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Abstract. With additional quality modeling features added to concep-
tual models, computers could play a greater role in ensuring a higher
level of quality in the information we model. For information-discovery
applications, these additional conceptual modeling features should au-
tomatically accommodate certainty and conflicting information, support
evidence-based research, automate collaboration, and provide research
guidance. To address these issues, we propose a superstructure that adds
four additional abstraction layers to typical conceptual models: a knowl-
edge layer, an evidence layer, a communication layer, and an action layer.
We show by a running example the benefits these abstraction layers pro-
vide for increasing the quality of the information being modeled.

Keywords: conceptual modeling continuum, abstraction hierarchy for
conceptual modeling, evidence-based conceptual modeling, information-
discovery applications, automated collaboration, research guidance, and
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1 Introduction

Improving quality is a means to an end—not an end in and of itself. To improve
quality, we need to know how it relates to our end goal. For systems whose end
goal is the discovery of correct information in the face of uncertainty, conceptual
models can play two quality roles: They can (1) reliably model the information
discovered and (2) reliably model the meta-information that supports reason-
ing and communication about the discovered information and guides users in
resolving uncertainties.

Suppose, for example, that we wish to have reliable information about hu-
man intergenerational ancestry to check hypotheses about inherited diseases or
to trace our roots and better understand ourselves in our historical context.
Then our end goal is to discover and then correctly populate a conceptualization
of ancestral information. Ideally, the conceptual model itself needs to be able to
(1) reflect reality, (2) allow for contradictory assertions, (3) organize evidence
to support and refute assertions, (4) gather, disseminate, and reason about as-
sertions, and (5) guide users in resolving contradictions and adjusting assertions
with the end goal of having as many discovered assertions as possible, all of
which are correct.
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Our end goal for information-discovery applications is an accurate model of
reality—a quality model. To achieve this end, we need a model of quality, which
for our information-discovery application is one that allows us to represent the
relevant meta-information about the reality we seek to model. The combina-
tion is the superstructure we propose. To improve the quality of models, we
investigate models of quality. We base our investigation on Meadow’s continuum
[1].3 Meadow’s continuum provides ever-higher levels of conceptualization, tak-
ing raw symbols from data to meaning and even wisdom. The first four layers are
concerned with quality models (the information being modeled), while the last
three are concerned with model quality (the meta information used to ensure
the quality of the information being modeled).

Meadow’s seven conceptual layers, renamed to better fit our needs, are:

Quality of Models:
1. Symbols: to represent and record information.
2. Classes: to classify and provide semantics for symbols.
3. Information: to relate and constrain class instances.
4. Knowledge: to allow for conflicting assertions and supporting documentation.

Models of Quality:
5. Evidence: to organize supporting evidence and automate evidentiary logic.
6. Communication: to send and receive information without distortion or loss.
7. Action: to provide automated guidance for user behavior.

2 Conceptualization Superstructure

Figures 1 and 2 are conceptual-model diagrams, which we use to illustrate our
superstructure. In the subsections below, we explain the components of these
diagrams that pertain to each of the seven layers and how these components
provide an increase in power over each preceding layer.

As an illustration of the superstructure, we show how the increase in power
helps a doctor determine the pain management regimen for his patient, Laura
Williams. The proper regime depends on whether there is a genetic disposition
to opioid addiction. An important indicator is whether two or more of Laura’s
parents, grandparents, or great-grandparents were alcoholics. Laura knows her
mother was not an alcoholic nor was anyone on her father’s side, but she knows
little about her maternal ancestors since her mother died when she was three.

2.1 Symbols

Conceptualization: The symbol layer has no conceptual-modeling features. It is
merely a collection of symbols: text files and digitized documents and images.
The cloud in Figure 1 represents a collection of symbols.

3 Others (e.g., [2] and [3]) have proposed similar hierarchies of conceptualization.
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Fig. 1. Conceptualization of First Six Layers.

Example: Laura’s maternal grandmother is Mary Turner. Laura has a tran-
scribed copy of Mary’s diary stored as a text file—symbols. She also has a
scanned death certificate for Mary’s husband, Bill Turner, stored as an image—
symbols. Entries in the diary mention Bill’s blood type as “A”. The death certifi-
cate gives Bill’s birth date, full name, and cause of death—cirrhosis of the liver,
which implies that she has one ancestor who was alcoholic. She now needs help
to determine whether either of Bill’s parents were alcoholic.

