
A Computational Alembic for a Web of

Knowledge�

David W. Embley†, Stephen W. Liddle‡,
Deryle Lonsdale∗∗, George Nagy††, Yuri Tijerino‡‡

Yihong Ding†, Stephen Lynn†, Jeff Peters†, and Cui Tao†

†Department of Computer Science
‡Department of Information Systems

∗∗Department of Linguistics and English Language
Brigham Young University, Provo, Utah, 84602

††Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute, Troy, New York, 12180

‡‡Department of Applied Informatics
Kwansei Gakuin University, Kobe-Sanda, Japan

The current web is a web of linked pages. Frustrated users search for facts
by guessing which keywords or keyword phrases might lead them to pages where
they can find facts. Can we make it possible for users to search directly for
facts? Can we turn the web into a web of facts (in addition to a web of pages
containing facts)? Ultimately, can the web also be a knowledgebase—a WoK
(Web of Knowledge)—that can provide direct answers to factual questions?

The answer to these questions calls for distilling knowledge from the web’s
wealth of heterogeneous digital data. But how? Our computational alembic1

must turn raw symbols contained in web pages into knowledge and make this
knowledge easily accessible via the web. We face three challenges: (1) automatic
(or near automatic) creation of ontologies, (2) automatic (or near automatic)
annotation of web pages with respect to these ontologies, and (3) simple, but
accurate, query specification, usable without specialized training.

To show that a computational alembic with these characteristics is feasi-
ble, we are constructing a demo. We begin with an ontology editor [ISTA’05]2

with which we can manually construct extraction ontologies—conceptual models
with instance recognizers that can automatically recognize and extract instances
embedded in web pages for the concepts in the ontologies. From a populated ex-
traction ontology it is straightforward to generate a database instance, which
immediately allows it to be queried with a formal query language [DKE’99].3

Added to this foundation, we have begun to build tools (1) to automate the
generation of ontologies from semi-structured web pages, (2) to automate the

� Supported in part by the National Science Foundation (#0414644 and #0414854).
1 A vessel with a beaked cap or head, formerly used in distilling liquids.
2 All citations refer to www.deg.byu.edu/papers/ where our papers are posted.
3 Our High-Level Demo lets a user apply a pre-built extraction ontology to a web page

and then query the extracted information with SQL. (All demos to which we refer
reside on www.deg.byu.edu/demos/.)



2 D.W. Embley, et al.

extraction of data instances with respect to these generated ontologies, and (3)
to provide tools for free-form query evaluation. We have made significant progress
on all three tool sets:

1. Ontology generation. Our TANGO4 project [WWWJ’05] is well underway.
TANGO generates ontologies: (1) it interprets tables by finding table labels
and associating them with the table’s data, (2) it conceptualizes interpreted
tables turning them into conceptual models, and (3) it merges conceptualized
tables into a growing ontology that represents a domain described by a set of
domain-related tables. To interpret tables, we are building a tool to process
arbitrary tables [Jha’07]. For a particular situation—namely, where so-called
sibling tables are available, such as those displayed as a result of querying the
hidden web—we have completed a table interpretation tool—TISP5 [ER’07].
We have also completed a conceptualization tool—MOGO6 [Lynn’08]. For
merging ontologies, we have completed a matching and merging framework
and an API interface [Lian’08], but we have not yet added into this frame-
work our tools for automated ontology and data integration [InfoSys’06].

2. Information extraction. We are continuing to work on automatic semantic
annotation [ASWC’06].7 Currently, we are exploring ways to synergistically
run extraction-ontology annotators and pattern-based annotators to reduce
our reliance on hand-crafted extraction ontologies [SIGSEMIS’05]. We are
also exploring ways to allow ontologies to be expressed as ordinary forms,
which users already understand and can readily create and into which infor-
mation can be harvested [CMLSA’07].

3. Query specification. We have completed two projects on free-form query spec-
ification: AskOntos [Vickers’06]8 and SerFR [ICDE’07].9 We have not, how-
ever, integrated these projects into our overall WoK project and thus we
currently can write queries only in SPARQL.

A current challenge for us is to integrate all these projects together into
a single WoK demo. Although not yet finished,10 we have completed much.
Currently, when we begin our demo, we can start from scratch, find a set of
sibling pages we wish to process, record their URLs in a simple text file, select
4 Table ANalysis for Generating Ontologies
5 Table Interpretation with Sibling-Pages
6 Mini-Ontology GeneratOr—“mini” because it generates a small ontology from a

single table to be integrated into the growing ontology
7 Our semantic annotation demo yields annotated web pages—when a user’s mouse

hovers over an annotated item on a page, the meta-information from the extraction
ontology by which the item was annotated appears.

8 Our AskOntos demo allows a user to specify free-form queries for a car-sales domain.
The demo shows answers to queries in a table. Each row of the table has a clickable
“source” entry, which when clicked yields the original HTML page from which the
information was extracted with the extracted information highlighted.

9 Our SerFR demo runs, but is in need of an upgrade.
10 The demo probably never will be finished because we are continuously testing new

ideas for each of the three components of our computational alembic.



Lecture Notes in Computer Science 3

Fig. 1. Sibling Pages Ready for TISP Processing.

any two as a starting place, and then click on a ”Go” button to process the pages
and prepare them to be queried.11 The screen-shot of our demo in Figure 1 shows
two sibling pages selected as the starting point. TISP takes these two pages and
uses them to interpret the entire set of sibling pages (i.e., uses them to identify
labels and values and to properly associate labels with values for all sibling
pages in the file). Then, via some internal processing, the WoK system turns
the interpreted table into an RDF data instance that not only contains all the
data but also all the annotation information picked up by TISP. Figure 2 shows
the interface from which a user can query the RDF data instance. When a user
enters a SPARQL query, the WoK demo displays the result as clickable data
instances. If a user clicks on a displayed data value, the WoK demo uses the
additional stored information in the RDF data instance to find the annotation
information. As Figure 2 shows, the WoK demo displays the web page from
which the data instances were taken. If the user clicks on a data item, then
prior to display, the WoK demo highlights the instance and scrolls the web page
near to the spot in the page from which the instance was taken. In the special
case for URL entries, which we always provide, the WoK demo highlights all the

11 Typically, we look for a set of pages from a single site on the hidden web, but any
set of pages with sibling tables works. We can, of course, also save the text file of
URLs so that we can run the demo without having to look for a set of sibling pages.



4 D.W. Embley, et al.

Fig. 2. SPARQL Query with Results and Highlighted Web Page.

instances in the record for display. Figure 2 shows this case: here we have clicked
on the URL entry for the Italian Republic.12

In summary, we point out the following: (1) The demo is in harmony with
the aims of ER’08. Conceptual modeling plays a foundational role in actualizing
the idea of a WoK (Web of Knowledge). (2) The demo will show (a) how to
automatically build ontologies from certain types of semi-structured web pages,
(b) how to automatically annotate data from web pages with respect to the
generated ontology, and (c) how to query the extracted facts with a standard
query language. (3) The demo is highly interactive. Users can run the demo by
choosing web pages previously cached specifically for the demo or by browsing
the web for pages they would like to try. Users can view intermediate results
such as generated ontologies, generated annotation information, and generated
RDF data files. And users can write their own SPARQL queries (and hopefully,
their own free-form queries) and receive the answers to their queries as well as
links back to the original pages from which the information was extracted.

12 By summer’s end we hope to replace the SPARQL query processor by a free-form
query processor. We also hope to join together the various projects to provide addi-
tional ways to automatically generate ontologies and annotate web pages.


