
Conceptual Modeling for a Web of Knowledge

David W. Embley†?, Stephen W. Liddle‡, and Cui Tao†∗

†Department of Computer Science
‡Department of Information Systems

Brigham Young University, Provo, Utah 84602, U.S.A.

Abstract. The current web is a web of linked pages. Frustrated users
search for facts by guessing which keywords or keyword phrases might
lead them to pages where they can find facts. Can we make it possible for
users to search directly for facts? Equivalently, can we turn the web into
a web of facts (instead of a web of pages containing facts)? Ultimately,
can the web be a knowledgebase—a web of knowledge—that can pro-
vide direct answers to factual questions and also provide the confidence
necessary to make those answers believable? We answer these questions
by showing how to superimpose a web of data over the web of pages,
resulting in a web of knowledge. Our solution, which is based on con-
ceptual modeling, calls for turning raw symbols contained in web pages
into knowledge and making this knowledge accessible via the web. The
particulars of our solution show ways to overcome three impeding chal-
lenges: (1) automatic (or near automatic) creation of ontologies, (2) au-
tomatic (or near automatic) annotation of web pages with respect to
these ontologies, and (3) simple but accurate query specification, usable
without specialized training. Meeting these basic challenges can simplify
knowledge-web content creation and access to the point that the vision
of a web of knowledge can become a reality. Throughout, we show that
conceptual modeling plays a key role in actualizing these ideas.

1 Introduction

To think about turning raw data into accessible knowledge in a Web of Knowl-
edge (WoK), we first ask some fundamental questions: What is data? What are
facts? What is knowledge? How does one reason and know? Philosophers have
sought answers to these questions for millennia; and although we do not pretend
to be able to contribute to Philosophy, we can use their ideas about ontology,
epistemology, and logic to guide us in how to build a WoK.

– Ontology is the study of existence. It asks: “What exists?” In our quest to
build a WoK, we must find computational solutions the question: “What
concepts, relationships, and constraints exist?” We answer computationally,
saying that we can declare a formal conceptual model for some domain of
knowledge that captures the relevant concepts along with the relationships

? Supported in part by the National Science Foundation under Grant #0414644.

2 D.W. Embley, S.W. Liddle, and C. Tao

among these concepts and the constraints over these concepts and relation-
ships.1

– Epistemology is the study of the nature of knowledge. It asks: “What is
knowledge?” and “How is knowledge acquired?” To build a WoK, we provide
computational answers to “What is digitally stored knowledge?” and “How
does raw data become algorithmically accessible knowledge?” Our answer
is to turn raw data into knowledge by populating conceptual models—by
embedding facts in the concepts and relationships in accord with constraints.

– Logic comprises principles and criteria of valid inference. It asks: “What is
known?” and “What can be inferred?” In the computational context of a
WoK, it can answer the question: “What are the known facts (both given
and implied)?” We ground our conceptual model in a description logic—a
decidable fragment of first-order logic [BN03]. To make this logic practical
for non-logicians, we must and do add a query generator whose input consists
of ordinary free-form textual expressions or ordinary fill-in-the-blank query
forms. As we explain later in this paper, both query modes fundamentally
depend on conceptual models.

To actualize these ideas, we present a way to turn raw symbols contained
in web pages (or other source documents) into computational knowledge and to
make this knowledge accessible by average web users. The key research problems
are: (1) How do we make ontology creation—conceptual-model creation—easy
enough to be usable by typical human knowledge workers? (2) How do we make
epistemology—content annotation with respect to an ontology—easy enough to
require little, if any, training for human annotators? (3) How do we make logic—
query specification—easy enough for web users to apply without specific training
in writing queries in sophisticated query languages? Not only do these activities
need to be easy enough, they also have to be good enough. Without a resolution
to these problems, the barrier to WoK content creation and usage will remain
too high, and the envisioned WoK will remain elusive.

Our paper addresses these challenges and contributes by showing how an-
swers can enable a WoK. As a main thread, it highlights the role of conceptual
modeling. In Section 2 we provide an overview of our vision of how to superim-
pose a web of knowledge over a web of pages. In Section 3 we give the details of
two types of tools: (1) tools to create and populate ontologies for a WoK and (2)
tools to query populated WoK ontologies. We explain why believe these tools
provide the simplicity, as well as the flexibility, needed to make them practical
for typical knowledge workers. Additionally, we explain how these tools point
to future work that can expand the ability of knowledge workers to successfully
generate, populate, and query ontologies. We conclude in Section 4 by reiterat-

1 Purists argue that conceptual models are not ontologies [Gru93,Gua98,Smi03]. We
agree that when conceptual models play their traditional role to aid in database
schema design, they typically are not ontologies. But when they are used to answer
“What exists?” and thus when they formally capture the concepts, relationships,
and constraints that exist in a domain, they are ontologies.

Lecture Notes in Computer Science 3

ing the key role that conceptual modeling plays in enabling the superposition of
a web of knowledge over the current web of pages.

2 From a Web of Pages to a Web of Knowledge

We use two examples to show how to turn a web page into a page of queriable
data. Figure 1 shows part of three ordinary, human-readable web pages about
cars for sale. The facts in these pages are obvious: e.g., a ’93 NISSAN is for sale;
it is sweet cherry red, has air conditioning, and sells for $900. Figure 2, which
is about genes and molecular biology, shows a second example. Facts on this
page are much less obvious to ordinary readers, but a specialist can see a myriad
of facts: Gene cdk-4 has genetic position X:12.68 +/- 0.009 cM and genomic
position X:13518824.13515774bp. Users would like to be able to query the facts
on these pages directly: “Find me a red Nissan for under $5000; a 1990 or newer
with less than 120K miles on it.” Or, “Tell me the genomic location of cdk-4.”
We cannot, however, directly access these facts with the current structure of the
web. Our approach makes these facts visible from outside the page and directly
accessible to query engines (as opposed to search engines).

2.1 From Symbols to Knowledge—Ontological and Epistemological
Tools

To make facts available to query engines, we first map out a guiding pathway to
turn raw symbols into knowledge. Symbols are characters and character-string
instances (e.g., $, mileage, red, Gene, Protein, WP:CE18608). Data builds on
symbols by adding conceptual meta-tags (e.g., Price: $900, Color: red, Protein:
WP:CE18608). Conceptualized data groups data tagged with conceptual identi-
fiers into the framework of a conceptual model (e.g., an ordinary, extended ER
model, although in our work the conceptual models we use are fact-oriented, like
ORM [Hal95]). We have knowledge when we populate a conceptual model with
correct2 conceptualized data.

