the Pareto-optimality’s

viewpoint, given s1 as a possibility, no user is likely to accept the near solution s2.

80

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
solutions

%
 o

f
so

lu
tio

n
 s

el
ec

ti
on

System Human

Figure 4.7: Human solution selection compared to system solution selection.

4.5 Performance Analysis

To evaluate the performance of our system, we conducted a user study. The goal was to

test whether there is a statistically significant difference between human choices and system

choices. The subjects in our study were from both genders and from different academic

disciplines and education levels—professors, graduate students, and undergraduate students

at Brigham Young University. We gave every subject a request from a car purchase domain

along with 32 cars that each satisfies all the constraints of the request, and another request

from an appointment scheduling domain along with 19 near solutions that each satisfies some

but not all the constraints of the appointment request. All the solutions and near solutions

were randomly shuffled so as not to provide the subjects with any ordering information.

We asked each subject to select and order the best-5 solutions out of 32 solutions for cars

and the best-5 near solutions out of 19 near solutions for appointments.

To visualize the degree of agreement between system choices and human choices,

we counted the number of times each solution was chosen by the 16 subjects for the car

experiment and the number of times each near solution was chosen by the 15 subjects for the

appointment experiment.3 Figures 4.7 and 4.8 show the percentage of human subjects who

chose each solution or near solution respectively. The first five solutions and near solutions

are the ordered best-5 Pareto optimal solutions and near solutions. The remaining solutions
3One of the subjects did not make choices for the appointment experiment.

81

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 near solutions

%
 o

f
ne

ar
 s

o
lu

tio
n

 s
el

ec
ti

on

System Human

Figure 4.8: Human near solution selection compared to system near solution selection.

 System
Human

The best-5
solutions

Not the best-5
solutions

Total

The best-5 solutions 56 24 80
Not the best-5 solutions 24 408 432
Total 80 432 512

Figure 4.9: Human versus system choices for the car experiment.

and near solutions are ordered by decreasing percentage of selection by human subjects. As

the figures show there is a high degree of agreement between the system’s choices and the

human subjects’ choices. As Figure 4.7 shows, over 87% of the subjects chose solutions

1 and 2, and over 81% of the subjects chose solution 3. Figure 4.8 shows an even higher

degree of agreement. All the subjects chose near solutions 1 and 2, and over 96% of them

chose near solution 3. The solutions and near solutions that were not chosen by the system

as being among the best-5 were also selected less often by our human subjects, with the

exception of solution 6 in Figure 4.7, which was selected by 43% of the human subjects, and

the near solutions 6 and 7, which were chosen by the 33% and 26% of the human subjects.

Interestingly, the system chose both solution 6 and near solution 6 as the 6th Pareto optimal

solution and near solution. Near solution 7, however, is not Pareto optimal. All the other

solutions and near solutions were chosen by 20% or fewer of the subjects. Figures 4.7 and

4.8 reveal a definite pattern: human subjects chose a high percentage of the best-5 choices

and a low percentage for choices not among the best-5 system choices.

82

 System
Human

The best-5 near
solutions

Not the best-5 near
solutions

Total

The best-5 near solutions 61 14 75
Not the best-5 near solutions 14 196 210
Total 75 210 285

Figure 4.10: Human versus system choices for the appointment experiment.

Agreement Type of Car Appointment
index agreement experiment experiment
Po overall 0.91 0.90
Ppos the best-5 0.70 0.81
Pneg not the best-5 0.94 0.93
Pe due to chance 0.73 0.61
Cohen kappa κ chance corrected 0.67 0.74
95% Confidence interval for κ [0.58, 0.76] [0.65, 0.83]

Figure 4.11: Statistical summary.

To statistically measure the degree of agreement between system choices and human

subjects choices, we ran an inter-observer agreement test [LK77] using the MINITAB 14

software package [min05]. The inter-observer agreement per observer pair (system and

human) was determined with respect to the dichotomy: the best-5 solutions or the best-5

near solutions and not the best-5. Figures 4.9 and 4.10 show the distribution of agreement

and disagreement between the system and our human subjects. We disregarded the order

in which each subject ordered the best-5 solutions or near solutions, and tallied the number

of solutions and near solutions chosen by subjects that belong to the best-5 solutions and

the best-5 near solutions selected by the system. We also tallied the number of solutions

and near solutions that were not chosen by the system and the subjects as the best-5. For

instance, the 16 subjects for the car experiment made 80 choices of which 56 belong to the

best-5 system choices and 24 do not. Further, of the 432 solutions not chosen, 24 were among

the best-5 system choices while 408 were also not chosen by the system. Figure 4.11 shows

the statistical summary for the car and appointment experiments. The overall agreement, Po,

and the agreement due to chance, Pe, for the car experiment are 0.91 and 0.73 respectively

with a Cohen kappa κ value of 0.67, and for the appointment experiment are 0.90 and

0.61 with a κ value of 0.74. Based on the Landis-Koch interpretation for κ values [LK77],

83

the two κ values indicate “substantial” agreement between the system and the subjects.

The 95% confidence intervals for κ in Figure 4.11, however, indicate that the agreement

may range from “moderate” (0.58) to “substantial” (0.76) for the car experiment and from

“substantial” (0.65) to “almost perfect” (0.83) for the appointment experiment. It is useful

also, as suggested in [CF90], to compute two more indices, namely the positive agreement

Ppos on the best-5 and the negative agreement Pneg on those not among the best-5. The

positive agreement, Ppos, for the car experiment and for the appointment experiment were

respectively 0.70 and 0.81 whereas the negative agreement, Pneg, were respectively 0.94 and

0.93. All these numbers show a high agreement between the system and human subjects

on both the best-5 and not among the best-5 (near) solutions. We next considered how

the system and each subject ordered the best-5 solutions and near solutions. The κ values

for the car experiment was 0.43 and for the appointment experiment was 0.61, indicating

respectively “moderate” and “substantial” agreement between system ordering and subject

ordering for the best-5 solutions and the best-5 near solutions.

4.6 Conclusions and Future Work

We proposed techniques to handle under-constrained and over-constrained systems of con-

junctive constraints for service requests. These techniques depend on defining an ordering

over the solutions or near solutions along with Pareto optimality to discard dominated solu-

tions or near solutions. From among the ordered Pareto optimal solutions or near solutions,

we select the best-m. We also introduced expectation values as domain knowledge and

proposed an expectation-based process to elicit or relax constraints respectively for under-

constrained and over-constrained requests. We conducted experiments to test our proposed

ordering and Pareto optimality techniques and found substantial agreement between the

system and human behavior.

Although still preliminary, the results are promising. As future work, we plan to

do more user studies on additional domains with a larger number of subjects. In addition,

we need to develop a dialog generation system for user interaction and to conduct a field

84

test for the generated dialog. Finally, we should integrate our resolution techniques into a

service request architecture, such as the semantic web.

Acknowledgements

This work is supported in part by the National Science Foundation under grants 0083127

and 0414644.

We appreciate Del T. Scott from the Department of Statistics, Brigham Young

University, for his help with our statistical analysis. We also appreciate the help of all the

subjects who participated in the experiments.

85

Bibliography

[AMEL05] M. J. Al-Muhammed, D. W. Embley, and S. W. Liddle. Conceptual Model Based

Semantic Web Services. In Proceedings of the 24th International Conference on

Conceptual Modeling (ER 2005), pages 288–303, Klagenfurt, Austria, October

2005.

[Arn02] M. T. Arnal. Scalable Intelligent Electronic Catalogs. PhD Dissertation, Swiss

Federal Institute of Technology in Lausanne (EPFL), 2002.

[CF90] D. Cicchetti and A. Feinstein. High Agreement But Low Kappa. II. Resolving

The Paradoxes. Journal of Clinical Epidemiology, 43(6):551–558, 1990.

[Fel80] A. M. Feldman. Welfare Economics and Social Choice Theory. Kluwer, Boston,

Massachusetts, 1980.

[FPTV04] B. Faltings, P. Pu, M. Torrens, and P. Viappiani. Designing Example-Critiquing

Interaction. In Proceedings of the 9th International Conference on Intelligent

User Interface, pages 22–29, Funchal, Portugal, November 2004.

[LHL97] G. Linden, S. Hanks, and N. Lesh. Interactive Assesment of User Preference

Models: The Automated Travel Assistant. In Proceedings of the 6th Inter-

national Conference on User Modeling (UM 1997), pages 67–78, Vienna, New

York, June 1997.

[LK77] J. R. Landis and G. Koch. The Measurement of Observer Agreement for Cate-

gorical Data. Biometrics, 33(1):159–174, March 1977.

[MA04] R. T. Marler and J. S. Arora. Survey of Multi-Objective Optimization Methods

for Engineering. Structural and Multidisciplinary Optimization, 26(6):369–395,

March 2004.

86

[min05] Minitab 14.2 Statitiscal Software. Website, 2005. www.minitab.com.

[Par97] V. Pareto. Cours d’économie politique. F. Rouge, Lausanne, Switzerland, 1897.

[PFK03] P. Pu, B. Faltings, and P. Kumar. User-Involved Tradeoff Analysis in Con-

figuration Tasks. In Proceedings of the 3rd International Workshop on User-

Interaction in Constraint Satisfaction, pages 85–102, Kinsale, Ireland, Septem-

ber 2003.

[SL01] S. Shearin and H. Lieberman. Intelligent Profiling by Example. In Proceedings of

the 6th International Conference on Intelligent User Interfaces, pages 145–151,

Santa Fe, New Mexico, January 2001.

87

88

Chapter 5

Bringing Web Principles to Services:

Ontology-Based Web Services

Abstract

Researchers are beginning to realize the potential of web services that can use the web as

a place for information publication and access as opposed to the traditional web-services

paradigm that merely uses the web as a transport medium. Traditional web services can be

difficult to discover, can have complex invocation APIs, and require strong coupling between

communicating applications. In previous work, we presented ontology-based techniques

in which users make service requests using free-form, natural-language-like specifications.

This paper shows how we can use these ontological techniques to automatically create

ontology-based web services that (1) are easy for software agents to discover because they

are created based on machine-processable formalisms (ontologies), (2) have invocation APIs

requiring only simple read and write operations, and (3) require no a priori agreements

regarding types and data formats between communicating applications. Experiments with

our prototype implementation in several domains show that our approach can effectively

create web services with these characteristics.

Keywords: Web-principled services, ontology-based web services, semantic web services,

web service decoupling, data heterogeneity resolution.

89

5.1 Introduction

Despite the tremendous success of traditional web services, researchers have recently realized

that web services can be even more successful by basing them more fundamentally on web

principles [KHP+05, Fen04, SKB06, SKMR+06]. To use a traditional web service, a service

requester must discover a service of interest and synchronously communicate with it. A

requester must also comply with service-specified data formats and data-exchange protocols.

In contrast, web-principled services (those fundamentally based on web principles, which

we describe in this paper) have none of these requirements.

Figure 5.1 shows a traditional web service that returns a weather report for a given

place and time. Assuming a service requester has located this service, the requester would

provide a latitude, a longitude, and a date, and may choose the number of days for the

forecast and whether the results should be returned in 12-hour or 24-hour increments. The

latitude and longitude must be real numbers, not, say, degrees and minutes, and the lon-

gitude must be negative, not East or West the longitude. The date must be in the format

yyyy-mm-dd, not in any of many other possible formats. Further, after clicking on “Sub-

mit”, the calling application must stay coupled with the service until it returns a response.

Figure 5.2, on the other hand, shows the interface for a prototype for web-principled ser-

vices. Without needing to discover a service, a user posts a request. In our example, the

requester enters, “What is the weather going to be like tomorrow in Springfield, Illinois?”

A service that can appropriately respond observes the posting and responds. The response

is twofold: (1) it highlights the part of the query it “understands” (weather, tomorrow, and

Springfield, Illinois in Figure 5.2) and (2) it answers the query (MaximumTemperature=70,

MinimumTemperature=38, and PercentChanceOfPrecipitation=10 in Figure 5.2).

Web-principled services allow decoupling among communicating applications, but,

as a result, require heterogeneity resolution.

• Decoupling among communicating applications. In our vision of web-principled ser-

vices, service requesters post their requests to the web without the requesters having

to reference any particular service. Requesters, therefore, do not need to discover

these services nor to communicate directly with them. As a result, decoupling of ser-

90

Figure 5.1: A weather report web service.

vices and requesters is achieved. To negate the need for service discovery and direct

communication, however, web-principled services must be able to read posted service

requests, process them, and return results to requesters.

• Heterogeneity resolution. For successful invocation of a service, posted service requests

must comply with the service-specified data. Prior agreement between a requester and

a service on the data formats, types, and mappings between values in a request and

the respective input parameters of a service would enable compliance. Decoupling,

however, prevents prior agreement. Therefore, web-principled services must make

requests comply with their internal data specification by resolving heterogeneity.

In previous work [AMEL05, AME06, AME07], we have proposed an ontological

technique that allows service requesters to invoke certain types of ontology-based services

using free-form, natural-language-like specifications. We explain in this paper how these

ontology-based services satisfy the decoupling and heterogeneity requirements and thus can

91

 Figure 5.2: A free-form weather report request with all recognized constraints and values
highlighted along with the web service response to the request.

enable web-principled services. We call these services ontology-based web services (OB-

WSs). OBWSs can interact asynchronously with service requesters. OBWS invocation

only requires reading free-form service requests from some resource such as the web. Thus

they satisfy the decoupling property because they do not need to have a direct coupling

with a service requester. OBWSs require no prior agreement on exchanged data. An OBWS

recognizes values in a service request such as the highlighted values in Figure 5.2 and binds

them to its input variables. In order for this binding to be successful, the OBWS (1) casts

each recognized value to a type of an input variable, (2) transforms the format of each

recognized value to an internal format conforming to the format specified by its ontology,

and (3) assigns each recognized value to the respective input variable. In addition, an

OBWS identifies any missing values necessary for the invocation and obtains them, seeking

additional information from the requester, if necessary. All these capabilities of an OBWS

in handling a service request enable it to satisfy the heterogeneity property.