Superstructure Motivation: At the symbol level, the computer is unable to
to provide any assistance. While easily understood by humans, text documents
and images are difficult for machines to organize and process. Further, with no
semantic information, the symbol “A” appearing in the diary adjacent to the
phrase “Blood Type” has no meaning.

2.2 Classes

At this level we are able to classify symbols and place them into classes—the
named rectangles in Figure 1. The dashed-border rectangles are lexical classes
whose members are symbols, often short strings of characters such as “AB-” for
BloodType. The solid-border rectangles are nonlexical classes whose members
are object identifiers. A so-called data frame [4] provides the semantics for each
class. Figure 3 shows a data frame for the BloodType class. Note that it defines
the expected external representation for blood types and context keywords that
indicate that symbols such as “A-” are blood types, not grades or something
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? Child(William Turner)-Person(Perry Turner)? Person(William Turner)-BloodType(B)

? Person(Perry Turner)-BirthDate(1880)? Person(William Turner)-BirthDate(July 12, 1945)

@ wish to follow up

-- Suggestions:

"find obituary for Perry Turner"

. . .

-- Useful Finds:

"1900 US Census Perry Turner entry: www. . ."

. . .

%_of_Total_Fathers(y1) ^ y1 < 1%

where:

y1 = Father’s_Age_at_Child’s_Birth(y2)

^ y2 = Father’s_Age(y3)

^ Person(William Turner)-BirthDate(July 12, 1945)

^ Person(Perry Turner)-BirthDate(1880)

^ y3 = (July 12, 1945) – (1880)

-- Report Assertions

"Person(William Turner)-BirthDate(July 12, 1945)"

"Person(Perry Turner)-BirthDate(1880)"

@ wish to follow up

-- Suggestions:

"find medical records

for William Turner"

@ wish to follow up

-- Suggestions:

. . .

@ wish to follow up

-- Suggestions:

"find birth certificate for William Turner"

. . .

Certainty(x)---Person(William Turner)-BloodType(B) ^ x < 0.05

-- Report Assertions

"Person(William Turner)-BloodType(B)"

"Person(William Turner)-BloodType(A)"

"Child(William Turner)-Person(Perry Turner)"

. . .

-- Report Informal Evidence:

"Diary of Mary Turner"

. . .

 . . .   (additional cases omitted)

Fig. 2. Generated Action Conceptualization (partial).

else. Like abstract data types, data frames have I/O methods and other opera-
tions. Operators may also include expected phrase templates used to indicate the
applicability of an operation. Data frames for nonlexical classes contain object-
existence rules, which state that when an instance of some specified lexical class
is recognized, an instance of a corresponding nonlexical class exists (e.g., when
a Name instance is seen, a corresponding Person object exists).

Example: Some of Laura’s information can now be classified. Using repre-
sentation and context information in the BloodType data frame, a computer can
identify the symbol “A” as a BloodType. Similarly, the computer can also extract
the symbol “July 12, 1945” as a date and “William Turner” as a person’s name.

Superstructure Motivation: Even with this information the computer can do
little to assist Laura in determining who Bill’s parents are and whether they are
alcoholic. At the Class Layer the computer can classify information but cannot
record how the instances in one class relate to instances in another class. We
cannot associate the object identifier for “William Turner” in the class Person
with his name, date of birth, and blood type.
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BloodType
external representation: \b(A|A+|A−|B|B+|B−|AB|AB+|AB−|O|O+|O−)\b
context keywords: \b[Bb]lood\s[Tt]ype\b
input method: BloodTypeToString
output method: StringToBloodType
operator methods:

CanDonateTo(x: BloodType, y:BloodType) returns (Boolean)
external representation: \b[Cc]an\s.{0,30}{x}\sdonate\sto\s.{0,30}{y}
end;

end;

Fig. 3. Data Frame for Blood Type.