To specify ontological descriptions, we need a conceptual-modeling language.
We use OSM [EKW92], which lets us classify and describe things that exist as ob-
ject sets of things, relationships among these things as relationship sets, general-
ization/specialization hierarchies for is-a-related object sets, and constraints over
object and relationship sets. In principle, it does not matter which conceptual-
modeling language we use, but for a WoK, as we envision it, the language should
have certain characteristics:

2 Correct is interesting. How do we know whether conceptualized data is correct?
Humans struggle to know; machines may never know. For the WoK we are con-
templating, we rely on evidence and provenance by always linking conceptualized
data back to its original source—the human-readable web page from which it was
extracted.

4 D.W. Embley, S.W. Liddle, and C. Tao

Fig. 1. Sample Car Ads Web Pages.

– The conceptual-modeling language should have a direct correspondence to
predicate calculus—the simpler and more direct the correspondence, the
better. Fact oriented conceptual models (e.g., OSM [EKW92] and ORM
[Hal95]), which model both entities and attributes as objects, have a more
direct correspondence to predicate calculus. Each object set represents a
one-place predicate, and each n-ary relationship set represents an n-place
predicate. Populating object and relationship sets with values directly yields
the facts for a first-order interpretation (which, incidentally, is also why these
types of conceptual models are called “fact-oriented”).

– Every constraint representable in the chosen conceptual-modeling language
should be expressible as a well-formed formula of the first-order language
induced by the representation of the object and relationship sets of the lan-
guage. (Constraint translations for both OSM [EZ10] and ORM [Jar07] are
examples.)

– To facilitate reasoning, the conceptual-modeling language should be merely
an alternate representation for a first-order language, as are fact-oriented

Lecture Notes in Computer Science 5

Fig. 2. Sample Molecular-Biology Web Page.

conceptual-modeling languages whose constraints are expressible as well-
formed first-order expressions. To keep reasoning tractable as well as de-
cidable, appropriate limitations are necessary. (Adjusting the conceptual-
modeling language for our WoK vision as researchers come to better under-
stand the decidability and tractability issues of description logics may be
appropriate.)

An appropriately limited version of OSM satisfies these requirements better (in
our opinion) than the more traditional conceptual-modeling languages such as
extended ER or UML and is more easily tailored to the needs of WoK develop-
ment than ORM, a more widely known fact-oriented language.

OSM, in general, has the power of predicate calculus, but the limited version
we typically use is essentially an ALCN description logic [BN03]. Thus, OSM has
the formal properties required (1) to ontologically represent concepts and their
interrelationships, (2) to epistemologically represent knowledge as predicate-
calculus theories in terms of formal interpretations, and (3) to logically establish

6 D.W. Embley, S.W. Liddle, and C. Tao

inference rules and to query over base interpretations and inference rules. Fur-
ther, in its limited version, OSM has reasonable processing efficiency.

A minimal necessary tool is an editor that allows users to construct and pop-
ulate conceptual models. Building and populating ontologies by hand, however,
becomes a bottleneck in the process of turning data into knowledge [BCL06].
Thus, we seek an answer to this question: Can we automatically construct and
populate an ontology for a domain of knowledge from raw source domain infor-
mation? If so, how? If not fully automatically, can we at least semi-automatically
construct domain knowledge and do so with most of the burden of construction
shifted to the machine?

Attempts to extract ontologies from natural-language text documents have
been largely unsuccessful [BCL06]. The unbounded freedom in natural-language
expression makes synthesizing conceptualizations extremely difficult. Attempts
to extract ontologies from semi-structured documents, such as the ones in Fig-
ures 1 and 2, although challenging, appear promising [TEL+05]. To the extent
we can algorithmically discover meta-information and tie it to data values, we
can synthesize conceptualizations. The degree of semi-structuredness is a rough
measure of how amenable a document is to automatic conceptualization.

With algorithmic conceptualization in mind, we approach the problem of
automatic and semi-automatic ontology construction by building tools that use
the web pages we wish to turn into knowledge as sources to help us construct
the ontology. This works by recognizing that the data is formatted in a par-
ticular way (e.g., the table in the OnlineAthens ads in Figure 1) and by using
reverse-engineering techniques to construct a conceptual model (e.g., to discover
that Price, Y ear, Make, and Model in the table in Figure 1 are concepts for
a car-sales conceptual model or to discover that Genetic Position and Genomic
Position in Figure 2 are alternate ways to specify locations for a gene ontol-
ogy). Since we cannot fully count on these automatic ontology-building tools,
we also provide a way to build ontologies that leverages the idea of an ordinary
form. People generally know how to design forms with single- and multiple-entry
blanks. And we know how to algorithmically turn form-like nested structures into
conceptual models [AK07].

Ontological descriptions, however, are not enough for our envisioned web of
knowledge. We also need a way to link raw facts in web pages with ontological
descriptions. We need epistemological tools as well as ontological tools. A way
to link the actual facts with an ontology is to annotate a web page with respect
to that ontology. We annotate a data value in a web page with respect to an
ontology by mapping it to an object set in an OSM ontology. Likewise, we
annotate related pairs of values (and, more generally, related n-tuples of values)
in a web page by mapping them to a relationship set in an ontology.

Although it is possible to annotate a web page with respect to an ontology
by hand, this is likely to be too tedious and time consuming to be practical
for most applications.3 We therefore augment OSM ontologies with instance

3 Although tedious, we do foresee hand-annotation as a viable way to create annotated
content. Moreover, we can also annotate images like some commercial enterprises do

Lecture Notes in Computer Science 7

recognizers (ontologies augmented with instance recognizers are called extrac-
tion ontologies). Instance recognizers contain regular expressions that recognize
common textual items such as dates, times, prices, and telephone numbers. They
can also contain lexicons that match with items such as car makes and models
and protein names and functions. Much can and has been said about how to
build and use these instance recognizers embedded within extraction ontologies
[ECJ+99,DEL06].

Although we can use extraction ontologies to automate the annotation of web
pages, building instance recognizers for OSM extraction ontologies is laborious.
We therefore seek for better ways to do automatic annotation without having
to build many specialized recognizers by hand. We first observe that for many
common data items such as ordinary numbers, dates, time, currency, and per-
centages, we can expend the effort to create good recognizers, and we can store
them in a library and use them liberally in many extraction ontologies. Even
so, however, many needed recognizers would not likely be among them. From
our examples (Figures 1 and 2), we would not likely have recognizers for makes,
models, and features of cars; nor for proteins, amino acids, and gene locations.