92

We give the details of our contributions to enabling web-principled services via OB-

WSs as follows. Section 5.2 introduces ontology-based web services. It introduces and

gives the necessary details for ontologies, the foundational knowledge for OBWSs, in Sec-

tions 5.2.1 and 5.2.2. It then shows how an OBWS services a free-form service request and

how it resolves data heterogeneity in Section 5.2.3. Section 5.3 presents the OBWS architec-

ture and shows how this architecture meets the decoupling requirement for web-principled

services. Section 5.4 explains how our approach can bring web principles to traditional web

services, emphasizing how our techniques provide a way for invoking traditional web ser-

vices. Section 5.5 compares our approach to related work. In Section 5.6, we give concluding

remarks and directions for future work.

5.2 Ontology-Based Web Services

We now discuss the elemental components of ontology-based web services. Section 5.2.1

introduces the semantic data model that we use to represent ontologies, and Section 5.2.2

introduces how we capture the semantics of the instances of different concepts of the se-

mantic data model. Section 5.2.3 shows how OBWSs service requests and how they meet

the heterogeneity resolution requirement.

5.2.1 Semantic Data Model

A semantic data model specifies named sets of objects, which we call object sets, named

sets of relationships among object sets, which we call relationship sets, and constraints over

object and relationship sets. Figure 5.3 shows a domain ontology for providing a weather

report. The domain ontology consists of object-set concepts such as StartDate and Place

that can be used to make requests for weather reports. The semantic data model has two

types of object sets, those that are lexical (enclosed in dashed rectangles) and those that

are nonlexical (enclosed in solid rectangles). An object set is lexical if its instances are

indistinguishable from their representations. StartDate is an example of a lexical object

set because its instances (e.g. “May 7, 2007”) represent themselves. An object set is

nonlexical if its instances are object identifiers, which represent real-world objects. Place is

93

City

State

EndDate

StartDate

NumDays

Place

Longitude

ZipCode

Latitude

 ReportPeriod

MinimumTemperature

MaximumTemperaturePercentChanceOfPrecipitation

WeatherReport Format
has

is forstarts onis for

is for ->

produces

has has

has

identify

identifies

identify

determine

is in

City

State

EndDate

StartDate

NumDays

Place

Longitude

ZipCode

Latitude

 ReportPeriod

MinimumTemperature

MaximumTemperaturePercentChanceOfPrecipitation

WeatherReport Format
has

is forstarts onis for

is for ->

produces

has has

has

identify

identifies

identify

determine

is in

Figure 5.3: A semantic data model for a weather report service.

an example of a nonlexical object set because its instances are identifiers such as, say, “P1”,

which represents a particular place in the real world.

We designate the main object set in a domain ontology by marking it with “–> •” in

the upper right corner (e.g. WeatherReport in Figure 5.3). This notation,“–> •”, denotes

that when an ontology is used to satisfy a service request, the main object set becomes

(“->”) an object (“•”). The system satisfies a service request by instantiating the main

object set with a single value such that all applicable constraints are satisfied.

Figure 5.3 also shows relationship sets among object sets, represented by connecting

lines, such as StartDate and EndDate determine NumDays. The arrow connections represent

functional relationship sets, from domain to range, and non-arrow connections represent

many-many relationship sets. For example, StartDate and EndDate determine NumDays is

functional from the pair StartDate and EndDate to NumDays, and WeatherReport produces

ReportPeriod is many-many. A small circle near the connection between an object set O

and a relationship set R represents an optional participation, so that an instance of O need

not participate in a relationship in R. For example, the small circle on the Place side of the

relationship set ZipCode identifies Place states that an instance of Place may or may not

relate to an instance of ZipCode.

94

5.2.2 Data Frames

Each object set in a semantic data model has an associated data frame [Emb80], which

describes instances for the object set. Data frames capture the information about object-

set instances in terms of internal and external representations, context keywords or phrases

that may indicate their presence, operations that convert between internal and external

representations, and other manipulation operations that can apply to instances of the object

set along with context keywords or phrases that indicate the applicability of an operation

and operands in an operation. Figure 5.4 shows sample (partial) data frames for several

object sets in Figure 5.3.

The internal representation specifies the data type for the instances of an object

set. The StartDate instances, for example, are of type date, which must be of the form

yyyy-mm-dd. We use regular expressions to capture external textual representations. The

StartDate data frame, for example, captures date instances such as “July 6, 2007”. The

regular expression can also have lexicon references. For instance, “{stateName}” in the State

data frame refers to a lexicon of state names. A data frame’s context keywords/phrases

are also regular expressions. For example, the ZipCode data frame in Figure 5.4 includes

context keywords such as “zip code” or “zip”. In the context of one of these keywords, if a

5-digit number appears, it is likely that this number is a zip code. A nonlexical object set

such as WeatherReport has only context keywords or phrases. Figure 5.4 shows that the

WeatherReport data frame includes keywords and phrases that could indicate the presence

of an instance of a WeatherReport.

Operations in data frames manipulate object-set instances. For example, the oper-

ation getLatitude(x : ZipCode) computes the latitude for a given zip-code argument x, and

the operation toInternalRepresentation(x : StartDate) transforms dates in various formats

to the internal format. The context keywords/phrases for an operation indicate the possible

applicability of the operation. The context keywords/phrases are regular expressions that

include keywords or phrases and possibly expandable expressions represented by operand

names enclosed in braces. The system expands these expressions by finding the types of

their operands and substituting the textual representations in the data frames of the types

95

StartDate
internal representation: date -- format: yyyy-mm-dd
text representation:

{monthName}\s+([0]?[1-9]|[12]\d|3[01])(\s*\,)?\s+\d{4}|
(the\s+)?([0]?[1-9]|[12]\d|3[01])\s*(th|nd|rd|st)|...

toInternalRepresentation(x: StartDate)
returns (StartDate) -- format: yyyy-mm-dd

Tomorrow()
returns (StartDate) --next day with respect to today
context keywords/phrases: tomorrow|next\s*day|...

NrDaysBetween(x1: StartDate, x2: EndDate)
returns (NumDays)
context keywords/phrases: between\s+{x1}\s+and\s+{x2}|...

getDefaultStartDate()
returns (StartDate) -- today’s date

...
State

internal representation: string
text representation:

{stateName}|{statePostalCode}|{stateAbbreviations}
...

ZipCode
...
text representation: [1-9]\d{4}
context keywords/phrase: zip\s*code|zip

Latitude
internal representation: real -- positive
getLatitude(x1: State, x2: City)

returns (Latitude)
getLatitude(x: ZipCode)

returns (Latitude) -- positive real number
toInternalRepresentation(x: Latitude)

returns (Latitude) -- positive real number
...

Longitude
internal representation: real -- negative
getLongitude(x1: State, x2: City)

returns (Longitude)
getLongitude(x: ZipCode)

returns (Longitude) -- negative real number
toInternalRepresentation(x: Longitude)

returns (Longitude) -- negative real number
...

NumDays
internal representation: integer
getDefaultNumDays()

returns (NumDays) -- 1
...

WeatherReport
internal representation: object ID
context keywords/phrases:

(want\s+a\s+)?weather\s+report|weather|forecast|...
...

...

Figure 5.4: Some sample data frames. The ellipses “...” show omissions needed to com-
plete the data frames. The “--” prefixes a comment that provides more of a clue about an
aspect of the data frame specifications.

96

for these expressions. When context keywords/phrases for an operation match substrings in

a service request, the system can record which values are for which operands. For instance,

the context keywords/phrases associated with the operation NrDaysBetween in Figure 5.4

has the regular expression between\s+{x1}\s+and\s+{x2}, which includes the expandable

expressions {x1} and {x2}. As Figure 5.4 shows, the operands of these two expressions are

of type StartDate. When this regular expression matches a substring in a request such as

“What is the weather going to be in Chicago between the 10th and the 15th,” the system

can record that the first date value (“the 10th”) is for x1 and the second date value (“the

15th”) is for x2.

5.2.3 Servicing Requests with Ontology-Based Web Services

When an OBWS receives a service request, it applies the recognizers in the data frames

of its underlying ontology to the request to extract information necessary for servicing the

request. Consider the weather-report request in Figure 5.2 and an OBWS whose underlying

ontology is in Figures 5.3 and 5.4. When applying the ontology in Figures 5.3 and 5.4 to the

request in Figure 5.2, the OBWS extracts the strings “weather”, “tomorrow”, “Springfield”,

and “Illinois”—these strings appear highlighted in Figure 5.2.

The OBWS may, and often does, need to process the extracted information to make

it comply with the required data as specified by the ontology. In our weather-request exam-

ple, some of the extracted values do not comply with the data required by the OBWS. In this

case, the request provides a state (“Illinois”) and a city (“Springfield”), not a latitude and

longitude as required. The OBWS uses the operation getLatitude(“Illinois”,“Springfield”)

to compute a latitude and assigns the computed latitude value to the object set Latitude

(similarly for a longitude). Likewise, the request provides “tomorrow” as a start date,

which is not in the required format yyyy-mm-dd. Since the applicability recognizers of the

operation Tomorrow() in the data frame recognize “tomorrow” in the request, and this

operation returns a start date, the OBWS uses Tomorrow() to transform the recognized

string “tomorrow” into a properly formatted start date and assigns the transformed value

to the object set StartDate. Besides not being in the proper form, the information in the

request also is incomplete since the request provides no values for Format and NumDays.

97

The OBWS, nevertheless, can use its ontology to provide default values for object sets.1

For our example the OBWS provides the default value “24 Hourly” for Format and the

default value“1” for NumDays. Thus, the OBWS can instantiate all the required data Lat-

itude, Longitude, StartDate, NumDays, and Format, either by computing or transforming,

if necessary, given values or by providing default values.

To service a request, an OBWS must instantiate its output data instances by re-

triving them from its database or by computing them from other available data instances.

For our example, the OBWS retrieves from its database values for MaximumTemperature,

MinimumTemperature, and PercentChanceOfPrecipitation. Using a process that is beyond

the scope of this paper and is fully described elsewhere [AMEL05], the OBWS generates a

database query, executes this query, and returns the query result values.

Observe that OBWSs resolve data heterogeneity. An OBWS extracts values from

a request and assigns them to respective object sets of its ontology independently of how

these values appear in the request. An OBWS uses the data frames operations to compute

required values from given values and to transform recognized values to internal represen-

tations when necessary. An OBWS also uses default values defined by its ontology to add

missing information to service requests.

5.3 Request-Oriented Architecture

Fensel [Fen04] proposes triple-space computing as a means to provide seamless interoper-

ability between web services in a web-principled manner. In this section we introduce a

request-oriented architecture, inspired by the feed syndication architecture of XML-based

or RDF-based RSS and ATOM feeds [Ham03, Pow05, RSS07], that meets these additional

interoperability requirements. Before we describe our architecture, we briefly explain how

RSS/ATOM feeds work. In the RSS/ATOM-based feed subscription model, a user sub-

scribes directly to feeds through feed reader clients, sometimes referred to as feed aggre-

gators. Subscription to feeds (e.g. from news sites, blogs, podcasts, and other frequently

updated web sites) consists of supplying a feed reader with a link to the feed. The feed
1When there are no default values for required information, the ontology lets the system know precisely

which values are needed. The OBWS can request these values from the user.

98

reader then periodically checks for updates to the feed and notifies the user when a change

has occurred in one of the subscribed feeds. Often, feeds only include summaries of the

changes and the user must click on the feed’s hyperlink to view the full change, which

normally consists of new content or so-called articles relevant to some particular subject

of interest to the user. The proposed request-oriented architecture emulates some of the

concepts of the RSS-based feed subscription model, but more significantly it further extends

those concepts to broker interactions between service requesters and OBWSs.

The request-oriented architecture provides a mechanism to dynamically match free-

form service requests with OBWSs capable of servicing those requests. Fundamentally,

this architecture is based on a centralized brokerage mechanism that enables OBWSs to

subscribe to service-specific ontology feeds to which new service requests are posted. The

brokerage mechanism’s main functions are to match free-form service requests against avail-

able ontologies and to update service-specific ontology feeds with service requests so that

OBWSs that subscribe to the feed can receive and service relevant service requests.

In the request-oriented architecture, service requesters make free-form services re-

quest such as the weather request in Figure 5.2. The broker matches a request with the

available ontologies. For each ontology, the broker applies all the recognizers in the data

frames to the request and ranks the ontology according to the number of matches the on-

tology has with the request. (More details about request-ontology matching and ranking

can be found elsewhere [AME07].) The broker then selects the ontologies with the highest

rank as a means to find OBWSs that can potentially service the request.

The service brokerage mechanism takes a two-tiered approach to broker requests

and responses between service requesters and OBWSs. The first tier consists of mapping

a service requester with potential OBWSs associated with the ontology that the broker

determined to be most relevant to the service request. In this tier, the request is published

as an update to the ontology feed. Then, the OBWSs that subscribe to the feed may choose

to respond to the broker based on their availability and other individual criteria. The

brokerage mechanism then presents the OBWS response proposals to the service requester as

links. In the second tier of brokerage, the service requester selects a response proposal from

the list provided by the brokerage mechanism, which indicates to the brokerage mechanism

99

the acceptance of the proposed service response. At this point, the brokerage mechanism

performs the last step of the brokerage process by establishing a direct link between the

service requester and the selected OBWS. This step consists of sending the complete service

request to the selected OBWS along with the service requester’s URL, the web session ID,

and other relevant parameters in the POST request necessary for the OBWS to interact

directly with the service requester. After the direct link between the service requester and

the OBWS is successfully established, the OBWS then provides the complete response to

the service requester and opens the door for further direct interactions.

Observe that the proposed OBWS architecture decouples service requesters and

OBWSs. Requesters do not have to discover OBWSs that are capable of servicing their

requests because the broker selects the capable OBWSs via request-ontology matching.

In addition, requesters do not have to reference and establish communication links with

the OBWSs. The broker references the OBWSs and passes the necessary information for

them to dynamically establish communication links with requesters. OBWSs establish these

communication links only when they need information from the requester to process requests

or to return response.

