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ABSTRACT

Data Frame Augmentation of Free Form Queries for Constraint Based

Document Filtering

Andrew Zitzelberger

Department of Computer Science

CS 653

The ever expanding nature of the web makes finding relevant documents increasingly
difficult. Traditional free form query methods, primarily keyword queries, are favored by a
wide array of users but appear inadequate for the task of high precision information retrieval.
Other search models such as form or graphed based models, or those using controlled vocab-
ularies have been proposed but require the user to adapt to the model. These alternative
models work well in domain specific searches or in semantic environments, but have been
met with limited success when searching extremely heterogeneous collections such as the
web.

We have constructed a prototype system that allows users to keep the ease and
familiarity of keyword-like search while improving precision by using limited semantics to
filter through documents. These limited semantics are extracted from queries in the form
numerical constraints. Remaining keywords are then used in a traditional keyword search
fashion to retrieve a result set on which filtering can be applied. This approach demonstrates
a synergistic solution to improved search that lies between the extremes of bag of words and
structured queries. Experimental results indicate that precision is improved for 56% of
queries containing numerical constraints. Furthermore, precision for the prototype is 20%
(62%) higher than the keyword query baseline measured at 42%.

Keywords: Data frame, keyword search, constraint filtering, high precision
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Chapter 1

Introduction

As the number of pages on the web proliferates it becomes increasingly difficult for

users to locate relevant documents. Despite the need to access relevant information quickly,

most search engines do not offer the ability to specify semantics as part of a user’s information

need. Rather, semantic queries are generally issued through form based interfaces which

access the deep web. The sheer size of the deep web (several orders of magnitude larger [6]

than the estimated 11.5 billion indexable web pages [5]) indicates that users are interested

in using semantics to locate relevant information.

Applying queries with semantics to the indexable web is a challenging problem be-

cause the web does not have the advantage of an overarching schema or completely structured

data. This disallows the use of fully structured queries barring a complete extraction and

integration of all web information. Furthermore, the success of companies such as Google

and Yahoo! indicate that users are comfortable using keywords to search the indexable web.

As such, we construct a synergistic solution that combines the simplicity of keyword search

with the effectiveness of semantics. This type of solution allows users to take a step closer

to semantic queries over the indexable web.

For semantics we focus on the extraction and application of numerical constraints.

Numerical constraints are chosen because numerical comparisons apply universally, and be-

cause they are useful for a variety of common web based tasks such as searching for a car

or planning a trip. We define a numerical constraint to be a relational operator containing

one variable and one value. For example, if “car under $5000” was submitted as a query,
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the extracted constraint would be (Price < 5000), where Price is the variable and 5000 is

the numerical value. The value of the variable cannot be determined by the query itself.

Substitutions are made from extracted values in documents when determining relevancy to

query, at which time the constraints can be evaluated.

In this work we present a prototype system that allows the user to input a free form

query and retrieve relevant results with higher precision than a corresponding keyword query.

This is done by extracting semantics from the query in the form of numerical constraints

and enforcing that returned documents satisfy the extracted constraints. We choose the

term free form query to indicate that a query can be any string and need not consist of only

keywords. It is important to note, however, that any free form query can be processed as a

keyword query and vice versa. The prototype system uses keywords to quickly narrow the

search space and then applies the numerical constraints as a final filter.

Data frames [3] are the means by which the semantics are extracted from text. Each

data frame consists of simple recognizers in the form of regular expressions as well as methods

to compare extracted values. The means by which data frames are used for extraction and

comparisons will be explained in Chapter 3. The synergistic approach to combining keyword

search and the semantics provided by data frames is explained in Chapter 4.

Finally, initial experiments on two small test sets taken from the web indicate that

when using queries with extractable constraints the prototype system improves precision

over a keyword baseline for the top three results 56% of the time. Additionally, the data

frame augmentation approach results in 62% precision over the test sets compared to 42%

for the vanilla keyword search. The experiments and details of these results will be presented

in Chapter 5.
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Chapter 2

Related Work

To our knowledge this work is unique in using textual queries to combine keyword

search with constraint based filtering to retrieve relevant documents. However, many similar

attempts have been made to combine keyword queries with the semantics they represent.

SPARK [14] is a system designed to take an arbitrary keyword query as input and return a

structured query that represents the semantics. The system attempts to match the keywords

to the closest concepts in underlying ontologies and then generates a set of ranked query

graphs. Each query graph becomes a query and the user can select the best match to his/her

query to run over the knowledge base. While the SPARK system also attempts to detect

constraints in the keyword query it is fundamentally different than the prototype system

in that it attempts to translate the keyword query into a structured query for use over a

structured knowledge base.

MELISA [1] represents another system that integrates keywords with semantics for

search. MELISA greatly resembles the prototype system in that it performs keyword search

to narrow the search space and then applies filters to remove irrelevant documents. However,

unlike the prototype system, the keyword search field is only one of the query fields required

by MELISA. The user must enter the semantics of the query into specified form-like fields.

As such, the simplicity of the keyword search model is mitigated. Additionally, MELISA has

been designed to work specifically with the structure of MedLine sites for medically related

searches and would need to be modified to work with other document types.
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An approach similar to the prototype system is also presented in [11]. The authors

present a system that again uses keyword search to the narrow the search space. However,

this narrowed search space acts as the starting point for a spread activation algorithm through

underlying domain ontologies. It is possible that results not in the set of documents retrieved

by the keyword search may appear in the final results or vice versa. The system makes no

mention of attempts to handle numerical constraints as defined in this work.

Perhaps the approach most similar to the prototype system is presented in [10]. This

approach also uses keyword search to generate an initial document set and applies further

filtering based on underlying ontological information. However, rather that using constraints

to filter through pages the system re-ranks pages in the initial set using a semantic relatedness

similarity metric.