For these types of items, we seek alternative ways to build recognizers. We
observe that many of these types of data items come from regular patterns in
semi-structured pages. Columns in tables, like the makes and models in the table
in Figure 1 or like the proteins and amino acids in the table in Figure 2, are
common, as are lists of items, either in a single column or delimiter separated
like the features in car ads. We should be able to classify and annotate values in
semi-structured documents. Indeed, we observe that if we can extract ontological
knowledge from semi-structured web pages, we should at the same time be able
to also extract epistemological knowledge. For example, if we can recognize the
table structures in Figure 2 well enough to derive the meta-knowledge necessary
for an ontology, we should be able to link the data associated with the meta-
knowledge (e.g., category labels in tables) to the ontological concepts to which
they belong. This maps the data to an ontology and thus annotates the data in
the web page. Furthermore, as we annotate data such as car makes and models
and protein names and amino acids, we can keep the values we find in lexicons
and thus automatically build and continuously improve instance recognizers for
extraction ontologies.

2.2 Querying Knowledge—Logic Tools

After building tools to turn raw symbols in web pages into knowledge, we next
need to provide appropriate query capabilities. Given that we have data on a
web page annotated with respect to an ontology, we can immediately generate
subject-predicate-object triples in RDF [W3Cb], the W3C standard for repre-
senting ontological data. We can then directly use the SPARQL query language

(e.g., [Foo07]), but with respect to ontologies so that they can be queried in the
envisioned WoK. Likewise, sound bites and videos, and in general all multi-media
objects, can be annotated with respect to ontologies.

8 D.W. Embley, S.W. Liddle, and C. Tao

red Nissan for under $5000 ; a 1990 or newer with less than 120K miles on it

Fig. 3. Free-Form Query.

[W3Cc], also a W3C standard, to write and execute queries over this RDF data.
In addition, from OSM ontologies, we can also immediately generate OWL on-
tologies [W3Ca], another W3C standard. This further enhances our ability to
reason with the data since we can write and execute inference rules over OWL
ontologies (e.g., in Pellet [SPG+07], an open source OWL description-logic rea-
soner).

If everyone could write SPARQL queries, we would basically have what we
need to enable users to search the envisioned WoK. However, since we target
users who are not trained in formal query specification, we should not expect
these users to learn SPARQL or any other formal query language. Instead, we
should provide a query system in which users can pose queries in their own terms.
Figure 3 shows a free-form query for a tool we have built [Vic06,AM07]. The key
to making these free-form queries work is not natural-language processing (at
least not in the usual sense of natural-language processing), but rather is the
application of extraction ontologies to the queries themselves. This lets us align
user queries with ontologies and thus with facts in annotated web pages. In
essence, these free-form queries are keyword queries over both the instances and
the concepts in populated ontologies (as opposed to keyword queries over web
pages). And, in addition, the system also uses keywords and instance recognizers
to identify implied operators and operands for operations as well. As Figure 3
shows, the query engine highlights words, values, phrases, and operations it

recognizes (e.g., the context keyword miles, the value red, and the operation
under applied to the value $5000). The highlighting provides feedback to users,
letting them know which words, values, phrases, and operations the search engine
recognizes.

Anyone can readily pose free-form queries. To be successful, however, users
do have to guess what keywords, values, and constraint expressions might be
available in an extraction ontology for the domain of interest. This is similar
to users having to guess keywords and values for current search-engine queries.
Since arbitrary free-form queries may not always be successful, we also provide a
form query language, based on the ontology, that allows a user to fill out a form
and submit it as a query in much the same way users currently pose queries
by filling in forms currently on the web. Interestingly, these query forms are
automatically derivable from domain ontologies, and thus need not be specified
by developers. Instead of reverse-engineering a form to create an ontological
structure, we can forward-engineer (derive) forms from the ontology and use
them as a natural-forms query language (e.g., [Emb89]).

Finally, we must make all of this scale globally. It is not enough to be able to
return answers to user queries and to point them to a source page showing that
the answer accurately reflects the facts as recorded on the pages. We also have to
return answers in real time. Users are not patient enough to tolerate long delays

Lecture Notes in Computer Science 9

in receiving answers to what they perceive as a simple question. To this end, we
must define and build tools to process queries quickly. First, we cache all pages we
annotate.4 Second, we have defined semantic indexing [AMELT07], with which
we expect to be able to quickly find applicable ontologies for user queries, which
is likely the key bottleneck in the process. To pursue this further, we are inclined
to follow the lead of modern search engines—to fully exploit massive parallelism
and expansive data stores. In our research environment, however, we will not be
able to build a full-scale system; we can, however, build prototypes that show
the way and provide technical answers to make it work.

3 WoK Tools

Although we have not yet built the full set of tools we envision, we have developed
some prototypes. In Section 3.1 we briefly describe our ontological/epistemolo-
gical tools, and in Section 3.2 we briefly describe our query tools. In doing so,
we emphasize again the central role of conceptual modeling.

3.1 Ontology/Epistemology Creation Tools

Automatic ontology/epistemology creation requires source documents that em-
body both the conceptual structure of the knowledge as well as the facts embed-
ded in the structure. Automatic creation of a populated ontology then becomes a
reverse-engineering process. Researchers in the conceptual-modeling community
have worked on reverse-engineering structured data into conceptual models for
many years (e.g., [Alh03,CBS94,LCWA07]). Web pages, however, normally in-
clude neither relational tables nor any other standard database structure. Can we
extend these reverse-engineering techniques to data laid out in arbitrary, human-
readable forms and tables, or to data laid out as human-readable semi-structured
data, or even to unstructured human-readable data? The answer appears to be
“yes”, but the task becomes increasingly more difficult as the structure of the
input becomes increasingly less structured.

When data is structured in well-known ways, we know which symbols rep-
resent meta-data and which represent data, and we know how the meta-data
relates to the data. When data is structured in less well-known ways, distin-
guishing data from meta-data and relating data and meta-data become more
challenging. Even when data, meta-data, and their interrelationships are known,
the reverse-engineering process is not necessarily straightforward. Reverse map-
pings are typically not unique, so selecting among the plausible solutions can
also be an issue.

In our ontology/epistemology creation tools, we exploit two well-known and
commonly-used information structures: forms and tables. In both cases we take
a particular approach that limits the difficulty of the reverse-engineering process.

4 Indeed we must, for otherwise, we cannot guarantee that our provenance links will
be correct. This implies, by the way, that for sites whose pages change often, we
must have a fully automatic way to re-annotate pages from the site.