The broker scales up to a reasonable size. The average size of the ontologies with

which we have been experimenting is 18KB. Therefore, for 10,000 ontologies, the required

space is about 180MB, which is relatively small for recent machines. Based on [SP01], for

r regular expressions with average length of n̄ characters, a text of length t characters,

a machine of a clock speed s, the time to process the text using the regular expressions

is rn̄t/s. Since our ontologies have an average of 90 regular expressions with an average

of 60 characters, processing a request of 70 characters, like the one in Figure 5.2, on a

machine with a clock speed of 1.8GH would take about 0.20 milliseconds. Thus, for 10,000

ontologies the time is about 2 seconds. We add to this the time for applying lexicons, which

each can be done in (log2L) time, where L is the length of the lexicon. In any case, the

time complexity is still manageable and can be greatly improved by using techniques such

as parallel processing, duplicate regular-expression removal, and indexing.

100

5.4 Web-Principled Traditional Web Services

This section describes how to turn a traditional web service into an OBWS, not only so that

it can be invoked via the OBWS architecture, but, perhaps more importantly, so that it

can also exploit the decoupling and data heterogeneity resolution capabilities of the OBWS

approach.

To create an OBWS from a traditional web service, we must provide an ontology

that describes the service’s external interface characteristics, and we must specify mappings

between the ontology and the service’s I/O requirements. A developer can reuse an ontol-

ogy, if there is one, or create a new ontology that describes the interface layer semantics of

the traditional web service. No change to the actual interface and the internal implementa-

tion of the service is required. The information required to create an ontological description

for a traditional web service includes (1) the name of the service, (2) the names of the

input and output parameters along with their types, and (3) the accepted formats for the

values of the input parameters. Figures 5.3 and 5.4 show the ontology that describes the

weather web service example in Figure 5.1.2 The semantic model in Figure 5.3 encodes

the input parameters of the service in terms of the object sets Latitude, Longitude, Start-

Date, NumDays, and Format. The semantic model also encodes the output parameters of

the service in terms of the object sets MaximumTemperature, MinimumTemperature, and

PercentChanceOfPrecipitation. We define the name of the operation as the main object set

(marked with “−>•”) in Figure 5.3.

The data frames in Figure 5.4 define the semantics of the possible instances of the

object sets. The types of the object sets must comply with the types of the input and output

parameters required by the service. As an example, the WSDL document that describes

the interface for the weather service in Figure 5.1 defines the input parameter startDate

to be of type date (as defined in XML Schema [W3C06]). Therefore, Figure 5.4 defines the

type of the object set StartDate, the ontological description for startDate, to be of type

date. The formats of the instances of the object sets must also comply with the accepted
2We obtained the information about the web service in Figure 5.1 from the WSDL document at

http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl. We also invoked the service and
reviewed its response as the WSDL document does not explicitly specify the names of the output parameters.

101

formats for the values of the input parameters. Therefore, Figure 5.4 defines the format for

the instances of the object set StartDate, for example, to be yyyy-mm-dd, which is the valid

format for values of startDate as specified by the weather service interface. In addition,

an ontology designer must also decide which input parameters are required from the user

and which input parameters can have default values. For instance, in our design for the

ontology in Figures 5.3 and 5.4, Latitude and Longitude are required from the user whereas

StartDate, for instance, is not required in the sense that, if not provided, it defaults to

“today.”

The ontology in Figures 5.3 and 5.4 also shows extensions to the input of the original

service in Figure 5.1. It declares additional object sets State, City, and ZipCode. With these

added object sets, a requester can invoke the service in Figure 5.1 not only using a latitude

and a longitude, but also using a zip code, a city, or both a city and a state. It also declares

EndDate, which provides an alternative way to specify the number of days for the forecast.

The ontological description of the traditional web service in Figure 5.1 enables re-

questers to invoke this web service using free-form requests. Figure 5.2 shows an example of

invoking the service for the free-form weather report request: “What is the weather going to

be like tomorrow in Springfield, Illinois?” The requester just specifies the request without

referencing any particular service. The request does not need to satisfy any particular data

type and format requirements specified by the service nor does it need to be complete. In

this example, the request specifies a city and state, but not a latitude and a longitude as

required by the service, and it does not provide any values for format and number of days.

To map the request to the input requirements of the service, the developer must

specify which input parameter maps to which object set of the ontology. In our ontologies we

do this mapping through the data frames by making each input parameter name a synonym

for the respective object set in the ontology. In this way, the OBWS can pass the internal

representation of an extracted value to the respective input parameter. Figure 5.5(a) shows

the results of the mapping for our example. The developer must also map the service

response to the ontology. Typically web service responses are XML documents embedded

in SOAP messages. The developer therefore must specify which XML tag corresponding to

which object set. Then, the developer can use XSLT [W3C07a] or XML parsers [XML06]

102

WeatherRequest(
getLatitude("Illinois", "Springfield"),
getLongitude("Illinois", "Springfield"),
Tomorrow(),
getDefaultNumDays(),
getDefaultFormat()

)

(a) An instantiated service request. The arguments are ordered as specified by
the WSDL document.

<?xml version="1.0" ?>
<dwml version="1.0" xmlns:xsd=http://www.w3.org/2001/XMLSchema>
...
<temperature ...>
<name>Maximum Temperature</name>
<value>70</value>

</temperature>
<temperature ...>
<name>Minimum Temperature</name>
<value>38</value>

</temperature>
<probability-of-precipitation ...>

<name>Probability of Precipitation</name>
<value>10</value>

</probability-of-precipitation>
...
</dwml>

(b) The service response to the request in Figure 5.5(a).

Figure 5.5: An instantiated request and the service’s response to this request.

to extract values and assign these values to appropriate object sets. Figure 5.5(b) shows an

example of the output from the service, which the developer must map to the ontology for

our service.

5.5 Related Work

There are several existing projects related to our work. Some frameworks, such as

the Semantic Web Service Framework (SWSF) [W3C05], the Web Ontology Language

for Services (OWL-S) [MPM+05], and Web Service Modeling eXecution environment

(WSMX) [HCM+05] can be used to develop web services from scratch by describing their

internal representation with semantic data models (e.g. SWSF uses the Semantic Web Ser-

vice Ontology and a Semantic Web Service Language for this purpose). Others, such as the

103

Semantic Annotation for the Web Services Description Language (SAWSDL) [W3C07b],

provide a means to create an annotation of an existing web service’s interface, while not

being constrained to any ontology in particular.

The approaches most similar to ours are (1) architectures that provide a shared space

through which web services (requesters and providers) can exchange data and (2) approaches

that allow for both internal and external semantic modeling of the web service. The former

includes the triple-space computing architecture [RMRD+06]. The latter includes the Web

Service Modeling Framework (WSMF) [FB02], the Internet Reasoning Service (IRS) project

[MDCG03][CDG+06], and WSMX [HCM+05].

The triple-space computing (TSC) architecture described in [RMRD+06] and further

detailed in [Bus05] allows service requesters and providers to exchange data encoded as RDF

triples [KC04]. In this architecture, the data exchanged between requesters and providers

is written in the form of RDF triples to servers that host the so-called triple space. Web

services can read RDF triples of interest by querying the servers that host these triples,

process them, and write results as RDE triples to the triple space. Service requesters

can also write their requests as RDF triples and read results after some services process

their requests. TSC resolves syntactical heterogeneity between requesters and services by

imposing a unified language (RDF) that both parties should use for communication. This

is radically different from the OBWS approach in the sense that the OBWS architecture

imposes no language because requesters can specify their requests in free-form specifications.

The OBWS architecture has stronger heterogeneity resolution capabilities than the TCS

architecture, which resolves heterogeneity only at the schema level [SSK+06]. Further,

while the TSC architecture is passive, as services themselves need to check for new requests

of interest, the OBWS architecture is active in the sense that it notifies OBWSs when a

request of interest for an OBWS is posted.

The Web Service Modeling Framework, WSMF [FB02], provides decoupling among

applications through an ontology modeling language and an ontology. This decoupling,

however, is only partial because the mapping between ontologies and the service data needs

to be done manually. In contrast, our approach uses data frames to automate the mapping

104

process. In addition, the WSMF is a framework that provides no web service implementation

capabilities, while the OBWS approach does.

The IRS project (with its variations IRS-II [MDCG03] and IRS-III [CDG+06]) and

the WSMX [HCM+05] approaches are all reference implementations for the Web Service

Modeling Ontology (WSMO) [BBD+]. They enable service developers to describe their

services using the WSMO ontology and register these descriptions in the system. Requesters

can specify their requests, called goals, also using the WSMO ontology. The server matches

goals with WSMO service descriptions and returns matches to users. Users then choose

and invoke desired services. Both approaches differ from the OBWS approach in that they

do not handle the kind of heterogeneity that our approach handles. They do, however,

resolve mismatches between the request ontology and the service description ontology using

pre-specified mapping rules, which must be created manually. Further, our approach allows

users to make free-form service requests versus using the formal WSMO ontology to create

goals.

WSMF, IRS, and WSMX are service-oriented approaches that partially accomplish

decoupling and heterogeneity requirements through the conceptual modeling capabilities

of ontologies and logic-based languages used to either describe the interface or define the

inner workings of the web services. The OBWS approach described in this paper, on the

other hand, is a request-oriented approach, which allows requests to be profiled with an

extensional ontology and posted on an ontology feed, so that services subscribed to the

feed can service the request. Neither the requester nor the service need to worry about

each other’s data representation, transport protocols, internal or external representation,

or other idiosyncrasies in order to communicate.

5.6 Conclusions and Future Work

We have presented an ontological approach to enabling web-principled services via ontology-

based web services (OBWSs). Web-principled services use the web as a place for informa-

tion publication and access. They communicate asynchronously (and thus resolve coupling

problems), and they exchange data without requiring requesters to comply with strict data

105

format specifications (and thus resolve heterogeneity problems). In addition, we have pro-

posed an architecture for OBWS. Instead of a passive mechanism such as that embodied

in UDDI-based brokerage services that require the service requester to find, adapt, and

request, our proposed mechanism allows requests to be advertised in a manner that an

OBWS can understand them and then propose to service those requests. Instead of a re-

active mechanism that depends on human developers to make the necessary adjustments

to the interacting requester and responder, the proposed mechanism provides proactive

mapping between requests and responses through its relevant ontology-based feeds. As a

spin-off of the basic OBWS framework, we have also discussed a way to turn a traditional

web service into an OBWS. It suffices to describe a traditional web service with an ontology;

it requires no changes to the interface and implementation of the service.

There are three important directions left for future work. First, we need to provide

a mechanism for the broker to be able to choose and present the best service, or the best-

k services, for a request when there are many relevant service providers that match the

request. Authors in [YL04] and [CAH05] suggest criteria for selecting a service from among

potential services according to non-functional aspects such as reliability, service cost, and

availability. We can adapt these criteria to our approach or use other appropriate techniques.

Second, the scalability of the proposed request-oriented architecture is also an important

issue. Two important components of the architecture should scale. The broker should

scale, theoretically, to an arbitrary number of ontologies and an arbitrary number of service

requests. The RSS feeds mechanism should also scale to an arbitrary number of subscribers.

One of the ways that we are planning to consider to improve this scalability is to take

advantage of parallel processing techniques and indexing. Parallel processing allows the

broker to do the matching on more than one processor, which is likely to decrease the

processing time. Indexing allows us to apply cross regular expressions only one time instead

of applying them for each ontology they belong in, which is also likely to decrease the

processing time. Third, we want to extend our approach to handle composite services

whose satisfaction requires an instantiation of multiple ontologies. For instance, a vacation

planning web service should book an air ticket, reserve a hotel, and rent a car. Handling this

type of a service, however, is not just a matter of independently instantiating ontologies.

106

There are clearly cross constraints that need to be satisfied in order for vacation planning

requests to be correctly handled. For instance, the date of the car rental cannot be later

than the return date of the air ticket.

By any reasonable measure, web principles have made a significant impact on the

way people and machines interact. Ontology-based web services bring these same principles

to the world of services. Improved decoupling and heterogeneity resolution will make web

services easier to design, implement, and consume.

Acknowledgement

This work is supported in part by the National Science Foundation under Grants 0083127

and 0414644 and by Rollins Center for eBusiness at Brigham Young University under Grant

EB-05046.

107

Bibliography

[AME06] M. J. Al-Muhammed and D. W. Embley. Resolving Underconstrained and

Overconstrained Systems of Conjunctive Constraints for Service Requests. In

Proceedings of the 18th International Conference on Advanced Information

Systems Engineering (CAiSE06), pages 223–238, Luxembourg, June 2006.

[AME07] M. J. Al-Muhammed and D. W. Embley. Ontology-Based Constraint Recog-

nition for Free-Form Service Requests. In Proceedings of the 23rd Interna-

tional Conference on Data Engineering (ICDE 2007), pages 366–375, Istanbul,

Turkey, April 2007.

[AMEL05] M. J. Al-Muhammed, D. W. Embley, and S. W. Liddle. Conceptual Model

Based Semantic Web Services. In Proceedings of the 24th International Confer-

ence on Conceptual Modeling (ER 2005), pages 288–303, Klagenfurt, Austria,

October 2005.

[BBD+] J. De Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer, B. Konig-

Ries, J. Kopecky, R. Lara, E. Oren, A. Polleres, J. Scicluna, and M. Stollberg.

Web Service Modeling Ontology (WSMO). http://www.wsmo.org/TR/d16/.

[Bus05] C. Bussler. A Minimal Triple Space Computing Architecture. In Proceedings

of the 2nd WSMO Implemetation Workshop, Innsbruck, Austria, June 2005.

[CAH05] D. Claro, P. Albers, and J. Hao. Selecting Web Services for Optimal Com-

position. In Proceedings of the 2nd International Workshop on Semantic and

Dynamic Web Processes (SDWP 2005), pages 32–44, Orlando, Florida, July

2005.

[CDG+06] L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, V. Tanasescu, C. Pedrinaci,

and B. Norton. IRS-III: A Broker for Semantic Web Services Based Appli-

108

cations. In Proceedings of the 5th International Semantic Web Conference

(ICWS 2006), pages 201–214, Athens, Georgia, November 2006.

[Emb80] D. W. Embley. Programming with Data Frames for Everyday Items. In

D. Medley and E. Marie, editors, Proceedings of AFIPS Conference, pages

301–305, Anheim, California, May 1980.

[FB02] D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.

Electronic Commerce Research and Applications, 1(2):113–137, 2002.