2.3 Information

Conceptualization: All typical conceptual modeling features are included at this
level: classes, relationships, generalization/specialization, and cardinality con-
straints. In Figure 1, lines connecting object-set classes represent relationship
sets (e.g., Person-BloodType). Lines with triangles represent isa abstractions
(e.g., Child-isa-Person). Decorations on lines express cardinality constraints
(e.g., the arrowhead on Person-BloodType designates a functional constraint,
limiting a person to at most one blood type). Furthermore, at this level, we
retain and expand data-frame semantics to full extraction ontologies [4], which
allows a computer to “read” text—extract information from text and populate
conceptualizations. When the Person object-existence rules fire, for example,
not only is an object identifier added to Person and the string added to Name,
but a relationship between the instances is also added to the Person-Name re-
lationship set. Similarly, with extraction-ontology recognizers for phrases that
represent relationships, it is possible to automatically “read” information from
semi-structured documents like an OCRed version of the death certificate.

Example: For our story, we now have Bill’s blood type “A”, birth date “July
12, 1945”, and father “Perry Turner” with his birth date “1880”. Laura is excited
because further research shows that Perry was a teetotaler. Because she only
has one ancestor with an apparent alcohol problem she concludes that she is
probably not susceptible to opioid addiction. Unfortunately, what the computer
“says” with its conclusion-based model at this level of the conceptualization
superstructure could be invalid—a potential life threatening mistake.

Superstructure Motivation: At the information layer, models must be valid—
all constraints must hold—but in historical research we often have conflicting
information. Further, the computer has no principled way to associate explana-
tions and justifications with assertions.

2.4 Knowledge

Conceptualization: This layer allows for invalid models, unstructured meta-in-
formation for justification, and soft constraints for expressing likelihood. In Fig-
ure 1, the dashed line connecting the cloud with the Person-BloodType relation-
ship set designates a set of links between relationship instances and unstructured
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Person(x1)-BloodType(x2), Person(x3)-BloodType(x4), Person(x5)-BloodType(x6),

Child(x1)-Person(x3), Child(x1)-Person(x4),

Probability(x7)_of_ChildBloodType(x2)_for_Parent1BloodType(x4)_and_Parent2BloodType(x6),

⇒ Certainty(x7)---Person(x1)-BloodType(x2)

Fig. 4. Inference Rule for Obtaining Certainty for Blood Type.

meta-information. Distributions like the “Father’s Age at Child’s Birth” in Fig-
ure 1 represent soft constraints. “Violation” of a soft constraint does not make
a model instance invalid but suggests some assertions are unlikely. Since the
Knowlege Layer permits conflicts, we can define valid models without weak-
ening constraints. We can, for instance, record two birth mothers for a child
without having to reduce the quality of the model, which can still declare that
there is at most one mother for a child.

Example: With birth dates in 1880 and 1945, Perry Turner was apparently
65 years old when Bill was born, and the computer can use the distribution
“Father’s Age At Child’s Birth” to suggest to Laura the unlikelihood that Perry
is Bill’s father. Armed with this computer-provided insight, Laura digs deeper
and discovers a medical form stating that Bill has blood type “B”. Since we can
violate constraints, we can add this assertion while retaining the assertion that
Bill’s blood type is “A”. Furthermore, we can attach a scanned image of the
medical form as justification that Bill has blood type “B”.

Superstructure Motivation: It would be nice if the computer could assist
Laura in resolving these seeming contradictions. Unfortunately, since the evi-
dence is informal, the computer cannot reason about it.

2.5 Evidence

Conceptualization: This layer of our superstructure allows justifying meta-infor-
mation to be formally organized as a conceptual-model instance. In Figure 1, the
BloodTypeTable is a populated conceptual-model instance yielding the probabil-
ity of a child’s blood type being x when its parents have blood types y and z. In
Figure 1, a dashed line connects the blood-type table to a conceptual-model sub-
component in which the information to compute the probability resides. Since
the justifying meta-information is formal, the computer can reason with it as
the datalog-like rule in Figure 4 shows. The inference rule in Figure 4 yields for
each relationship instance in Person-BloodType its Certainty as recorded in the
BloodType table. These results can be added as a formal Certainty justification
as Figure 1 shows.

Example: Laura looks for and finds a medical record documenting that Perry
Turner and his wife have blood type “A”, but the computer tells her that there
is a 0% chance that their son Bill has blood type “B”. Thus something is wrong.