10 D.W. Embley, S.W. Liddle, and C. Tao

For forms, we choose to stay within the bounds of well understood form fields in
everyday use, and we establish in advance how we will reverse-engineer each type
of form field as well as each combination of form fields. We call our form-based
tool FOCIH (Form-based Ontology Creation and Information Harvesting). For
tables, we consider only HTML tables, and, in particular, only HTML tables
in sibling pages—machine-generated pages each laid out in the same way. We
call our table-interpretation tool TISP (Table Interpretation in Sibling Pages),
and we augment its name to TISP++ when we refer to an extension of TISP
that builds and populates ontologies from interpreted tables. We now describe
FOCIH and TISP/TISP++.

FOCIH

FOCIH is a tool that lets users specify ontologies without having to know
any conceptual-modeling language or ontology language [Tao08]. We observe
that forms are a natural way for humans to collect information. As an everyday
activity, people create forms and ask others to fill in forms so that specified
information can be gathered. Believing that users can specify and fill in forms,
we let users create their own forms to describe information they wish to harvest.
Once defined, users can fill in forms from web pages by copy and paste. From
these user actions, FOCIH generates an ontology and annotates the web page
with respect to the ontology. Further, if the web page is machine-generated and
has sibling pages, FOCIH is able to harvest the specified information from all
the sibling pages, usually without further user intervention.

FOCIH’s form-creation mode provides users with a way to define different
kinds of form features. FOCIH has five basic form-field elements from which
users can choose: single-label/single-value, single-label/multiple-value, multiple-
label/multiple-value, mutually-exclusive choice, and non-exclusive choice. Fig-
ure 4 shows an example of form creation in our prototype implementation.5 To
create a form, users click on form-field icons to say which type of form field they
want and then click on the pencil icon and type in a name to provide a label
for the form field. By clicking on the plus icon, users can extend the number
of columns in a multiple-label/multiple-value form field and can extend choice
elements to have has many choices as desired. In Figure 4 the only plus-icon ap-
pears with Accessory, the last choice for Feature. Clicking on the plus-icon would
allow a user to add another feature category, for example, for safety features or
anti-theft features. Finally, observe in Figure 4 that form-field icons appear in-
side every elementary form field; this lets users construct forms with form fields
nested as deeply as desired.

As an example, suppose we wish to buy a car. We can let FOCIH harvest
the information we wish to consider and then query the harvested information
to find cars we may want to buy. We let Car be the title for the base form as
Figure 4 shows. For each car we want to harvest the Year, Make, Model, and

5 We note that our implementation is only a research prototype. A more intuitive in-
terface can be built; our focus in the prototype is form-creation functionality leading
to an ontology, plus automated information harvesting.

Lecture Notes in Computer Science 11

Fig. 4. A Sample Form.

Mileage. Since each car has only one year, make, model, and mileage, we choose
single-value form fields for each as Figure 4 shows. We also want car colors; since
a car may have more than one color, we let Color be a single-label/multiple-value
form field. A car may have several features of interest, which we wish to think
of as Body features, Engine features, and Accessory features. To accommodate
these specializations of Feature, we add an exclusive choice field—“exclusive”
because any particular feature can only be in one of the specializations. Further,
because for each feature category we can have several features in the category,
we nest a single-label/multiple-value form field in each. Of course, we also want
to know how much the owner expects the buyer to pay for the car, so we add a
Price single-value form field at the end. Figure 4 shows the resulting form.

FOCIH’s form-fill-in mode lets users browse to a web page they wish to
annotate and copy and paste values into form fields. A user highlights values in
the web page and then clicks on the form field to fill in a value. Figure 5 shows

12 D.W. Embley, S.W. Liddle, and C. Tao

Fig. 5. A Filled in Form with a Source Data Page.

the price $6,990 highlighted and entered in the Price form field. To add several
values to a multiple-value field, a user adds each to the field one at a time. The
values “4 Cylinder”, “Gasoline”, and “Automatic” for example are all Engine
features. To concatenate values that may be separate such as “Altima SL” and
“Black Interior” in Figure 5, a user adds subsequent components by clicking on
the plus icon instead of the pencil icon.

From the filled-in form, FOCIH can generate both a conceptual model, even-
tually to be represented as an OWL ontology, and an annotation document,
eventually to be represented as RDF triples. Further, FOCIH also records the
annotation information: (1) paths to leaf nodes in the DOM tree of an HTML
page containing each value and, for concatenated values, each value component;
(2) for each value the most specific instance recognizer from the data-frame li-
brary (e.g., string, number, year, make, model, color); and (3) enough left, right,
and delimiter context within each leaf node to identify the value or values within
the DOM-tree node. This enables FOCIH to harvest the same information from
all machine-generated sibling pages from the same web site.

Details about our implementation of FOCIH are elsewhere [Tao08]. Since we
are focusing in this paper on the role of conceptual modeling in our WoK tool set,
be briefly explain here how FOCIH generates a conceptual model from a form
specification. Figure 6 graphically shows the result of converting the form in
Figure 4 to a conceptual model. We limit our explanation here to the generation
of the features in this conceptual model.

Lecture Notes in Computer Science 13

Car

Model

Feature

Body Accessory

Engine

Color

Price

MileageMake

Year Car

Model

Feature

Body Accessory

Engine

Color

Price

MileageMake

Year

Fig. 6. Graphical View of the FOCIH-Generated Ontology.

A form title (e.g., Car in Figure 4) becomes a non-lexical object set (e.g.,
Car in a solid box Figure 6). Object identifiers represent values in non-lexical
object sets (i.e., for each car, we generate an OID). A single-value field becomes
a lexical object set functionally dependent on the object set of its enclosing
form field. Thus, Year, Make, Model, Mileage, and Price are all lexical object
sets (enclosed in dashed boxes, as opposed to solid boxes for non-lexical object
sets), and each depends functionally on Car, the enclosing form field. As Fig-
ure 6 shows, we denote a functional relationship set with an arrow connecting
a domain object set on the tail side to a range object set on the head side. A
single-label/multiple-value field like Color in Figure 4 becomes a lexical object
set linked non-functionally to the object set of its enclosing form field as Figure 6
shows. Because Feature is a choice form field, it is the generalization object set
of a generalization/specialization. Its specializations are single-label/multiple-
value form field, which implies the possibility of several features for each car and
thus that the connecting relationship set between Car and the root generaliza-
tion Feature should be many-many. Since no nested form field appears inside
Feature itself (i.e., nested form fields only appear inside its specializations), all
the values are in the specializations and therefore the union of the values in the
specializations constitutes the values in the generalization. Hence, along with
the choice being exclusive, this implies a partition constraint—the specialization
object sets are mutually exclusive and their union constitutes all the values.
The symbol] in the triangle in Figure 6 asserts that the specialization object
sets Body, Engine, and Accessory partition the generalization object set Feature.
Figure 6 faithfully represents all form-implied object sets, relationship sets, and
implied constraints over the values in these object and relationship sets.