[Fen04] D. Fensel. Triple-Space Computing: Semantic Web Services Based on Persis-

tent Publication of Information. In Proceedings of IFIP International Con-

ference on Intelligence in Communication Systems, pages 43–53, Bangkok,

Thailand, November 2004.

[Ham03] B. Hammersley. Content Syndication with RSS. O’Reilly Media, Sebastopol,

California, 2003.

[HCM+05] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A

Semantic Service-Oriented Architecture. In Proceedings of IEEE International

Conference on Web Services (ICWS 2005), pages 321–328, Orlando, FL, July

2005.

[KC04] G. Klyne and J. Carroll. Resource Description Format (RDF): Concepts and

Abstract Syntax. http://www.w3c.org/TR/rdf-concepts, 2004.

[KHP+05] R. Krummenacher, M. Hepp, A. Polleres, C. Bussler, and D. Fensel. WWW

or What Is Wrong with Web Services. In Proceedings of the 3rd European

Conference on Web Services (ECOWS 2005), pages 235–243, Växjö, Sweden,

November 2005.

[MDCG03] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework

and Infrastructure for Semantic Web Services. In Proceedings of the 2nd In-

ternational Semantic Web Conference (ISWC 2003), pages 306–318, Sanibel

Island, FL, October 2003.

109

[MPM+05] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott,

D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and

K. Sycara. Bringing Semantics to Web Services: The OWL-S Approach. In

J. Cardoso and A. Sheth, editors, Proceedings of the 1st International Work-

shop on Semantic Web Services and Web Process Composition, volume 3387,

pages 26–42, San Diego, California, July 2005.

[Pow05] S. Powers. What Are Syndication Feeds. O’Reilly Media, Sebastopol, Califor-

nia, 2005.

[RMRD+06] J. Riemer, F. Martin-Recuerda, Y. Ding, B. Sapkota, R. Krummenacher,

O. Shafiq, D. Fensel, and E. Kühn. Triple Space Computing: Adding Se-

matics to Space-Based Computing. In Proceedings of the 1st Asian Semantic

Web Conference (ASWC 2006), pages 300–306, Beijing, China, September

2006.

[RSS07] RDF Rich Site Summery. Website, 2007. http://xml.coverpages.org/rss.html.

[SKB06] B. Sapkota, E. Kilgarriff, and C. Bussler. Role of Triple Space Computing in

Semantic Web Services. In Proceedings of the 8th Asia-Pacific Web Conference

(APWeb 2006), pages 714–719, Harbin, China, January 2006.

[SP01] R. Sidhu and V. K. Prasanna. Fast Regular Expression Matching Using

FPGAs. In Proceedings of the the 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2001), pages 227–238,

Washington, DC, USA, 2001.

[SSK+06] O. Shafiq, F. Scharffe, R. Krummenacher, Y. Ding, and D. Fensel. Data

Mediation Support for Triple Space Computing. In Proceedings of the 2nd

IEEE International Conference on Collaborative Computing (CollaborateCom

2006), Atlanta, Georgia, November 2006.

[W3C05] W3C. Semantic Web Services Framework. Website, 2005.

http://www.w3.org/Submission/SWSF.

110

[W3C06] Extensible Markup Language (XML 1.0). Website, 2006.

http://www.w3.org/TR/REC-xml/.

[W3C07a] Extensible Stylesheet Language Transoformation (XSLT 2.0). Website, 2007.

http://www.w3.org/TR/2007/REC-xslt20-20070123/.

[W3C07b] W3C. Semantic Annotations for WSDL and XML Schema. Website, 2007.

http://www.w3.org/TR/sawsdl.

[XML06] Crimson: A Java XML 1.0 parser. Website, 2006.

http://xml.apache.org/crimson/.

[YL04] T. Yu and K. Lin. Service Selection Algorithms for Web Services with End-to-

End QoS Constraints. In Proceedings of the IEEE International Conference on

E-Commerce Technology (CEC 2004), pages 129–136, San Diego, California,

July 2004.

111

112

Chapter 6

SerFR: Server for Free-form Requests

A Usability Study

In this chapter, we present an end-user-oriented evaluation of the usability of SerFR.

SerFR (Server for Free-form Requests) is a proof-of-concept system that is built on the

techniques presented in previous chapters—Chapters 2, 3, and 4. The goal is to see whether

SerFR, which integrates these techniques, meets end users’ satisfaction.

We evaluated the usability of SerFR in three domains: scheduling appointments,

purchasing cars, and renting apartments. Subjects tried SerFR on these three domains and

then answered a set of usability questions and provided suggestions for potential improve-

ment. To determine the degree of its usability, we analyzed the responses of the subjects

along with other information the system automatically collected and logged during the

subjects’ interaction with the system.

The outline of this chapter is as follows. Section 6.1 gives the details of SerFR

usage. It focuses on the interactions that are important from the users’ perspective and

that are the goal of our usability evaluation. Section 6.2 discusses how we elicited the

required information to determine the degree of usability of our system (Subsection 6.2.1)

and provides a detailed analysis of the elicited information (Subsections 6.2.2 and 6.2.3).

In Section 6.3 we give concluding remarks about the usability of the system. Appendix A

contains the test instructions and Appendix B contains the questionnaire for the SerFR

usability study.

113

Figure 6.1: User interface for specifying service requests with a car purchase service request.

6.1 SerFR—Usage Scenario

In this section, we discuss a use case of SerFR. The objective is to provide a clear idea

about the functionalities of SerFR we want to test. We do not, however, discuss processes

that are not interesting to users such as how the system selects a domain ontology that best

matches a request or how the system generates a formalism for a free-form service request.

These processes have been thoroughly explained in previous chapters.

SerFR provides users with an interface to specify their service requests. Figure 6.1

shows the interface, which consists of a statement about supported domains (scheduling

appointments, purchasing cars, and renting apartments), a text area to specify free-form

114

Figure 6.2: Highlighted recognized constraints (top panel) and a constraint relaxation mes-
sage (bottom panel).

service requests, a choice box labeled with “Display” to select how many solutions to display,

and a checkbox labeled with “Advanced Specification” to make advanced service request

specifications with conjunctive, disjunctive, and negated constraints. There are also three

buttons: “Service My Request” to service a specified service request, “Evaluate Prototype”

to show the evaluation sheet that allows users to write their evaluation, and “Cancel” to

close the interface. The empty bottom half of the interface is for giving feedback messages

from the system, allowing users to respond to the system messages, and showing the results

of processing service requests.

115

To make a request with only conjunctive constraints, a user types the request into

the provided text area. Figure 6.1 shows an example of a car purchase request with con-

straints on make (Nissan), year (a 2005 or newer), features (AC, PL, and sun roof), mileage

(less than 30k), and price (not be more than $11k). When a user clicks on the button “Ser-

vice My Request”, SerFR starts the constraint recognition process. The system highlights

all recognized constraints in green as Figure 6.2 shows. The highlighting gives users an

important clue about the constraints the system recognizes.

After constraint recognition, if the system is able to identify an ontology to use for

servicing the service request, it starts the constraint satisfaction process. There are two

cases the system handles: over-constrained service requests and under-constrained service

requests. If these are insufficient, users may use the advanced-specification feature to specify

their requests.

Over-constrained service requests. Our car purchase example admits no solu-

tion as indicated by the message “No solution found” in Figure 6.2. When SerFR finds no

solutions, it prompts users to relax constraints to get near solutions. As Figure 6.2 shows,

SerFR prompts users to relax the price constraint from “$11k” to “$11,895” as indicated by

the statement: Can the constraint “Price: not be more than $11k” be relaxed to “$11,895”?1

As Figure 6.2 shows, the system gives a user two possible choices represented by the two

buttons. First, a user can click on the button “Yes, Relax It” to see the near solution that

results from relaxing the price constraint to be “$11,895”. Second, a user can click on the

button “No, Show Me Close Solutions” to see near solutions that violate constraints.

For the sake of further discussing the capabilities of SerFR, we assume that a user

clicks on the button “No, Show Me Close Solutions”, which is likely to produce too many

near solutions. SerFR controls the potential drudgery that results from having to evaluate

all possible near solutions by displaying near solutions in two different tables. The first table

shows the best-k near solutions, where k defaults to 5, but can be changed by users changing

the default choice in the box labeled “Display” in Figure 6.2. As discussed in Chapter 4,

SerFR produces the best-k near solutions by ordering the near solutions according to their
1The text between quotation marks is taken from the service request “not be more than $11k”, from the

ontology “Price”, and from the database “$11,895” (the price of the car closest to satisfying the request).
The other part: Can this constraint ... be relaxed to ...? is a general statement hardcoded in the system.

116

Figure 6.3: The best-5 near solutions.

increasing penalty (the near solution with least penalty first) and using Pareto optimality

to select the top-k Pareto optimal near solutions from the penalty-ordering.2 Figure 6.3

shows the best-5 near solutions under the tab “The Best-5 Close Solutions”. A user can

also switch to the second table that shows the penalty-ordering for all near solutions by

choosing the tab “All Possibilities Ordered Best First” in the result display in Figure 6.3.

The system distinguishes between known constraint violations and possible con-

straint violations. As Figure 6.3 shows, the system marks all the price values under the

column Price in red because they definitely violate the price constraint. As Figure 6.3 also
2As discussed in Chapter 4, a penalty is a negative real number that represents how much a near solution

violates a constraint. Pareto optimality is a selection mechanism that eliminates all near solutions with a
greater violation for each individual constraint than other near solutions.

117

Figure 6.4: Constraint elicitation request.

shows, the system marks the feature values of the car under the column Feature in orange

because the feature values do not mention “sun roof”, which causes a possible but not a

definite constraint violation.

As a convention, the system orders the column names in the display table based on

the appearance of the constraints in the service request. The system orders alphabetically

the remaining names that do not have corresponding constraints in a service request, if

any. For instance, as Figure 6.3 shows, the system orders the column names Make, Year,

Feature, Mileage, and Price because they appear in this order in the service request. The

system orders alphabetically the remaining column names Address, Color, Model, and Name

because they do not have constraints imposed on them in the service request.

118

Figure 6.5: The best-5 solutions.

Under-constrained service requests. Figure 6.4 shows an example of a car

purchase request that causes the system to find too many solutions. Figure 6.4 (bottom

panel) shows that the system has found 37 solutions for this request. The system allows a

user to see all the 37 solutions by clicking the button “Show Them All” in Figure 6.4.

However, as we discussed in Chapter 4, adding more constraints makes solutions

better satisfy users’ preferences and can further reduce the number of solutions. There-

fore, SerFR suggests that users impose constraints on selected attributes based on their

expectation or any other attributes of a user’s choice.3 As Figure 6.4 shows, the system
3An expectation of a concept in a domain ontology is the probability that a constraint on this concept

appears in a service request. (See Chapter 4 for more details.)

119

suggests that the user imposes constraints on Model and Color or on anything else. Fig-

ure 6.4 shows that the user imposes a constraint on the model to be “stratus” and on the

color to be “white” by writing them in the provided text area. When the user clicks on the

button “Execute my request with these constraints included”, the system adds these two

constraints to those already specified and attempts to satisfy the constraints.

As in the case for near solutions, SerFR displays solutions in two tables. The first

table shows the best-k solutions selected from the reward-ordering using Pareto optimality.

The second table shows all the reward-ordering solutions with the highest rewards first.4

Figure 6.5 shows the best-5 solutions that satisfy all the constraints. The user can also see

the reward-ordering by choosing the tab “All Solutions Ordered Best First” in the result

display in Figure 6.5.

Advanced specification. Users can also choose the advanced specification func-

tionality of our system by clicking on the checkbox, “Advanced Specification”, in the inter-

face. Figure 6.6 shows the user interface for the advanced specification with a car purchase

request example. As the figure shows, this functionality provides a text area, labeled “Tell

me what you want”, for users to specify the goal of the request (e.g. “I want to buy a

car”) and a group of three other text areas labeled “Tell me your constraints” to specify

constraints on the goal. A user can specify (1) conjunctive constraints in the text area

labeled “All these constraints”, (2) disjunctive constraints in the text area labeled “Any

one or more of these constraints”, and (3) a conjunction of negated constraints in the text

area labeled “Not any of these constraints”. We add an illustrative statement to the last

label (i.e. “write A B C to mean not A and not B and not C”) to help users correctly

specify them.

The system interprets the constraints based on the text area in which they are men-

tioned. The system creates a conjunctive formula by conjoining the recognized individual

constraints mentioned in the text area labeled “All these constraints” plus any constraints

mentioned in the text area labeled “Tell me what you want”. The system creates a

disjunctive formula over the recognized individual constraints in the text area “Any one
4A reward is a non-negative real number that represents how well a solution satisfies constraints. (See

Chapter 4 for more details.)

120

Figure 6.6: The advanced specification interface.

or more of these constraints.” The system creates a conjunctive formula with every recog-

nized constraint in the text area “Not any of these constraints” negated. For instance,

in Figure 6.6, the system negates the year constraint (“older than a 2000”) and the model

constraint (“corolla”) in the text area labeled “Not any of these constraints” and conjoins

them to yield: not older than a 2000 and not corolla. The system generates the final for-

mula by conjoining the generated sub-formulas. The system then satisfies the constraints

and handles over-constrained and under-constrained service requests as before.

121

1. Regular specification:
The regular specification is expressive enough to specify all the constraints I needed.

2. Advanced specification:
While using SerFR, I heavily used the advanced specification because I would not
otherwise have been able to express most of my requests.

3. Constraint elicitation:
The system suggests the attributes that I would really like to impose constraints on.

4. Constraint relaxation:
The system suggests the constraints that I really like to relax.

5. Solution ordering:
The set of best-k solutions and the set of ordered solutions are helpful.

6. Near solution ordering:
The set of best-k near solutions and the set of ordered near solutions are helpful.

7. Useful system:
The system is helpful as it allows users to obtain and invoke services easily.

Figure 6.7: The tested functionalities (1 through 6) and the overall usefulness of SerFR (7).

6.2 SerFR Usability Study

We asked students at Brigham Young University to try SerFR. We were interested in their

opinion about the overall usefulness of SerFR and about six particular functionalities: reg-

ular specification, advanced specification, constraint elicitation, constraint relaxation, solu-

tion ordering, and near solutions ordering. Figure 6.7 shows our particular functionalities

of interest.