Superstructure Motivation: Information becomes more valuable and better
validated when we share it with others. We can easily do this by encoding the
information in human readable form and sending it. The human receiver must
then read, understand, and manually store it in their own machine. It would
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model structure:

Probability[1:*] of ChildBloodType[1:*] for Parent1BloodType[1:*] and Parent2BloodType[1:*];

ChildBloodType, Parent1BloodType, Parent2BoodType --> Probability;

end;

model instance:

Probability(.9375) of ChildBloodType(A) for Parent1BloodType(A) and Parent2BloodType(A);

Probability(.0625) of ChildBloodType(O) for Parent1BloodType(A) and Parent2BloodType(A);

...

end;

Fig. 5. Model Structure and Instance Data.

be better if the source machine could directly communicate with the receiving
machine.

2.6 Communication

Conceptualization: To communicate on its own, the computer must be able both
to write/send and receive/read information. In Figure 1 the arrow with a light-
ning bolt in the center shows the computer receiving a message from some un-
known source. Our proposed superstructure has three forms of communication.

1. When a statement of fact is sent, a previously agreed-upon format is used
to decode the message—a common form of communication that only works
if the sender and receiver agree on the format and semantics.

2. With extraction ontologies [4] the receiver can read, decode, and store facts;
how well this works depends on how well the extraction ontology’s recogniz-
ers can read.

3. If the sender and receiver are using the same conceptual model, both the
statements of fact and the corresponding sub-model can be shared. In Fig-
ure 5 we demonstrate this using a model-equivalent programming language
[5]. The textual model structure represents the BloodTypeTable in Figure 1,
including its functional constraint, and the model-instance statements pop-
ulate the model structure.

Example: In our example Laura remembers that Perry Turner may have been
too old to be William Turner’s father. She asks William Turner’s sister, who is
still alive, when Perry Turner was born. The reply comes as the message in
Figure 1, “Perry Turner was born in 1880”, which can be read using extraction-
ontology technology and which confirms the fact that Perry was born in 1880.
The question Laura asked was based on the assumption that Perry Turner was
Bill’s father. A better question would have been, “Is Perry Bill’s father?”

Superstructure Motivation: Although helped by the computer to some extent,
Laura has been on her own to decide what to do. Could a computer have provided
her with the relevant information and, more importantly, could it have guided
her reasoning and search for additional relevant information?
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2.7 Action

Conceptualization: At this level of abstraction, we add object-behavior modeling
along with object-interaction modeling and object-relationship modeling [6]. We
represent object-behavior models with multi-threaded, enhanced state/transition
diagrams as Figure 2 shows. Interestingly, we observe here that for fact-discovery
applications as in our running example, useful object-behavior models can be
generated automatically, rather than being specified by an expert in the field.

Example: Having reasoned (based on the inference rule in Figure 4) that
the Certainty of Person(William Turner)-BloodType(B) is highly unlikely, the
computer generates the object-behavior model in Figure 2 as follows:

– The trigger in the first transition in Figure 2 is the conclusion of the infer-
ence rule in Figure 4. In the action part of the first transition the Reported
Assertions are the antecedent predicates of the inference rule with their vari-
ables bound to the instances for which the 0% certainty was derived, and the
Reported Informal Evidence is the informal information in the cloud linked
to these instances.

– Since if the conclusion is wrong, one or more of the antecedent assertions
must be wrong, the computer can generate the subsequent states of the first
transition as hypotheses to be considered. (Figure 2 shows only two of the
six subsequent hypothesis states.)

– The @ wish to follow-up transitions depend on Laura’s deciding to activate
them. The provided Suggestions in these transitions are automatically gen-
erated if the conceptual modeler has included them in the formal evidence
model and linked them as meta-information to the hypothesis relationship
sets in question. The provided Useful Finds also come automatically if, know-
ing what to look for from the Suggestions list, the computer can send a query
to a service such as FamilySearch.org or Ancestry.com and retrieve an im-
age of a document that the computer suggests should be sought.

– Finally, when a constraint applies, as does the soft constraint in Figure 1 for
the ? Child(William Turner)-Person(Perry Turner) hypothesis in Figure 2,
the computer generates a trigger that fires when the condition holds. The
transition’s action is to report assertions and informal evidence and then
generate subsequent hypothesis states as explained previously.