We note, however, that form specification, as provided in FOCIH, fails to
provide some constraints. FOCIH provides no way to specify reverse cardinal-
ity constraints. We do not know from the form alone, for example, whether
any single-value field or any combination of single-value fields constitutes a key
for Car. FOCIH also fails to provide for mandatory/optional constraints. The
mileage, for example, may not be listed in some car ads, and some car ads list
no features. It is the form specification, not the underlying conceptual-modeling
language that imposes these limitations. Potentially, we could augment the set

14 D.W. Embley, S.W. Liddle, and C. Tao

of form features to allow a form creator to specify additional constraints—but
at the expense of complicating form specification and likely losing the intuitive
correspondence between FOCIH forms and forms in common usage. Thus, in the
interest of maintaining simplicity, we do not add additional notation to FOCIH
forms to capture these constraints or to capture other more advanced features
of conceptual models. We do point out, however, that for some constraints, we
can observe the data and adjust to what we see as we harvest information. For
example, if we obtain enough evidence to conclude that a value in a form field
uniquely identifies an object, we can infer that the form-field values are keys
for the objects identified. We also point out that for the purpose of annotat-
ing web pages, neither reverse cardinality constraints nor optional/mandatory
constraints matter very much, if at all.

With the conceptual model generated and the data harvested from web pages
with respect to the conceptual model, it is straightforward to generate an OWL
ontology and RDF triples. In addition to the data, the RDF triples include
annotation information: references to source pages and to each data item or
data-item component within the source pages.

TISP/TISP++

TISP is a tool that interprets tables in sibling pages [Tao08]. To interpret a
table is to properly associate table category labels with table data values. Using
Figure 2 as an example, we see that Identification, Location, and Function are la-
bels for the large rectangular table. Inside the right cell of the first row is another
table with headers IDs, NCBI KOGs, Species, etc. Nested inside of this cell are
two tables, the first with labels CGC name, Sequence name, Other name(s), WB
Gene ID, Version and the second with labels Gene Model, Status, Nucleotides
(coding/transcript), Protein, and Amino Acids. Most of the rest of the text in
the large rectangular table comprises the data values. We associate labels with
data values by observing the table structure. A cell in a table associates with
its header label (or labels in the case of multi-dimensional tables). For nested
tables, we trace the sequence of labels from data cell to the outermost label.
Thus, for example, the associated label for the sequence-name value F18H3.5 is
the sequence of labels Identification, IDs, and Sequence name.

Although automatic table interpretation can be complex, if we have another
page, such as the one in Figure 7, that has essentially the same structure, the
system can usually obtain enough information about the structure to make au-
tomatic interpretation possible. We call pages that are from the same web site
and have similar structures sibling pages.6 The two pages in Figures 2 and 7 are
sibling pages. They have the same basic structure, with the same top banners
that appear in all the pages from this web site, with the same table title (Gene
Summary for some particular gene), and a table that contains information about
the gene. Corresponding tables in sibling pages are called sibling tables. If we

6 Hidden-web pages are usually generated dynamically from a pre-defined templates in
response to submitted queries; therefore they are usually sibling pages. Quite often
hidden-web pages display their data in tables.

Lecture Notes in Computer Science 15

Fig. 7. Sibling Page.

compare the two large tables in the main part of the sibling pages, we can see
that the first columns of each table are exactly the same. If we look at the cells
under the Identification label in the two tables, both contain another table with
two columns. In both cases, the first column contains identical labels IDs, NCBI
KOGs, ..., Gene Model Remarks. Further, the tables under Identification.IDs also
have identical header rows. The data rows, however, vary considerably. Generally
speaking, we can look for commonalities to find labels and look for variations to
find data values.

Although we look for commonalities to find labels and look for variations to
find data values, we must be careful about being too strict. Sometimes there
are additional or missing label-value pairs. The two nested tables whose first
column header is Gene Model in Figures 2 and 7 do not share exactly the same
structure. The table in Figure 2 has five columns and three rows, while the table
in Figure 7 has six columns and two rows. Although they have these differences,
we can still identify the structure pattern by comparing them. The top rows

16 D.W. Embley, S.W. Liddle, and C. Tao

in the two tables are very similar. Observe that the table in Figure 7 only has
an additional Swissprot column inserted between the Protein and Amino Acids
columns. It is still not difficult, however, to tell that the top rows are rows for
labels.7

Given that we can interpret a table—find labels and values and properly
associate them—our next task is to infer the general structure pattern of the
table. Does the table have its labels across the top—as does the OnlineAthens
table in Figure 1? Or, are the labels row headers—as are the labels in the table
in the “2003 Nissan Altima” page in Figure 1? Or, does the table have both row
and column headers? Or, is the table even more complex, having for example,
tables nested inside one another such as the tables in Figures 2 and 7 or tables
with labels that are implied or are in a tree structure? As implemented, TISP
works only with tables that have labels as row headers, column headers, or
both row and column headers where the row headers can be treated as values.
Additionally, our TISP implementation works with tables having these structure
patterns when they are nested inside one another.8

Observe that the structure patterns TISP can process are also structure pat-
terns for FOCIH forms. We can therefore immediately generate an OSM ontology
in the same way we generate an OSM ontology for FOCIH. Further, based on
the TISP interpretation of the tables, we can also immediately populate the on-
tology and thus annotate the data. We call these additions to TISP, TISP++.
Figure 8 shows part of the ontology TISP++ generates for the sibling tables in
Figures 2 and 7. Observe, for example, that nested under Location are three
single-label/single-value location attributes—Genetic Position, Genomic Posi-
tion, and Genomic Environs, the first two of which have values and the last of
which has none. Thus, from the Location object set in Figure 8 emanate three
functional relationship sets to these attributes, the last of which has optional par-
ticipation. The non-functional relationship set between Identification and Gene
models arises because a multiple-value form field—the nested table with labels
Gene Model, ..., Amino Acids—appears as the only field nested in its outer struc-
ture, Gene models. This is similar to the nesting of the multiple-value form fields
nested in Feature in Figure 4. The relationship between Identification and IDs,
however, is functional because the (degenerate) table nested under IDs has only
one data row in all known tables, and TISP++ therefore treats the degenerate
table as a sequence of single-label/single-value form fields.9

7 In our implemented TISP prototype, in addition to discovering the structure pattern
for a web site, we also dynamically adjust the pattern if the system encounters a table
that varies from the pattern. For example, if we had not seen the extra Swissprot
column in our initial pair of sibling pages, TISP would add Swissprot as a possible
label for the table when encountering it.