To have the subjects focus on the functionalities in Figure 6.7, we provided them

with instructions. These instructions include the objectives of the test and when necessary

tell them what to do to activate certain interesting cases such as advanced specifications.

The complete set of instructions is in Appendix A.

Subjects specified free-form service requests using their own words within the do-

mains: scheduling appointments, purchasing cars, and renting apartments. Altogether, 12

computer science students5 at Brigham Young University tried the system. Each spent an

average of 42 minutes and submitted an average of 13 requests. There were a total of 155

service requests specified in the three domains. After trying SerFR, subjects answered ques-

tions about the usability of SerFR and also provided suggestions for further improvement.

The complete questionnaire is in Appendix B.
5Eight were in a senior-level database course class and four were master’s students.

122

6.2.1 Information Elicitation

We obtained information from users in two ways: (1) by automatically recording information

during the subjects’ interaction with the system and (2) from answers to usability questions

regarding the functionalities.

The system records all the actions of subjects and automatically logs information

about performed actions. The system logs all keystrokes, service requests specifications

(regular or advanced specification), newly imposed constraints during constraint elicitation,

constraints that the system suggests for relaxation, and the chosen solution or near solution

by the subject. The system timestamps the time a subject spends on specifying service

requests, considering and choosing whether to impose new constraints during constraint

elicitation, considering the suggested constraints for relaxation and choosing whether to

relax, and considering the displayed solutions or near solutions. From this basic logged

information, we can obtain several items of particular interest to our analysis:

• the total time a subject takes from starting the system until the subject starts an-

swering the usability questions;

• the service requests subjects specify as well as the time they spend to specify each

one of the service requests;

• the specified constraints SerFR recognizes;

• the attributes on which SerFR suggests imposing constraints and the actual attributes

(perhaps not the ones that SerFR suggests) on which the subjects impose constraints

as well as the time the subjects take to specify constraints;

• the constraints SerFR suggests for relaxation and whether subjects relax the suggested

constraints as well as the time a subject takes to consider the suggested constraints

and chooses to relax or not relax them;

• the time a subject takes to consider the displayed solutions until a subject selects a

solution or cancels the selection process; and

• the time a subject takes to consider the displayed near solutions until a subject selects

a near solution or cancels the selection process.

123

Figure 6.8: An example of a usability question.

Their answers and suggestions provide additional information for studying the us-

ability of SerFR. Each functionality in Figure 6.7 has a corresponding usability question

and a request for suggestions about the functionality. We made these usability questions

and the requests for suggestions available as part of the system interface so that subjects

can electronically submit their evaluations.

For each usability question about a particular functionality, we provided possible

answer choices that reflect different degrees of satisfaction with the functionality. Figure 6.8

shows the usability question for the functionality “Regular specification” in Figure 6.7 and

124

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

Subjects

A
ve

ra
ge

 ti
m

e
pe

r r
eq

ue
st

 (m
in

ut
es

)

(a) The average time taken by each subject per single request.

Overall average time Standard deviation 95% Confidence interval
3.2 minutes 1.0 minutes [2.4, 4.1]

(b) Related statistics.

Figure 6.9: The average time that each subject spent per single request along with the
average time overall subjects.

the possible response values “1” (“Strongly disagree”) through “5” (“Strongly agree”). It

also shows the text area in which subjects can enter suggestions.

In what follows, we present the elicited data about the usability of SerFR and analyze

it. In Subsection 6.2.2, we give logged times, responses to the questions and suggestions

to show the subjects’ opinions of the usability of SerFR, and both logged information and

the subjects’ responses to correlate opinions with factors such as the time to formulate and

reuse queries. In Subsection 6.2.3, we provide a detailed analysis for the results we show in

Subsection 6.2.2.

6.2.2 SerFR Usability Results

Figure 6.9 shows the average time from the moment a subject started specifying a service

request until the subject chose a solution or a near solution returned by SerFR. Figure 6.9(a)

visually shows the average time each subject spent per service request. As the figure shows

the maximum average time was 5.3 minutes and the minimum average time was 1.6 minutes.

125

Figure 6.9(b) shows the average time over all subjects, standard deviation, and 95% con-

fidence interval for the average. As Figure 6.9(b) shows, subjects took an average time of

3.2 minutes to perform one request. With 95% confidence, we can be sure that the time

required to perform one request is not less than 2.4 minutes and not more than 4.1 minutes.

Note that 5.3 minutes is an outlier and that it is possible to be outside the expected range.

Figure 6.10 (pages 127 and 128) shows the responses of the subjects for each func-

tionality in Figure 6.7. Figure 6.10(a) shows the response of the subjects to the statement:

“The regular specification is expressive enough to allow me to specify all the constraints I

needed.” As the figure shows, 33% (4/12) of the subjects strongly agreed with this state-

ment in the sense that they were able to specify all their requests; 50% (6/12) agreed with

this statement in the sense they were able to specify most of their requests; 8% (1/12) were

neutral in the sense that they were able to specify a reasonable number of their constraints;

8% (1/12) disagreed with the statement in the sense that they were able to specify only

few of their constraints; and no one strongly disagreed in the sense that they were able

to specify almost none of their constraints. Figure 6.10(a) also shows the responses of the

subjects to the complementary statement: “I heavily used the advanced specification mode

because I would not otherwise have been able to specify all my requests.” Only 17% (2/12)

of the subjects agreed with this statement in the sense that they used it in most of their con-

straints; 58% (7/12) disagreed in the sense that they used it for very few of their requests;

and 25% (3/12) were neutral in the sense that they used it for some of their requests. No

one strongly agreed in the sense that they used advanced specification for all their requests

and no one strongly disagreed in the sense that they never needed advanced specification

for their requests.

Figure 6.10(b) shows the responses of the subjects to statements about constraint

relaxation and constraint elicitation. As the figure shows, 50% (6/12) of the subjects found

the constraint relaxation suggestions to be excellent in the sense that the system suggested

the constraints that the subjects really would want to relax; 33% (4/12) found them to

be good in the sense that they would want to relax most of the suggested constraints;

17% (2/12) found them to be satisfactory in the sense that they would want to relax some

the suggested constraints. No one found constraint relaxation suggestions to be not useful

126

A
gr

ee

N
eu

tra
l

D
is

ag
re

e

St
ro

ng
ly

 d
is

ag
re

e

St
ro

ng
ly

 a
gr

ee

0

1

2

3

4

5

6

7

ch
oi

ce
 fr

eq
ue

nc
y

Regular specification Advanced specification

(a) Regular and Advanced specification.

Not
us

efu
l

Sati
sfa

cto
ry

Exc
ell

en
t

Good

0

1

2

3

4

5

6

ch
oi

ce
 fr

eq
ue

nc
y

Constraint elicitation suggestions Constraint relaxation suggestions

(b) Constraint elicitation and relaxation.

Exc
ell

en
t

Not u
se

fu
l

Goo
d

0

1

2

3

4

5

6

7

ch
oi

ce
 fr

eq
ue

nc
y

Solution ordering Near solution ordering

(c) Solution and near solution ordering.

127

The system usefulness

Ext
rem

ely
 he

lpfu
l

Hel
pf

ul

So
mew

ha
t h

elp
ful

Not
 us

efu
l

0

1

2

3

4

5

ch
oi

ce
 fr

eq
ue

nc
y

(d) The system usefulness.

Figure 6.10: The subjects selection frequency.

at all in the sense that the system did not provide useful suggestions. As Figure 6.10(b)

shows, 25% (3/12) of the subjects found constraint elicitation suggestions to be excellent

in the sense that all of the suggested attributes were the ones they would choose to specify

constraints on; 33% (4/12) found them to be good in the sense that most of the suggested

attributes were the ones they would choose to specify constraints on; while about 42%

(5/12) found them to be satisfactory in the sense that some of the suggested attributes

were the ones they would choose to specify constraints on. No subject found constraint

elicitation suggestions to be not useful at all in the sense that no suggested attribute was

satisfactory.

Figure 6.10(c) shows the responses of subjects about solution ordering and near

solution ordering. As the figure shows, 60% (7/12) of the subjects found solution ordering

to be excellent, and 50% (6/12) found near solution ordering to be excellent both in the

sense that the set of best solutions or best near solutions were the best choices. As the

figure also shows, 33% (4/12) of the subjects found solution ordering to be good, and 42%

(5/12) found near solution ordering to be good both in the sense that the best solutions or

best near solutions were useful choices. Only 8% (1/12) found both solution ordering and

near solution ordering to be not useful at all in the sense that no solution ordering or near

solution ordering was satisfactory.

128

Table 6.1: The satisfaction degree for the evaluated functionalities.
Functionality Average response value Subject satisfaction

(StDev; 95% CI) degree?

1. Regular specification 4.1 Agree+

(0.9; [3.5, 4.6]) [Neutral+, Strongly agree−]
2. Advanced specification 2.6 Neutral−

(0.8; [2.2, 2.9]) [Disagree+, Neutral−]
3. Constraint elicitation 2.9 Good−

(0.8; [2.4, 3.3]) [Satisfactory+, Excellent−]
4. Constraint relaxation 3.4 Good+

(0.8; [3.1, 3.8]) [Good+, Excellent−]
5. Solution ordering 2.5 Good+

(0.7; [2.2, 2.8]) [Good+, Excellent−]
6. Near solution ordering 2.4 Good+

(0.7; [2.1, 2.7]) [Good+, Excellent−]
7. Useful system 3.0 Helpful

(1.0; [2.4, 3.6]) [Somewhat helpful+, Extremely helpful−]
? A “+” means the satisfaction is higher than the specified degree; a “−” means the
satisfaction is lower than the specified degree.

Figure 6.10(d) shows the subject general opinion regarding the overall usability of

SerFR. As the figure shows, 33% (4/12) of the subjects found the system to be extremely

helpful; 42% (5/12) found it to be helpful; 17% (2/12) found it to be somewhat helpful;

and 8% (1/12) found it to be useless.

Table 6.1 shows the average response values across all subjects and the degree of

satisfaction with respect to the judgement scale. The second column in Table 6.1 shows the

average response across all the subjects, the standard deviation, and the 95% confidence

interval for each one of the functionalities.6 The third column “Subject satisfaction degree”

in Table 6.1 shows the satisfaction degree corresponding to the average response value and

to the lowest and highest response values as indicated by the 95% confidence interval.

We mark the satisfaction degree with “+” if we round off to a lower response value and

mark it with “−” if we round off to a higher response value. For instance, in Table 6.1,

the first functionality received an average response value of 4.1; since the response value

4 corresponds to “Agree”, we give this functionality the satisfaction degree “Agree” and

marked it with plus “+”.
6The average response is the sum of all the values corresponding to the subject-selected responses divided

by the number of the subjects. We attached a numeric value to each response based on how positive the
response was with respect to the functionality—the more positive the response, the higher the numeric value.

129

We were interested in investigating any correlations between subjects’ response

about functionalities and four factors: (1) how often subjects use online services to shop, (2)

the number of requests a subject specifies, (3) the number of constraints in these requests,

and (4) the average time each subject spends to complete a request. We calculated correla-

tion values between the subjects’ response values for each functionality and each of the four

factors; we also calculated correlation values between our overall functionality score (sum

of all response values of the choices that the subject made for all seven functionalities) and

each of the four factors. The objective was to see whether subject responses significantly

correlate with the four factors. The results, however, showed that there was no statistically

significant correlation between subject responses, both across the functionalities and for

each functionality, with any of the four factors.

6.2.3 SerFR Usability Results Discussion

Generally speaking, the results of SerFR usability study presented in Section 6.2.2 reveal

that SerFR is usable. As Table 6.1 shows, subjects found the two modes of the specification

to be enough to specify their constraints. Usually, regular specification was sufficient for

most requests (Agree+) and advanced specification was only used for some or very few

requests (Neutral−). As Figure 6.10(a) indicates, when a subject agrees with the statement

about the advanced specification, the subject sees that the regular specification is inadequate

for specifying all requests the subject wants to specify, while disagreeing means that a

subject finds the regular specification sufficient. Table 6.1 also shows that subjects found

the constraint handling (relaxation and elicitation) to be effective (respectively Good+ and

Good−). Figure 6.10(b) indicates, however, that constraint-relaxation suggestions were

better perceived than constraint-elicitation suggestions. Table 6.1 also shows that solution

ordering and near solution ordering are helpful (Good+). Figure 6.10(c) indicates that

ordering is typically helpful independent of whether it is for solutions or for near solutions.

Overall, Table 6.1 shows users found SerFR to be usable (Helpful).

The statistically insignificant correlation between subject satisfaction and how often

users use online shopping services indicates that using SerFR was straightforward (and per-

haps easy) regardless of whether subjects are savvy online shoppers or not. Likewise, the

130

statistically insignificant correlation between subject satisfaction and the time, the number

of service requests, and the number of constraints in these service requests indicates that

the performance of SerFR was satisfying independently of how these factors vary. For in-

stance, SerFR performed well in recognizing constraints regardless of how many constraints

a subject specified.

Besides the data, we also collected comments from users. Here are some quotes taken

from the log files about the overall usability of SerFR, which provide an indication that

subjects were satisfied with SerFR. One subject wrote, “I think the system is practical and

excellent in quality.” Another subject wrote about SerFR’s ability to recognize constraints,

“... the system does a great job of working through the English.”

Subjects also pointed out some problems and made suggestions for further improving

SerFR and enhancing its usability. In what follows, we present and discuss these problems

and suggestions, which we divide into four categories.

1. Free-form specifications versus form-like specifications. One of the subjects

argued for form-like specification: “... people want answers quick. Drop down, se-

lection boxes, and textboxes with labels would more quickly direct people to the

results they need than this [free-form specification].” SerFR does not oppose using

forms per se. Actually, SerFR interacts with users through forms, albeit more general

forms than the specific forms to which our subject was referring. SerFR, however,

aims at eliminating the burdens of using typical service-specific forms. In order to

use a form for a particular service, a user needs to find the form for this service.