Being guided by the computer-generated research plan, Laura follows up on
the hypothesis that William Turner is not Perry Turner’s child by searching
for obituaries. She finds one for Perry and one for William Turner. Neither
suggested a Person-Child relationship between the two. However, Laura also
finds an obituary of a Steven Turner in which a William Turner was the son of
Steven, and Steven was the son of Perry. The article stated that Steven Turner, a
well known alcoholic, had died in a car accident. William Turner had been raised
by his grandparents! Now Laura has found that two ancestors had suffered from
apparent alcohol addictions, and she and her doctor now believe she may have
a genetic disposition for opioid addiction.
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Feature Status Feature Status
Comprehensive conceptual models yes Data frames yes
Extraction ontologies yes Contradictory information yes
Probability/likelihood data no “Soft” constraints no
Informal evidence partial Formal evidence partial
Communication support yes Action specification generation no
Action specification execution yes Component integration partial

Table 1. Matrix of Implementation Status

3 Implementation Status

Our running example is reminiscent of the medical appointment scheduling ex-
ample of Berners-Lee et al. when they first proposed the Semantic Web [7].
Indeed, our application fits well with the Semantic Web vision. However, as with
the Semantic Web, even though a great deal has already been accomplished,
there is still much to be done. The lower layers in our proposed superstructure—
Symbols, Classes, Information, and Knowledge—tend to be thoroughly imple-
mented, while the upper layers—Evidence, Communication, and Action—show
a good amount of progress but need more work. Over the years we have imple-
mented numerous software projects that support the proposed superstructure.
Most of these projects fit within a Java-based graphical workbench that runs as
a desktop application. Table 1 summarizes our implementation status.

We have implemented a comprehensive object-oriented conceptual model
(OSM), data frames, and an ontology-based extraction system, OntoES, that
works with high precision and recall in ontologically narrow domains [4]. Our
workbench supports editing both schema and data-layer information within
OSM, and we are able to communicate this information both graphically and
textually (see Figures 1 through 5) and in an interchange-friendly XML format
we call OSM-X. We can both manually and automatically (e.g. via OntoES) an-
notate assertions based on unstructured source documents, and we capture full
linkage information between assertions and their supporting sources. This forms
the basis for the evidence layer in our superstructure. Though our front-end
tools do not yet support this, our OSM-X storage format allows for arbitrary
user comments about annotations and assertions. We have implemented tools to
execute state/transition diagrams (e.g. Figure 2): (1) automatically when fully
formal triggers and actions are present [5] and (2) synergistically with the user’s
help for cases where triggers and actions may be informal or semi-formal [8].
We have not yet implemented the automatic generation of state/transition di-
agrams as explained in Section 2.7. While we have experimented with various
types of uncertain data, we have not yet implemented “soft” constraints in our
current toolset. Because we have a tool that converts our proprietary OSM-X
interchange format to RDF/OWL, we are able to use Semantic Web reasoning
tools like Jena to perform various kinds of automated inferencing [9] (e.g. for the
rule in Figure 4). In addition to implementing additional features, we also need
to better integrate some of the components in our toolset.
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4 Concluding Remarks

Our superstructure includes both “models of quality” and “quality of models.”
The first four layers of the superstructure address models of quality: we can
model our observations of the real world accurately with hard and soft con-
straints and ADT data frames, and we can allow our models to accept uncertain
and conflicting assertions as we discover them. The last three layers address the
quality of models: we can analyze the quality of the assertions in our models
and improve them. The evidence layer enables computer-assisted reasoning and
finding hard and soft constraint violations; the communication layer supports
automated information collection both about the assertions and the evidence
supporting the assertions; and the action layer supports improving the quality
of the data in our conceptualizations and our search for truth under the guidance
of an automated expert. Although developing our superstructure is a massive
undertaking, we are well along in its implementation.

Meadow adds a last layer that he calls “Wisdom,” and which we interpret to
mean the proper application of knowledge based on truth (via evidence), com-
munication, and action. It is our hope that the superstructure we propose here
can more effectively enable us to proceed wisely—from our story, for example,
to avoid placing Laura in a potentially life-threatening medical regimen.
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