8 Processing more complex structure patterns requires semantic enrichment proce-
dures [Lyn08], which rely on semantic resources such as WordNet [Fel98].

9 As TISP++ processes the sibling pages of a site, it may observe that in other sibling
tables, the table nested under IDs is not degenerate. In this case, it would adjust
the ontology, making the relationship from Identification to IDs non-functional.

Lecture Notes in Computer Science 17

......
...

... ...

...

Genomic Position

GeneModelsNCBI KOGs

SwissprotGene Model

Genomic EnvironsGenetic Position

Other namesSequence nameCGC name

IDs

Identification Location

WormBase

Fig. 8. Graphical View of the TISP++-Generated Ontology.

Because of the isomorphic relationship between TISP tables and FOCIH
forms, it is also possible to directly generate FOCIH forms. This leads to the
possibility that users can enhance the TISP++-generated ontology. Users may,
for example, wish to rename the system-chosen name WormBase with Gene—a
more meaningful name for the root element of the ontology. Users may also wish
to make the relationship set from IDs to Other names non-functional and show
FOCIH, by example, how to recognize the list of other names, so that the names
XO136 and NM 077855 in Figure 2 would be picked up out of the data cell and
stored as individual names.

With or without any adjustments to the TISP++-generated ontology, we are
able to generate an OWL ontology and RDF triples. Again, as with FOCIH, we
also have all the annotation information we need about the pages and the data
items within the pages in a generated RDF file.

3.2 Query Tools

Given a generated file of RDF triples, we are immediately able to query the
file using SPARQL. For typical, untrained users, however, we need a better way
to query a WoK. Like current queries to web search engines, WoK queries will
likely migrate to free-form text. Further, the free-form text is likely to be cryptic,
keyword-based, and non-grammatical; an example is the query in Figure 3. How
can we accept this kind query as input and produce a SPARQL query as output?

We base our approach on extraction ontologies. The essence of the idea is to
(1) extract constants, keywords, and keyword phrases in a free-form query; (2)
find the ontology that matches best; and (3) embed the query in the ontology
yielding (3a) a join over the relationship-set paths connecting identified concepts,
(3b) a selection over identified constants modified by identified operators, and

18 D.W. Embley, S.W. Liddle, and C. Tao

(3c) a projection on mentioned concepts. Both AskOntos [Vic06] and SerFR
[AM07] implement this basic approach to free-form query processing.10

As a key feature of extraction ontologies, the concepts each have an associated
data frame. A data frame describes information about a concept—its external
and internal representations, its contextual keywords or phrases that may indi-
cate the presence of an instance of the concept, operations that convert between
internal and external representations, and other manipulation operations that
can apply to instances of the concept along with contextual keywords or phrases
that indicate the applicability of an operation. Figure 9 shows sample (partial)
data frames for the concepts Price and Make for the ontology in Figure 6. As
Figure 9 shows, we use regular expressions to capture external representations.
The Price data frame, for example, captures instances such as “$4500” and
“17,900”. A data frame’s context keywords are also regular expressions. The
Price data frame in Figure 9, for example, includes context keywords such as
“asking” and “negotiable”. In the context of one of these keywords in a car ad,
if a number appears, it is likely that this number is a price. The operations
of a data frame can manipulate a concept’s instances. For example, the Price
data frame includes the operation LessThan that takes two instances of Price
and returns a Boolean. The context keywords of an operation indicate an opera-
tion’s applicability; context keywords such as “less than” and “<”, for example,
apply to the LessThan operation. Sometimes external representations are best
described by lexicons. These lexicons are also regular expressions—simple lists of
possible external representations—and can be used in place of or in combination
with other regular expressions. In Figure 9, CarMake.lexicon is a lexicon of car
makes, which would include, for example, “Toyota”, “Honda”, and “Nissan” and
potentially also misspellings (e.g. “Volkswagon”) and abbreviations (e.g. “Chev”
and “Chevy”).

We can apply an extraction ontology to obtain a structured representation
of the unstructured information in a relevant document. For example, given that
we have added data frames to the ontology in Figure 6, making it an extraction
ontology, and given a car ad such as the first Nissan ad in the City Weekly page
in Figure 1:

’93 NISSAN Model XE, $900, Air Conditioning, new tires, sweet cherry red.
For listings call 1-800-749-8104 ext. V896.

we can extract “’93” as the Year, “NISSAN” as the Make, “XE” as the Model,
“$900” as the Price, “red” as the Color, and both “Air Conditioning” and “new
tires” as Accessorys. As part of the extraction, the conversion routines in the
data frames convert these extracted values to canonical internal representations,
so that, for example, “’93” becomes the integer 1993 and “$900” becomes the
integer 900.

10 SerFR builds on AskOntos by expanding its options to recognize more complex
operations and to provide for advanced query specification and resolution. Further,
SerFR can also link directly to web services.

Lecture Notes in Computer Science 19

Price
internal representation: Integer
external representation: \$?(\d+ | \d?\d?\d,\d\d\d)
context keywords: price | asking | obo | neg(\.|otiable) | ...
...
LessThan(p1: Price, p2: Price) returns (Boolean)
context keywords: less than | < | or less | fewer | ...
...

end

Make
external representation: CarMake.lexicon
...

end

Fig. 9. Sample Data Frames.

Now, consider the sample query in Figure 3 and assume that the ontology
in Figure 6 is an extraction ontology—i.e. is augmented with data frames as
illustrated in Figure 9. When we apply this extraction ontology to the query, the
extraction ontology recognizes the highlighted strings in the query (see Figure 3).
It recognizes “red” as a possible value for the Color object set, “Nissan” for
Model, “$5000” for Price, “1990” for Year, and, with the aid of the recognized
keyword “miles”, “120K” as a Mileage. The conversion routines in the data
frames normalize all these values, making the numbers integers, converting “red”
to its RGB value, and standardizing car makes to have initial capital letters
(no change to the string “Nissan” in this case). The extraction ontology also
recognizes “under” as the less-than operator for Price, “or newer” as the greater-
than operator for Year, and “less than” as the less-than operator for Mileage.
From this extracted information along with the known ontological structure of
the data provided by the generated OWL ontology and the data itself provided
by the RDF triples, it is straightforward to generate a SPARQL query. In essence,
the query searches for cars that satisfy the following constraints:

Year ≥ 1990
Make = ‘Nissan’
Mileage ≤ 120000
ColorWithinRange(255,0,0)
Price ≤ 5000

Because we are processing queries under an open- rather than a closed-world
assumption, we generate the SPARQL query with OPTIONAL clauses allowing
it to return cars that, for example, have no color specified or no mileage specified
so long as they meet the requirements for the fields where values do appear.