SerFR frees users from the burden of finding service-specific forms by providing a

general form—not tied with any specific service—that allows users to request any

service using free-form specification. Further, assuming that a form for a particular

service is located, we argue that although users may be familiar with service-specific

forms, service-specific forms can be limiting. A users’ ability to specify constraints

in a form-like way is largely limited by the pre-specified and prefixed fields and la-

bels provided by the form. Users can specify no additional constraints beyond the

ones pre-specified by the form. SerFR specification, on the other hand, let subjects

131

specify all the constraints they needed, as indicated by subject responses. Besides the

subject opinion, we can also, from an analytical stand point, provide indications for

sufficiency of SerFR specification. SerFR free-form specifications, both regular and

advanced, allow users to specify all conjunctive constraints, disjunctive constraints,

and conjunctions of negated constraints.7 Form specification, however, usually only

allows for conjunctive constraints.

2. User preferences. Some subjects suggested that SerFR should allow users to provide

their preferences because this would allow the suggestions for constraint relaxation or

elicitation to be more personalized. SerFR provides a general expectation model to

capture user preferences. The expectation model is built on the basis of common

practices by users in a domain. This expectation model, although it may not reflect

every individual user preference, provides reasonable help over all users and especially

for users who do not have knowledge of a domain and therefore do not have prior pref-

erences. In any case, providing users with the capability to specify their preferences,

if they wish, is a potentially good extension to SerFR.

3. Help instead of just suggest. Some subjects indicated that it would be more helpful

if SerFR would not just suggest attributes on which to impose constraints, but would

also show what possible constraints apply to each of these suggested attributes: “...

it would be extremely helpful to give some sort of explanation as to what constraints

can be specified.” The subject likely meant that SerFR should associate with each

suggested attribute a set of constraints that apply to this attribute so that the subject

could see how to apply the constraint appropriately. We think that doing so is a

potentially good extension to SerFR and could enable users to specify a constraint for

an attribute in typical ways. When the number of constraints applicable to a suggested

attribute is reasonable, SerFR could provide this set of constraints. Otherwise, in

order to free users from the burdens of having to sort through a potentially lengthy
7We have recently extended SerFR with the capability to enable users to specify constraints in conjunctive

and disjunctive normal forms. With this extension, SerFR would theoretically have the full power of first-
order logic. As a direction for future work, we should conduct an end-user usability study to investigate
whether this extension would, in real-world settings, provide any added-value with respect to a users’s ability
to specify requests and thus further increase the usability of SerFR.

132

list of constraints, SerFR could order these constraints based on some criterion such

as their usage frequency and present the top-k constraints.

4. Processing time issues. Two subjects pointed out that SerFR is slow. One subject

wrote: “... my number one complaint is that it was slow. Took on average 1 1/2 to

2 minutes to process any single request! My computer is not the top of the line, but

it’s not SO bad either!” Based on the average times to process a request reported in

Figure 6.9(a), the subject likely referred to the time for processing a single request

to completion. We admit up front that SerFR is just a proof-of-concept prototype

whose main objective is to show that our techniques (Chapters 2, 3, and 4) can

produce a useful system. We, therefore, did not make it a top priority to optimize

the internal processing time. For instance, ontology indexing techniques, which we

did not integrate to SerFR, could allow SerFR to apply identical regular expressions

belonging to different ontologies only once rather than to apply them as many times

as they appear. Beside this missing time optimization, there are also two other factors

that are likely to affect the performance of SerFR in terms of the time required to

process a service request. First, the communication with users, to prompt them to

provide missing information, to provide new constraints, or to relax constraints, is

very likely to increase the processing time for a service request. SerFR does not have

complete control over this factor since it is mainly related to individuals. Solutions to

this problem rely to a large extent on users: provide service requests with complete

information or respond faster in case of requests that are incomplete. Second, SerFR

executes on the client side not on the server side. As such, several factors can decrease

the time performance of SerFR. The speed of the client machine on which SerFR

executes plays a role. The network latency, which results because SerFR queries a

database that resides on the server, is likely to increase the processing time. We can

eliminate both machine speed variations and network latency to a great extent by

making SerFR execute on the server rather than on the client. Finally, the time to

execute a query on the database can take longer, depending on the query. Query

133

optimization techniques (e.g. [SMWM06]), however, can improve the execution time

of a query.

6.3 Concluding Remarks

Although preliminary, the end-user-usability study shows that SerFR is usable. Subject

evaluations provide reasonable evidence for usability. There were 12 subjects. Each tried

SerFR for a reasonably long time (42 minutes on average) and specified a reasonable number

of service requests (13 on average). After this effort, 9 out of 12 subjects found SerFR

extremely helpful (4/9) or helpful (5/9). Two subjects found it somewhat helpful and only

one subject found SerFR not useful, indicating a strong preference for form-like specification.

We believe that SerFR is usable not only because others generally agree, as indicated

in the results of this chapter, but also because of its unique capabilities. SerFR allows users

to obtain services in an easy and a friendly way. Specifying a needed service using free-

form specifications is enough to invoke it. SerFR frees end-users from the burdens typically

involved in service invocation (discovery, referencing, and other idiosyncrasies of services).

It proactively interacts with end-users when their service requests are incomplete in order to

obtain additional information, when their service requests are loosely constrained in order

to impose new constraints, or when their service requests are tightly constrained in order to

relax constraints. And it finds the best solutions or near solutions based on user-specified

constraints, freeing users from having to sort through long lists of solutions or near solutions

to find a satisfactory solution or near solution.

134

Appendix A

SerFR Usability Study Test Instructions

Thank you for being willing to help with the evaluation of the SerFR prototype. SerFR is

a server for Free-form Requests.

Running the prototype

1. Go to: http://www.deg.byu.edu/demos/SerFR.demo/SerFRMain.html. This link

takes you to a page describing the prototype. To run the prototype, click on the link

“Launch Demo” in this page.

2. The first window that pops up gives a description of the applications the prototype

can currently handle. You need to log in as a user by clicking on the button “User?

Please Click Here”. In the new window, you need to provide your name and address,

store the profile, and click on the button “Start Prototype”.

3. The main interface will appear and allow you to specify your service requests.

Service request specification

The prototype currently handles service requests in three domains: appointment schedul-

ing (only with dermatologists, pediatricians, and dentists), car purchasing, and apartment

renting. You can specify service requests within these domains using a free-form, natural-

language-like specification. For instance, here is an example of requesting an appointment

with a dermatologist: “I want an appointment with a dermatologist next week in the af-

ternoon. The dermatologist must accept my IHC insurance.” After you click on the button

“Service My Request”, the system starts the recognition process (all recognized constraints

are highlighted in green), interacts with you if necessary, and displays results.

Interactions

The system interacts with a user in the following cases.

135

1. It interacts when needed information is missing, SerFR specifically requests it.

2. It interacts when there are too many ways to service your request (too many solu-

tions), serFR tries to provide you with a smaller set of best solutions in two ways.

First, it suggests some additional constraints you could impose. Second, based on an

optimality criterion, it orders solutions from best to worst.

3. It interacts when there is no way to solve your request, SerFR tries to find near

solutions. First, it suggests some constraints to relax. Second, based on an optimality

criterion, it orders the best-k near solutions for best to worst.

Test objectives

Please try the prototype with the following objectives in mind.

1. Determine whether requesting service with free-form specification is helpful.

2. Determine the extent to which free-form specification allows you to specify your con-

straints.

3. Determine the extent to which advanced specification allows you to specify your con-

straints.

To use advanced specification you need to (i) switch to the advanced specification

mode by checking the box labeled “Advanced Specification” in the interface and (ii)

make a request or more that has disjunctive (e.g. “Dodge or Toyota”) or negated

constraints (e.g. “not corolla”) in the respective provided text areas.

4. Determine whether the system gives you satisfactory attributes on which you can

impose constraints.

5. Determine whether giving the ordering of solutions is helpful or not.

To trigger (4) and consequently (5), make the constraints of your request loose. For

instance, an appointment request such as “schedule me an appointment with a dentist

after October 15th” will most likely cause the system to find too many solutions.

6. Determine whether the constraints suggested by the system for relaxation are satis-

factory.

136

7. Determine whether giving the best-k near solutions is helpful.

To trigger (6) and consequently (7), make the constraints of your request tight. For

instance, a request for a car purchase such as “I want a dodge, a 2005 or newer and

less than $6000” will most likely cause the system to find no solution.

137

Appendix B

SerFR Usability Study Questionnaire

Subject expertise

Please tell us how often you shop online.

(a) On a daily basis.

(b) Several times a week.

(c) Several times a month.

(d) Occasionally.

(e) Never (I have never shopped online).

Service request specification

1. Regular specification: The regular specification is expressive enough to specify all the

constraints I needed.

(a) Strongly agree (I was able to specify all of my constraints).

(b) Agree (I was able to specify most of my constraints).

(c) Neutral (I was able to specify a reasonable number of my constraints).

(d) Disagree (I was able to specify only few of my constraints).

(e) Strongly disagree (I was able to specify almost none of my constraints)

Please provide any suggestions you have about regular specification.

2. Advanced specification: While using SerFR, I heavily used the advanced specification

because I would not otherwise have been able to express most of requests I wanted to

specify.

(a) Strongly agree (I used it for all my requests).

(b) Agree (I used it for most of my requests).

138

(c) Neutral (I used it for some of my requests).

(d) Disagree (I used it for very few of my requests).

(e) Strongly disagree (I did not need to use it at all).

Please give any suggestion about advanced specification.

Constraint resolution

3. Constraint relaxation: The constraints that the system suggested for relaxation are:

(a) Excellent (the system suggested the constraints that I would really would want

to relax).

(b) Good (I would want to relax most of the suggested constraints).

(c) Satisfactory (I would want to relax some of the suggested constraints).

(d) Not useful at all (the system did not provide any useful suggestions).

Please provide us with the following.

(a) Some examples of useless suggested constraints for relaxation.

(b) Why were these suggested constraints for relaxation useless.

i. You do not wish to relax any constraints.

ii. The trade off seemed unacceptable.

iii. Others, please specify.

4. Constraint elicitation: The attributes that the system suggested to impose constraints

on are:

(a) Excellent (all of the suggested attributes are the ones that I would choose to

impose constraints on).

(b) Good (most of the suggested attributes are the ones that I would choose to

impose constraints on).

(c) Satisfactory (some of the suggested attributes are the ones that I would choose

to impose constraints on).

139

(d) Not useful at all.

Please provide us with examples of:

i. Useless suggested attributes.

ii. Why were they useless.

iii. Please specify examples of attributes that are more important to you than the

ones suggested by the system.

Solution and near solution presentation

5. Solution ordering : The set of best solutions provided by the system are:

(a) Excellent (they are best choices with respect to my constraints).

(b) Good (they are useful choices, but could have been better).

(c) Not useful at all (none of them was satisfactory).

Please give us suggestions to improve our system.

6. Near solution ordering : The set of best near solutions (some of the constraints are

not satisfied) provided by the system are:

(a) Excellent (they are best choices with respect to my constraints).

(b) Good (they are useful choices, but could have been better).

(c) Not useful at all (none of them was satisfactory).

Please give us suggestions to improve our system.

System efficiency

7. System usefulness: Based on your experience with the system, do you think that the

system is helpful? (helpful in terms of simplifying service invocation for users who

have limited knowledge in dealing with computers).

(a) Extremely helpful.

(b) Helpful.

140

(c) Somewhat helpful.

(d) Useless.

Please provide us with any suggestions you have about the system in general.

141

142

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we offered an ontological approach to allow users to invoke a specific

type of service request using free-form, natural-langauge-like specifications. Specifically,

our approach handles service requests that can be satisfied by instantiating an object set of

interest in the domain ontology with a single value and then instantiating additional objects

and relationships in the domain ontology such that all applicable constraints are satisfied.

Task ontologies are fundamental to our approach and provide both static knowledge

and behavioral knowledge. Service developers manually create the static knowledge, which

we call a domain ontology, and which encodes domain information in terms of object sets,

relationship sets, operations that manipulate instances of object sets, and constraints ap-

propriate to the domain. The SerFR system developer codes behavioral knowledge, which

we call a process ontology, and which consists of generic process to handle service requests.

Interestingly, the behavioral knowledge is fixed for all domains so that the SerFR system

developer only needs to code it once. This reduces the task of the service developers to only

needing to provide the static knowledge in terms of a domain ontology.

Our ontological approach matches a free-form service request with domain ontologies

and uses the domain ontology that matches best to generate a formal request as a predicate-

calculus formula. The system processes the generated formalism to service the free-form

request. Using the formalism, our system can discover missing information in the service

request and interact with a user, the system databases, or both to obtain this information,

and then satisfy the service request.

143

Our system controls the potential overload resulting from having too many solutions

for a service request when the constraints are too weak, and it helps users obtain the best

near solutions when the constraints are too tight. The system uses fundamental ideas

including rewards, penalties, and expectations along with Pareto optimality to support our

resolution process. The system uses expectations as a mechanism for constraint elicitation

when a service request is weakly constrained. The system also orders solutions according

to their rewards and uses Pareto optimality as a selection mechanism to choose the best-

k solutions from the reward-ordering and show them to a user. When the constraints of

a service request are too tight, yielding no solution, the system uses the expectations to

suggest constraints for relaxation. Our approach also orders near solutions according to

their penalties and uses Pareto optimality to choose the best-k near solutions from the

penalty-ordering and show them to a user.

When a user chooses one of the suggested solutions or near solutions, the system

completes the service request. The system inserts an object (e.g. an appointment) in the

main object set of the domain ontology and inserts other mandatory and optional objects

and relationships and thus satisfies the service request.

Our ontology-based techniques also enable web-principled services. (Web-principled

services use the web as a place for information publication and access and not merely as a

transport mechanism.) Researchers have suggested the notion of web-principled services as

a means to achieve more decoupling between communicating applications. Our ontology-

based techniques take this notion a step farther. We presented our vision of web-principled

services as services that not only can use the web as a place for information publication

and access, but also have the capability to resolve data heterogeneity. We showed that

our ontology-based services, which we called ontology-based web services (OBWSs), satisfy

our vision as they resolve data heterogeneity and decouple requesters and services. Our

ontology-based web services inherently resolve data heterogeneity due to their ontological

basis.

To satisfy the additional requirement for requester-service decoupling, we proposed

a request-oriented architecture that emulates and extends the concepts of RSS feeds. This

architecture allows service requesters to specify their requests to the broker using free-form

144

specifications. The broker then finds the OBWSs capable of processing these requests and

lets requesters choose the appropriate OBWS based the requester’s own criteria. One of

the interesting characteristics of this architecture is that service requesters do not have to

discover the OBWSs capable of servicing their requests nor do they have to establish commu-

nication links and directly communicate with these OBWSs. The broker finds the OBWSs

capable of servicing the request, and the selected OBWS itself establishes a communication

link with a requester.

As part of our vision of web-principled services, we showed that traditional web

services can be turned into web-principled services. To do this, it is sufficient to reuse or

create an ontology that describes the traditional web service and provide mappings between

the ontology and the input/output variables of the traditional web service. We showed, as

a concrete example, how to turn a weather report service into a web-principled service.

Experiments on our prototype implementation show that our ontological approach is

promising. We tested the performance of the system in recognizing constraints in free-form

service requests in several domains: car purchase, appointment scheduling, and apartment

rental. The system performed surprisingly well. The system achieved a recall of 98% for

recognizing constraints and a recall of near 95% for recognizing arguments for these con-

straints in the requests. The system achieved a precision of near 100% for both constraints

and their arguments. We attributed this high recall and precision to our ontological ap-

proach, which uses domain ontologies that are narrowly focussed on the services they define

and that provide enough information to do reasoning to discard irrelevant information.

We also evaluated our system’s performance in choosing the best-k solutions or

the best-k near solutions for requests in our car-purchase domain and our appointment-

scheduling domain. We let subjects choose the best-k solutions or near solutions from

the same sets of solutions or near solutions and compared the system’s choices with our

subjects’ choices. As measured statistically by an inter-observer agreement test, the results

of the experiments showed a “substantial agreement” between the system’s choices and our

subjects’ choices in both the best-k solutions and the best-k near solutions.

The end-user usability study shows that our system is helpful in the sense that it

provides an easy way to invoke services without having to discover them or to worry about

145

their idiosyncrasies. Subjects found free-form specifications to be sufficient. Regular spec-

ification was sufficient in most cases, and advanced specification was used only for some

or very few requests. The subjects found constraint-relaxation and constraint-elicitation

suggestions to be effective, although they understood constraint-relaxation suggestions bet-

ter than constraint-elicitation suggestions. Likewise, the subjects generally found solution

ordering and near solution ordering to be equally helpful. Overall, our subjects found the

system to be helpful.

As a result of this research, we make the following conclusions.

1. Easy service invocation. Our ontological approach provides a way to invoke services

using free-form, natural-language-like specifications. This is an alternative to the

typical way of finding services and figuring out how to use them.

2. Knowledge-based formalism generation. Our ontological approach provides an

way to transform a free-form service request to a formal request represented as a

predicate-calculus formula. This formalism is machine-processable and allows the

system to service the free-form request through satisfying the constraints in the for-

malism.

3. Solution selection. Our ontological approach controls the potential overload on

users when a service invocation results in too many solutions and helps users find

satisfactory solutions when there is no way to satisfy all the constraints.

4. Knowledge-based service creation. Our ontological approach allows service devel-

opers to deploy services for new domains by specifying only static knowledge (domain

ontologies); surprisingly no behavioral knowledge (algorithms and code) is required.

This creates an important implication for service developers. They do not need to

write and test code for their services.

5. Web-principled services. Our ontological approach contributes to a new vision

of web services. This new vision aims at basing web services more fundamentally

on web principles. The novelty of our approach is that it produces ontology-based

web services that not only comply with this new vision, but also more importantly

146

that advance this vision a step farther by providing a data-heterogeneity resolution

mechanism.

6. Web-principled traditional web services. Our ontological approach can turn

traditional web services into web-principled services. This allows traditional web

services to be discovered and invoked like any web-principled service. This also negates

the requirements for prior agreement about data exchanged between the service and

its potential requesters.

7.2 Future Work

This dissertation has laid out the foundations for ontology-based service requests and has

provided a way for users to invoke services using free-form specifications. It has also provided

a way for service providers to deploy ontology-based web services. We believe, however, that

there still remains important extensions that can be done as future work.

1. Conditional constraints. Conditional constraints can give an added power to users

to specify more types of constraints. For instance, a user can schedule the most

convenient appointment based on some conditions as in the following partial appoint-

ment request: “... if the appointment can be scheduled this week, then schedule with

Dr. Adams; otherwise schedule with Dr. Carter.” One challenge in correctly recog-

nizing conditional constraints resides in recognizing conditions and consequents and

in correctly correlating the conditions with their consequents. We expect that we

would have to augment our approach with techniques from the discipline of natural-

language processing (especially logic-form transformation) to effectively handle this

type of constraint.

2. Composite service requests. Experiments in this dissertation only focused on

service requests that can be satisfied by instantiating an object set of interest with a

single value. We believe, however, that our approach can naturally extend to handle

service requests that require using multiple ontologies in a coordinated way. Consider,

for instance, a request for planning a vacation, which involves among others booking

an airline ticket, renting a car, and making a hotel reservation. To satisfy a request of

147

this type, the system needs to use three domain ontologies corresponding to these sub-

tasks. To correctly handle the vacation planning request, however, cross constraints

among the applicable ontologies need to be satisfied. For instance, we cannot make

the date of the car rental after the return date of the airline ticket and other similar

kinds of constraints. Further, package deals across multiple vacation services may

alter cost values.

3. Security. In our approach, users issue service requests and the system returns re-

sponses to these requests. This exchange of messages may contain sensitive pieces of

information and therefore the communicated messages must be secure so that unau-

thorized entities cannot access their contents. In our approach, it appears possible to

adopt any of the state-of-the-art security techniques such as encryption, signed certifi-

cates, or any other standard techniques developed, for instance, by the Web Security

Technical Committee [WS06].

4. Trust. Trust is an important factor for the success of any service system. Generally,

as user trust increases, so does system usage. According to Constantine [Con06],

enhancing the system’s predictability, transparency, competence, and benevolence

highly promotes the user’s trust in a system. Although, these concepts are not absent

from our current prototype, we have not taken them as fundamental concepts and

therefore we need to deal with them as such in our future work.

148

Bibliography

[ABdB+06] D. Anicic, M. Brodie, J. d. Bruijn, D. Fensel, T. Haselwanter, M. Hepp, S. Hey-
mans, J. Hoffmann, M. Kerrigan, J. Kopecky, R. Krummenacher, H. Lausen,
A. Mocan, J. Scicluna, I. Toma, and M. Zaremba. A Semantically Enabled
Service Oriented Architecture. In Proceedings of WICI International Work-
shop on Web Intelligence (WI) meets Brain Informatics (BI) (WImBI 2006),
pages 27–42, Beijing, China, December 2006.

[ABH+02] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. McDermott, D. Mar-
tin, S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
DAML-S: Web Service Description for the Semantic Web. In I. Horrocks
and J. Hendler, editors, Proceedings of the 1st International Semantic Web
Conference (ISWC 2002), volume 2342, pages 348–363, Sardinia, Italy, June
2002.

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business Process Execution Language for Web Services. Website, May 2003.
http://www-128.ibm.com/developerworks/library/specification/ws-bpel.

[AHS03] S. Agarwal, S. Handschuh, and S. Staab. Surfing the Service Web. In Proceed-
ings of the 2nd International Semantic Web Conference (ISWC 2003), pages
211–226, Sanibel Island, Florida, October 2003.

[AME06] M. J. Al-Muhammed and D. W. Embley. Resolving Underconstrained and
Overconstrained Systems of Conjunctive Constraints for Service Requests. In
Proceedings of the 18th International Conference on Advanced Information
Systems Engineering (CAiSE 2006), pages 223–238, Luxembourg, June 2006.

[AME07] M. J. Al-Muhammed and D. W. Embley. Ontology-Based Constraint Recog-
nition for Free-Form Service Requests. In Proceedings of the 23rd Interna-
tional Conference on Data Engineering (ICDE 2007), pages 366–375, Istanbul,
Turkey, April 2007.

[AMEL05] M. J. Al-Muhammed, D. W. Embley, and S. W. Liddle. Conceptual Model
Based Semantic Web Services. In Proceedings of the 24th International Confer-

149

ence on Conceptual Modeling (ER 2005), pages 288–303, Klagenfurt, Austria,
October 2005.

[AMELT07] M. J. Al-Muhammed, D. W. Embley, S. W. Liddle, and Y. A. Tijerino. Bring-
ing Web Principles to Services: Ontology-Based Web Services. In Proceedings
of the 4th International Workshop on Semantic Web for Services and Processes
(SWSP 2007), pages 73–80, Salt Lake City, Utah, July 2007.

[AP04] S. Anthony and J. Patrick. Dependency Based Logical Form Transformation.
In Proceedings of the 3rd International Workshop on the Evaluation of Systems
for the Semantic Analysis of Text, pages 54–57, Barcelona, Spain, July 2004.

[Arn02] M. T. Arnal. Scalable Intelligent Electronic Catalogs. PhD Dissertation, Swiss
Federal Institute of Technology in Lausanne (EPFL), 2002.

[ART95] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural Language Inter-
faces to Database: An Introduction. Journal of Natural Language Engineering,
1(1):29–81, March 1995.

[BBCP05] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE – A Java Agent
Development Framework. In Multi-Agent Programming, volume 15, pages
125–147. 2005.

[BBD+] J. De Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer, B. Konig-
Ries, J. Kopecky, R. Lara, E. Oren, A. Polleres, J. Scicluna, and M. Stollberg.
Web Service Modeling Ontology (WSMO). http://www.wsmo.org/TR/d16/.

[BBGW04] S. Bayer, J. Burger, W. Greiff, and B. Wellner. The MITRE Logical Form
Generation System. In Proceedings of the 3rd International Workshop on
the Evaluation of Systems for the Semantic Analysis of Text, pages 69–72,
Barcelona, Spain, July 2004.

[BKF05] A. Bernstein, E. Kaufmann, and N. E. Fuchs. Talking to the Semantic Web –
A Controlled English Query Interface for Ontologies. AIS SIGSEMIS Bulletin,
2(1):42–47, January-March 2005.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5):34–43, May 2001.

[BN03] F. Baader and W. Nutt. Basic Description Logics. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. Patel-Schneider, editors, The Description
Logic Handbook, chapter 2, pages 43–95. Cambridge University Press, Cam-
bridge, UK, 2003.

150

[Bus05] C. Bussler. A Minimal Triple Space Computing Architecture. In Proceedings
of the 2nd WSMO Implemetation Workshop, Innsbruck, Austria, June 2005.

[CAH05] D. Claro, P. Albers, and J. Hao. Selecting Web Services for Optimal Com-
position. In Proceedings of the 2nd International Workshop on Semantic and
Dynamic Web Processes (SDWP 2005), pages 32–44, Orlando, Florida, July
2005.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL), W3C Note 15. Website, 2001.
http://www.w3.org/TR/wsdl/.

[CDG+06] L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, V. Tanasescu, C. Pedrinaci,
and B. Norton. IRS-III: A Broker for Semantic Web Services Based Appli-
cations. In Proceedings of the 5th International Semantic Web Conference
(ICWS 2006), pages 201–214, Athens, Georgia, November 2006.

[CDM+04] L. Cabral, J. Domingue, E. Motta, T. R. Payne, and F. Hakimpour. Ap-
proaches to Semantic Web Services: an Overview and Comparisons. In Pro-
ceedings of the 1st European Semantic Web Symposium (ESWS 2004), pages
225–239, Heraklion, Crete, Greece, May 2004.

[CF90] D. Cicchetti and A. Feinstein. High Agreement But Low Kappa. II. Resolving
The Paradoxes. Journal of Clinical Epidemiology, 43(6):551–558, 1990.

[CGGS07] M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method Fragments for
Agent Design Methodologies: From Standardisation to Research. Interna-
tional Journal of Agent-Oriented Software Engineering, 1(1):91–121, 2007.

[CMRW07] R. Chinnici, J. Moreau, C. A. Ryman, and S. Weerawarana. Web
Services Description Language (WSDL), version 2.0. Website, 2007.
http://www.w3.org/TR/wsdl20/.

[Con06] L. Constantine. Trusted Interaction: User Control and System Responsibil-
ities in Interaction Design for Information Systems. In Proceedings of the
18th International Conference on Advanced Information Systems Engineering
(CAiSE 2006), pages 20–30, Luxembourg, June 2006.

[CPC+04] H. Chen, F. Perich, D. Chakraborty, T. Finin, and A. Josh. Intelligent Agents
Meet Semantic Web in a Smart Meeting Room. In Proceedings of the 3rd
International Joint Conference on Autonomous Agents and Multi Agent Sys-
tems, volume 2, pages 854–861, New York, July 2004.

[dSdL07] V. T. da Silva and C. J. de Lucena. Modeling Multi-Agent Systems. Commu-
nications of the ACM, 50(5):103–108, May 2007.

151

[DW03] I. Dickinson and M. Wooldridge. Practical Reasoning Agents for the Semantic
Web. In Proceedings of the 2nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2003), pages 306–318, Melbourne,
Australia, July 2003.

[ECJ+99] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, D. W. Lonsdale,
Y. K. Ng, and R. D. Smith. Conceptual-Model-Based Data Extraction from
Multiple-Record Web Pages. Data & Knowledge Engineering, 31(3):227–251,
November 1999.

[EKW92] D. W. Embley, B. K. Kurtiz, and S. N. Woodfield. Object-Oriented Systems
Analysis: A Model Driven Approach. Yourdon Press, Englewood Cliffs, New
Jersey, 1992.

[Emb80] D. W. Embley. Programming with Data Frames for Everyday Items. In
D. Medley and E. Marie, editors, Proceedings of AFIPS Conference, pages
301–305, Anheim, California, May 1980.

[Erl05] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall, New Jersey, 2005.

[FB02] D. Fensel and C. Bussler. The Web Service Modeling Framework (WSMF).
Electronic Commerce Research and Applications, 1(2):113–137, 2002.

[Fel80] A. M. Feldman. Welfare Economics and Social Choice Theory. Kluwer,
Boston, Massachusetts, 1980.