20 D.W. Embley, S.W. Liddle, and C. Tao

4 Conclusion

This work presents a grand vision of a “Web of Knowledge” (a “WoK”)—a vi-
sion that others share [BL07]. A major barrier to realizing this vision is the
overwhelming amount of human effort that appears to be required both for cre-
ating and querying WoK content. To surmount this barrier, we have described
ontological and epistemological creation tools to significantly reduce or totally
eliminate the barrier to creating WoK content, and we have described a query
tool usable by anyone. FOCIH allows users with no training to specify simple
ontologies and to annotate web pages with respect to these ontologies. FOCIH
can also annotate and harvest specified information from all sibling pages of an
initial hand-annotated web page. TISP/TISP++ uses sibling tables to interpret
tables and from interpreted tables to generate ontologies and to annotate the
information in these interpreted tables with respect to these generated ontolo-
gies. TISP/TISP++ is fully automatic, but is limited to information captured
in sibling tables. AskOntos and SerFR provide for free-form query processing.
And, although SerFR supports an advanced query interface for sophisticated
users, less sophisticated users (most people) can only pose conjunctive queries
and must limit their vocabulary to words, phrases, and symbols recognized by
data frames associated with ontologies.

Conceptual modeling plays a key role in actualizing these ideas. An ontology
is a conceptualization of a real-world domain in terms of object sets, relationship
sets, generalizations, specializations, and constraints over these conceptualiza-
tions. Indeed an ontology can be thought of as a conceptual model grounded
formally in a logic system. Automatic and semi-automatic ontology generation
from data-rich, semi-structured web pages is akin to reverse engineering struc-
tured data into conceptual models—a task that has traditionally been associated
with the conceptual-modeling community. Automatic and semi-automatic anno-
tation of web pages can proceed bottom-up, occurring as a by-product of on-
tology generation via reverse engineering. Or annotation can proceed top-down,
coming from extraction ontologies in which instance recognizers attached to con-
ceptual object sets and relationship sets extract data on web pages with respect
to conceptual models comprising these object and relationship sets. In either
case, conceptual modeling plays the role of organizing this knowledge. For query
processing, conceptual models grounded in description logics form a template to
which free-form queries can be matched to yield formal queries to be processed
by standard query engines.

Opportunities for future work abound. And many of these opportunities are
best approached through conceptual modeling. Related to FOCIH, we see the
following:

– Many OWL ontologies and ontologies in other structured forms already exist.
We should be able to reverse-engineer them into FOCIH forms, which would
immediately allow users to annotate web pages with respect to these existing
ontologies. Users should also be able to alter these reverse-engineered forms
and thus tailor them to suit their needs. Tailoring can also be a joint venture,
which provides means for cooperative knowledge definition.

Lecture Notes in Computer Science 21

– Structured data repositories also already exist. We should also be able to
reverse-engineer them into FOCIH forms. Further, we should be able to
capture and annotate their data as well.

– Given an extraction ontology, in addition to being able to reverse-engineer it
into a FOCIH form, we should also be able to use the extraction ontology to
automatically do the initial form fill-in. A user could correct any annotation
mistakes the augmented FOCIH system might make and complete the form
fill-in for any data items it might miss. Information harvesting could then
proceed with minimal user intervention—ideally, none at all.

Related to TISP/TISP++, we see the following:

– TISP only interprets HTML tables. In principle, the ideas should apply to
all tables, including Microsoft Word tables, Excel tables, and PDF tables, in
which vast amounts of data appear.

– The idea of using sibling tables to identify category labels, data, and the
relationships between category labels and data should extend beyond tables
to semi-structured sibling pages in general. We should be able to identify
and interpret lists and patterned layout as well as tables by sibling-page
comparison.

– Because TISP works with HTML tables, which typically have simple label
structures, it does very little to semantically enrich the tables it interprets.
By considering semantic lexicons such as WordNet [Fel98] and other seman-
tic resources such as a data-frame library, it is possible to considerably enrich
interpreted tables by identifying generalizations, specializations, and aggre-
gations within label structures and discovering constraints and interrelation-
ships among data items not initially apparent in the data and meta-data of
an interpreted table [Lyn08].

Related to free-form queries, we see the following:

– Often, even when users are unable to find the “right” vocabulary for making
requests, a WoK system should be able to find an appropriate ontology. This
ontology provides context for an interaction between system and user. We
could exploit this context by exposing the vocabulary of the ontology and
thereby allowing users to find the “right” words with which to ask their
questions. It is also possible to generate, on the fly, a standard query form
based on the ontology. Users should be able to fill in this form, as users do
for typical HTML forms, to pose their queries. These forms would include
drop-down selection lists for form entries with a short list of possibilities,
range queries for ordered types, and facilities for more complex queries such
as disjunctive queries and queries with negation.

– We can further explore advanced query specification. We could, for example,
explore the use of natural-language processing techniques for generating logic
statements [Rus04].

– It is possible to linguistically ground reasoning rules so that they too can play
a role in free-form query processing. Further, then, in addition to providing

22 D.W. Embley, S.W. Liddle, and C. Tao

provenance for extracted facts by allowing users to click on results to see
original sources, we can also provide provenance for inferred facts by exposing
and explaining reasoning chains and showing how they eventually resolve into
extracted facts.

Related to a data-frame library, we see the following:

– As FOCIH and TISP (or any other annotation technique) runs, we can en-
hance data frames. Data frames commonly have lexicons, and as new values
are annotated, they can be added to these lexicons. For example, as new
makes and models of cars become annotated, the envisioned WoK system
can automatically add them to existing make and model lexicons.

– As FOCIH and TISP (or any other ontology-generation technique) creates
ontologies, the envisioned WoK system could extract reusable knowledge
components and store them in the data-frame library. For example, it is
common to informally see car models as concatenations of what is techni-
cally the model and what is technically called the trim. (See Figure 1, which
shows the model and trim in accord with these technical terms.) To accom-
modate both, a molecular-size knowledge component can describe Model as
the aggregate concatenation of Model and Trim. In general, having a large
collection of these molecular-size components in the data-frame library would
aid in semantic enrichment and instance recognition.