[Fen04] D. Fensel. Triple-Space Computing: Semantic Web Services Based on Persis-
tent Publication of Information. In Proceedings of IFIP International Con-
ference on Intelligence in Communication Systems, pages 43–53, Bangkok,
Thailand, November 2004.

[FPTV04] B. Faltings, P. Pu, M. Torrens, and P. Viappiani. Designing Example-
Critiquing Interaction. In Proceedings of the 9th International Conference on
Intelligent User Interface, pages 22–29, Funchal, Portugal, November 2004.

[GBR05] B. Gold-Bernstein and W. Ruh. Enterprise Integration. Addison Wesley,
Boston, Massachusetts, 2005.

[Hal04] T. Halpin. Business Rule Verbalization. In Proceedings of the 3rd International
Conference on Information Systems Technology and its Applications, pages
39–52, Salt Lake City, Utah, July 2004.

[Ham03] B. Hammersley. Content Syndication with RSS. O’Reilly Media, Sebastopol,
California, 2003.

152

[HCM+05] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX – A
Semantic Service-Oriented Architecture. In Proceedings of IEEE International
Conference on Web Services (ICWS 2005), pages 321–328, Orlando, Florida,
July 2005.

[Hen01] J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems,
16(2):30–37, January 2001.

[KA04] M. Klein and B. Abraham. Towards High-Precision Service Retrieval. IEEE
Internet Computing, 8(1):30–36, January 2004.

[KC04] G. Klyne and J. Carroll. Resource Description Format (RDF): Concepts and
Abstract Syntax, 2004. http://www.w3c.org/TR/rdf-concepts.

[KCGS96] L. Karttunen, J. P. Chanod, G. Grefenstette, and A. Schille. Regular Expres-
sions for Language Engineering. Natural Langauge Engineering, 2(4):305–328,
December 1996.

[KG03] J. Kim and Y. Gil. Toward Interactive Composition of Semantic Web Services.
In Proceedings of the 2nd International Semantic Web Conference (ISWC
2003), Sanibel Island, Florida, 2003.

[KHP+05] R. Krummenacher, M. Hepp, A. Polleres, C. Bussler, and D. Fensel. WWW
or What Is Wrong with Web Services. In Proceedings of the 3rd European
Conference on Web Services (ECOWS 2005), pages 235–243, Växjö, Sweden,
November 2005.

[KKS+02] S. Kumar, A. Kunjithapatham, M. Sheshagiri, T. Finin, A. Joshi, Y. Peng,
and R. S. Cost. A Personal Agent Application for the Semantic Web. In Pre-
ceedings of AAAI 2002 Fall Symposium Series, pages 43–58, North Falmouth,
Massachusetts, November 2002.

[KSB04] D. Krafzig, D. Slama, and K. Banke. Enterprise SOA: Service Oriented Ar-
chitecture Best Practices. Prentice Hall, New Jersy, 2004.

[Kun04] A. Kunjithapatham. Personal Agents on Semantic Web. Master thesis, Uni-
versity of Maryland Baltimore County, Baltimore, Maryland, January 2004.

[LEW00] S. W. Liddle, D. W. Embley, and S. N. Woodfield. An Active, Object-Oriented,
Model-Equivalent Programming Language. In M. P. Papazoglou, S. Spaccapi-
etra, and Z. Tari, editors, Advances in Object-Oriented Data Modeling, pages
333–361. MIT Press, Cambridge, Massachusetts, 2000.

153

[LHL97] G. Linden, S. Hanks, and N. Lesh. Interactive Assesment of User Preference
Models: The Automated Travel Assistant. In Proceedings of the 6th Interna-
tional Conference on User Modeling (UM 1997), pages 67–78, Vienna, New
York, June 1997.

[LK77] J. R. Landis and G. Koch. The Measurement of Observer Agreement for
Categorical Data. Biometrics, 33(1):159–174, March 1977.

[LYJ06] Y. Li, H. Yang, and H. V. Jagadish. Constructing a Generic Natural Language
Interface for an XML Database. In Proceedings of the 10th International
Conference on Extending Database Technology (EDBT 2006), pages 737–754,
Munich, Germany, March 2006.

[MA02] K. Mark and B. Abraham. Searching for Services on the Semantic Web using
Process Ontologies. In I. Cruz, S. Decker, J. Euzenat, and D. McGuinness,
editors, The Emerging Semantic Web-Selected papers from the first Semantic
Web Working Symposium, pages 159–172. Amsterdam, Netherlands, August
2002.

[MA04] R. T. Marler and J. S. Arora. Survey of Multi-Objective Optimization Meth-
ods for Engineering. Structural and Multidisciplinary Optimization, 26(6):369–
395, March 2004.

[MC99] F. Meng and W. W. Chu. Database Query Formation from Natural Language
using Semantic Modeling and Statistical Keyword Meaning Disambiguation.
Technical Report CSD-TR 990003, University of California, Los Angeles, Cal-
ifornia, 1999.

[MDCG03] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework
and Infrastructure for Semantic Web Services. In Proceedings of the 2nd In-
ternational Semantic Web Conference (ISWC 2003), pages 306–318, Sanibel
Island, Florida, October 2003.

[min05] Minitab 14.2 Statitiscal Software. Website, 2005. www.minitab.com.

[MMP04] A. Mohammed, D. Moldovan, and P. Parker. Sensevale 3 Logic Form: A
System and Possible Improvements. In Proceedings of the 3rd International
Workshop on the Evaluation of Systems for the Semantic Analysis of Text,
pages 163–166, Barcelona, Spain, July 2004.

[MPM+05] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott,
D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and
K. Sycara. Bringing Semantics to Web Services: The OWL-S Approach. In

154

J. Cardoso and A. Sheth, editors, Proceedings of the 1st International Work-
shop on Semantic Web Services and Web Process Composition, volume 3387,
pages 26–42, San Diego, California, July 2005.

[MSZ01] S.A. McIlraith, T.C. Son, and H. Zeng. Semantic Web Services. IEEE Intel-
ligent Systems, 16(2):46–53, March-April 2001.

[MTI95] R. Mizoguchi, Y. Tijerino, and M. Ikeda. Task Analysis Interview Based on
Task Ontology. Expert Systems with Applications, 9(1):15–25, 1995.

[OWL04] OWL-S Coalition, OWL-S 1.0 Release. Website, 2004.
http://www.daml.org/services/owl-s/1.0/.

[PAE04] A. M. Popescu, A. Armanasu, and O. Etzioni. Modern Natural Language In-
terfaces to Databases: Composing Statistical Parsing with Semantic Tractabil-
ity. In Proceedings of the 20th International Confereence on Computational
Linguistics, pages 30–39, University of Geneva, Switzerland, August 2004.

[Par97] V. Pareto. Cours d’économie politique. F. Rouge, Lausanne, Switzerland,
1897.

[PEK03] A. M. Popescu, O. Etzioni, and H. Kautz. Toward a Theory of Natural Lan-
guages Interfaces to Databases. In Proceedings of the 8th International Con-
ference on Intelligent User Interfaces, pages 149–157, Miami, Florida, January
2003.

[PFK03] P. Pu, B. Faltings, and P. Kumar. User-Involved Tradeoff Analysis in Con-
figuration Tasks. In Proceedings of the 3rd International Workshop on User-
Interaction in Constraint Satisfaction, pages 85–102, Kinsale, Ireland, Sep-
tember 2003.

[PKC+01] F. Perich, L. Kagal, H. Chen, S. Tolia, Y. Zou, T. Finin, A. Joshi, Y. Peng,
R. Scott, and C. Nicholas. ITTALKS: An Application of Agents in the Seman-
tic Web. In Proceedings of the 2nd International Workshop on Engineering
Societies in the Agents World, pages 175–194, Prague, Czech Republic, July
2001.

[PKCH05] J. Pathak, N. Koul, D. Caragea, and V. Honavar. A Framework for Semantic
Web Services Discovery. In Proceedings of the 7th ACM International Work-
shop on Web Information and Data Management (WIDM 2005), pages 45–50,
Bremen, Germany, November 2005.

[PL04] T. R. Payne and O. Lassila. Semantic Web Services. IEEE Intelligent Systems,
19(4):14–15, January/February 2004.

155

[Pow05] S. Powers. What Are Syndication Feeds. O’Reilly Media, Sebastopol, Califor-
nia, 2005.

[PPW03] G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event-Condition-Action
Rule Languages for the Semantic Web. In I. Cruz, V. Kashyap, S. Decker, and
R. Eckstein, editors, Proceedings of the 1st International Workshop on Seman-
tic Web and Databases (SWDB 2003), pages 309–327, Humboldt-Universität,
Berlin, Germany, September 2003.

[PSS02] T. R. Payne, R. Singh, and K. Sycara. Calendar Agents on the Semantic Web.
IEEE Intelligent Systems, 17(3):84–86, May-June 2002.

[RMRD+06] J. Riemer, F. Martin-Recuerda, Y. Ding, B. Sapkota, R. Krummenacher,
O. Shafiq, D. Fensel, and E. Kühn. Triple Space Computing: Adding Se-
matics to Space-Based Computing. In Proceedings of the 1st Asian Semantic
Web Conference (ASWC 2006), pages 300–306, Beijing, China, September
2006.

[RSS07] RDF Rich Site Summery. Website, 2007. http://xml.coverpages.org/rss.html.

[Rus04] V. Rus. A First Evaluation of Logic Form Identification Systems. In Proceed-
ings of the 3rd International Workshop on Evaluation of Systems for Semnatic
Analysis for Text, pages 37–40, Barcelona, Spain, July 2004.

[Shi06] A. Shia. A Novel Personal Agent Framework for Web Services and Commercial
Systems. In Proceedings of 2006 International Conference on Semantic Web &
Web Services (SWWS 2006), pages 143–148, Las Vegas, Nevada, June 2006.

[SHP03] E. Sirin, J. Hendler, and B. Parsia. Semi-Automatic Composition of Web
Services using Semantic Descriptions. In Proceedings of the 1st Workshop on
Web Services: Modeling, Architecture and Infrastructure (WSMAI 2003), In
conjunction with ICEIS 2003, pages 17–24, Angers, France, April 2003.

[SHS+02] T. Sollazzo, S. Handschuh, S. Staab, M. R. Frank, and N. Stojanovic. Se-
mantic Web Service Architecture – Evolving Web Service Standards toward
the Semantic Web. In Proceedings of the 15th International Florida Artificial
Intelligence Research Society Conference, pages 425–429, Pensacola Beach,
Florida, May 2002.

[SKB06] B. Sapkota, E. Kilgarriff, and C. Bussler. Role of Triple Space Computing in
Semantic Web Services. In Proceedings of the 8th Asia-Pacific Web Conference
(APWeb 2006), pages 714–719, Harbin, China, January 2006.

156

[SKMR+06] O. Shafiq, R. Krummenacher, F. Martin-Recuerda, Y. Ding, and D. Fensel.
Triple Space Computing Middleware for Semantic Web Services. In Proceed-
ings of the 10th IEEE International Enterprise Distributed Object Computing
Conference Workshops (EDOCW 2006), pages 15–18, 2006.

[SL01] S. Shearin and H. Lieberman. Intelligent Profiling by Example. In Proceedings
of the 6th International Conference on Intelligent User Interfaces, pages 145–
151, Santa Fe, New Mexico, January 2001.

[SMWM06] U. Srivastava, K. Munagala, J. Widom, and R. Motwani. Query Optimization
over Web Services. In Proceedings of the 32nd International Conference on
Very Large Databases (VLDB 2006), pages 355–366, Seoul, Korea, September
2006.

[SP01] R. Sidhu and V. K. Prasanna. Fast Regular Expression Matching Using
FPGAs. In Proceedings of the the 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2001), pages 227–238,
Washington, DC, USA, 2001.

[SPW+04] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN Planning for Web
Service Composition using SHOP2. Journal of Web Semantics, 4(1):377–396,
2004.

[SSK+06] O. Shafiq, F. Scharffe, R. Krummenacher, Y. Ding, and D. Fensel. Data
Mediation Support for Triple Space Computing. In Proceedings of the 2nd
IEEE International Conference on Collaborative Computing (CollaborateCom
2006), pages 2–28, Atlanta, Georgia, November 2006.

[UDD03] The Universal Description, Discovery and Integration (UDDI) protocol, ver-
sion 3, 2003. http://www.uddi.org/.

[VSS+05] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
METEORS WSDI: A Scalable P2P Infrastructure of Registries for Semantic
Publication and Discovery of Web Services. Journal of Information Technology
and Management, 6(1):17–39, 2005.

[W3C03] SOAP 1.2, W3C Recommendation. Website, 2003.
http://www.w3.org/TR/soap12-part0/.

[W3C05] W3C. Semantic Web Services Framework. Website, 2005.
http://www.w3.org/Submission/SWSF.

[W3C06] Extensible Markup Language (XML 1.0). Website, 2006.
http://www.w3.org/TR/REC-xml/.

157

[W3C07a] Extensible Stylesheet Language Transoformation (XSLT 2.0). Website, 2007.
http://www.w3.org/TR/2007/REC-xslt20-20070123/.

[W3C07b] W3C. Semantic Annotations for WSDL and XML Schema. Website, 2007.
http://www.w3.org/TR/sawsdl.

[WC95] J. Widom and S. Ceri. Active Database Systems. Morgan–Kaufmann, San
Mateo, California, 1995.

[WCRS04] J. Wohltorf, R. Cissée, A. Rieger, and H. Scheunemann. BerlinTainment: An
Agent-Based Serviceware Framework for Context-Aware Services. In Proceed-
ings of the 1st International Symposium on Wireless Communication Systems
(ISWCS 2004), pages 245–249, Piscataway, New Jersey, September 2004.

[WS05] W3C. Web Services Activity home page. Website, 2005.
http://www.w3.org/2002/ws.

[WS06] OASIS Web Services Security Technical Committee. Website, 2006.
http://www.oasis-open.org.

[XML06] Crimson: A Java XML 1.0 parser. Website, 2006.
http://xml.apache.org/crimson/.

[YL04] T. Yu and K. Lin. Service Selection Algorithms for Web Services with End-to-
End QoS Constraints. In Proceedings of the IEEE International Conference on
E-Commerce Technology (CEC 2004), pages 129–136, San Diego, California,
July 2004.

158