We are implementing our WoK prototype with a MySQL backend database
and programs written in Java. Currently, we have completed an initial imple-
mentation of FOCIH, TISP, and TISP++ as described here, and we have imple-
mented them so that they run smoothly together with other tools such as OWL
ontology generators, RDF instance generators, and a SPARQL query engine.
We have also separately implemented prototypes for AskOntos and SerFR, and
we have integrated a basic AskOntos query engine into our WoK prototype. In
addition, we have established a data-frame library, but we have only begun to
populate it with useful atomic and molecular-size data frames. Earlier versions
of our extraction ontologies have been separately implemented. Currently, we are
upgrading and integrating these prototypes into our WoK prototype. We have
accomplished much, but, as always, there is much more to do.

References

[AK07] R. Al-Kamha. Conceptual XML for Systems Analysis. PhD dissertation,
Brigham Young University, Department of Computer Science, June 2007.

[Alh03] R. Alhajj. Extracting the extended entity-relationship model from a legacy
relational database. Information Systems, 28(6):597–618, 2003.

[AM07] M.J. Al-Muhammed. Ontology Aware Software Service Agents: Meeting
Ordinary User Needs on the Semantic Web. PhD dissertation, Brigham
Young University, Provo, Utah, August 2007.

[AMELT07] M.J. Al-Muhammed, D.W. Embley, S.W. Liddle, and Y. Tijerino. Bring-
ing web principles to services: Ontology-based web services. In Proceedings

Lecture Notes in Computer Science 23

of the Fourth International Workshop on Semantic Web for Services and
Processes (SWSP’07), pages 73–80, Salt Lake City, Utah, July 2007.

[BCL06] P. Buitelaar, P. Cimiano, and B. Loos. Preface. In Proceedings of the
2nd Workshop on Ontology Learning and Population: Bridging the Gap
Between Text and Knowledge, (COLING-ACL 2006), Sydney, Australia,
July 2006.

[BL07] T. Berners-Lee. Future of the world wide web, March 2007. Testimony
of Sir Timothy Berners-Lee Before the United States House of Represen-
tatives Committee on Energy and Commerce Subcommittee on Telecom-
munications and the Internet.

[BN03] F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Cal-
vanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors, The
Description Logic Handbook, chapter 2, pages 43–95. Cambridge Univer-
sity Press, Cambridge, UK, 2003.

[CBS94] R.H.L. Chiang, T.M. Barron, and V.C. Storey. Reverse engineering of rela-
tional databases: Extraction of an EER model from a relational database.
Data and Knolwedge Engineering, 12(1):107–142, 1994.

[DEL06] Y. Ding, D.W. Embley, and S.W. Liddle. Automatic creation and simpli-
fied querying of semantic web content: An approach based on information-
extraction ontologies. In Proceedings of the First Asian Semantic Web
Conference (ASWC’06), pages 400–414, Beijing, China, September 2006.

[ECJ+99] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale,
Y.-K. Ng, and R.D. Smith. Conceptual-model-based data extraction from
multiple-record web pages. Data & Knowledge Engineering, 31(3):227–251,
1999.

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems
Analysis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New
Jersey, 1992.

[Emb89] D.W. Embley. NFQL: The natural forms query language. ACM Transac-
tions on Database Systems, 14(2):168–211, 1989.

[EZ10] D.W. Embley and A. Zitzelberger. Theoretical foundations for enabling
a web of knowledge. In Proceedings of the Sixth International Symposium
on Foundations of Information and Knowledge Systems (FoIKS’10), pages
211–229, Sophia, Bulgaria, February 2010.

[Fel98] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, Massachussets, 1998.

[Foo07] Footnote.com. http://www.footnote.com, 2007.

[Gru93] T.R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

[Gua98] N. Guarino. Formal ontologies and information systems. In N. Guarino,
editor, Proceedings of the First International Conference on Formal On-
tology in Information Systems (FOIS’98), pages 3–15, Trento, Italy, June
1998.

[Hal95] T. Halpin. Conceptual Schema & Relational Database Design. Prentice
Hall of Australia Pty. Ltd., Sydney, Australia, second edition, 1995.

[Jar07] M. Jarrar. Towards automated reasoning in ORM schemes: Mapping ORM
into DLRidf description logic. In Proceedings of the 26th International
Conference on Conceptual Modeling (ER’07), pages 181–197, Auckland,
New Zealand, November 2007.

24 D.W. Embley, S.W. Liddle, and C. Tao

[LCWA07] N. Lammari, I. Comyn-Wattiau, and J. Akoka. Extracting generaliza-
tion hierarchies from relational databases: A reverse engineering approach.
Data & Knowledge Engineering, 63(2):568–589, 2007.

[Lyn08] S. Lynn. Automating mini-ontology generation from canonical tables.
Master’s thesis, Department of Computer Science, Brigham Young Uni-
versity, Provo, Utah, 2008.

[Rus04] V. Rus. A first evaluation of logic form identification systems. In R. Mihal-
cea and P. Edmonds, editors, Senseval-3: Third International Workshop
on the Evaluation of Systems for the Semantic Analysis of Text, pages
37–40, Barcelona, Spain, March 2004.

[Smi03] B. Smith. Ontology. In L. Floridi, editor, Blackwell Guide to the Philosophy
of Computing and Information, pages 155–166. Oxford: Blackwell, 2003.

[SPG+07] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, and Y. Katz. A practical
OWL-DL reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

[Tao08] C. Tao. Ontology Generation, Information Harvesting and Semantic An-
notation for Machine-Generated Web Pages. PhD dissertation, Brigham
Young University, Department of Computer Science, December 2008.

[TEL+05] Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, Y. Ding, and G. Nagy. To-
ward ontology generation from tables. World Wide Web: Internet and
Web Information Systems, 8(3):261–285, 2005.

[Vic06] M. Vickers. Ontology-based free-form query processing for the semantic
web. Master’s thesis, Brigham Young University, Provo, Utah, June 2006.

[W3Ca] OWL Web Ontology Language Reference Manual. www.w3.org/TR/owl-
ref. W3C (World Wide Web Consortium).

[W3Cb] Resource Description Framework (RDF). www.w3.org/RDF. W3C (World
Wide Web Consortium).

[W3Cc] SPARQL Query Language for RDF. www.w3.org/TR/rdf-sparql-query.
W3C (World Wide Web Consortium).