Other systems which attempt to translate keyword queries directly into their se-

mantics are presented in [13] and [12]. Each of these systems use underlying ontologies

to translate the user’s keyword query into a structured query that can be executed over

a structured knowledge base. Such systems work well as long as the user query contains

recognizable constants, but performance degrades sharply otherwise. The performance of

the prototype system degrades more gracefully as keyword search is used if no constraints

can be extracted.

The prototype system also bears some resemblance to question-answering systems.

In such systems the users enters a fact based question and the answer is returned directly to

the user, without requiring the user to search through pages that might contain the answer.

Question-answering systems attempt to solve a difficult problem and many approaches (e.g.

[8], [2], etc.) have and will be developed. These systems are similar in that they both enforce

constraints based on extracted or inferred values. They differ in that question-answering

systems attempt to understand the full semantics of the query and attempt to return the

answer directly rather than relevant documents. The prototype system also differs in that

it performs well even if the answer to a question cannot be found or does not exist.
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Chapter 3

Data Frames

Data frames are the essential component for extracting semantics from queries and

documents. A data frame is an abstract data type augmented with a name, instance rec-

ognizer for values, and operations to convert and compare those values [4]. These augmen-

tations are represented in the forms of internal representations, external representations,

units, canonicalization methods, and comparison methods. Each of these components work

together to allow the data frame to extract and interact with semantics in a manner that

simple keyword search cannot. Each of these components will be explained in more detail

in the sections below and will refer to the example data frame in Figure 3.1.

3.1 Internal Representation

The internal representation of the data frame refers to how the information extracted by the

data frame will be stored internally. These internal representations must correspond to data

types or classes in the Java programming language. The partial data frame in Figure 3.1

uses Double as the internal representation in order to represent all possible prices.

3.2 External Representation

The data frame’s external representation specifies how relevant values can be found in text.

The external representation must be expressed in Perl 5 regular expression syntax. A data

frame may also provide multiple external representations. Before an extraction step, each

of these external representations will be combined into a larger regular expression with each
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external representation separated by a logical OR. This regular expression is then used to

find matches in the content of a document. These matches become the extracted values.

The partial Price data frame in Figure 3.1 shows a common ways a price might appear in

text. The “...” indicates that many other external representations must be provided in order

to create a more complete Price data frame.

3.3 Units

A data frame may express units that are likely to accompany the external representation.

Units are separated into left units and right units indicating where they are likely to occur

relative to the extracted value. For the Price data frame in Figure 3.1 right units consists of

strings such as “dollars” and “cents”, as well as common abbreviations such as “K”. Note

that “K” is included as a separate unit in the regular expression because it can co-occur

with other units.

3.4 Canonicalization Methods

Canonicalization methods associated with a data frame take the extracted value and the

extracted unit and convert them into a single value with a standard format. For example,

a canonicalization might take the extracted value $15K and store it internally as 15000 for

use in future comparisons. Before a comparison is made the extracted value used to replace

the variable in the constraint is also canonicalized. This conversion process allows users

to ask queries with constraints on the car price using a string like “<15K” and pick up a

relevant document even though the price is expressed as “13 hundred” in that document.

Each data frame contains a pointer to the name of the canonicalization method which is

written in the Java programming language. The partial data frame in Figure 3.1 has the

method “toUSDollars” as its canonicalization method.
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Price
internal representation: Double
external representation: \$[1-9]\d{0,2}(,\d{3})* | ...
...
right units:(K)?\s*(cents|dollars|[Gg]rand|...)
canonicalization method: toUSDollars
comparison methods:
LessThan(p1: Price, p2: Price) returns (Boolean)
external representation: (less than | < | under | ...)\s*{p2} | ...
...

...
end

Figure 3.1: Sample Data Frame for Price.

3.5 Comparison Methods

The final component of interest in the data frame is the comparison methods. These compar-

ison methods are an integral part of this work as they are used for both extracting constraints

from the query and for applying filtering constraints to documents. Comparison methods

include an external representation of how the method might appear in text to facilitate

extraction from the query. The LessThan comparison method in Figure 3.1 looks for text

such as “less than” or “under” to recognize the operation. The operation is extracted if and

only if the parameter p2 can be found with the operator. The method declares p2 to be of

type Price, thus when looking for p2 the external representation of Price will be used. Once

this information is extracted the constraints are created. Note that for this work constraint

extraction is only applied to the query.
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Chapter 4

Data Frame Augmentation

The principal contribution of this work is the process of augmenting keyword search

with constraint based filtering using semantics as interpreted by data frames. In this chapter

we explain the process by which the queries are processed and documents are filtered using

this synergistic approach.

4.1 Data Frame Library

The first essential component to provide data frame augmentation is to have the data frames

themselves. We refer to the data frames used by the system as the data frame library. The

data frame library can consist of data frames for any type of values and can provide any

type of comparison. For this work we construct numerical data frames with universally

understood comparison methods. The specific data frames chosen for the prototype system

are Number, Distance, Price, and Year.

Note that the latter three data frames are all specializations of Number. While the

Number data frame will recognize any number, the specializations can each recognize a more

specific type of number. In the event that there are overlaps in extracted values between

number and any of the other data frames, the specialized data frame will claim the value.

The intuition is that a more specialized data frame will provide a more precise context than a

more general one. Note also that the latter three data frames can apply in multiple contexts.

Distance can refer to the mileage on car, the length of a trip, or the elevation of a mountain.

Price and year can apply to a large subset of purchasable items.
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4.2 Constraint Extraction

After ensuring that a data frame library exists, the first step in query processing is to extract

the constraints from the user provided free form query. The free form query is processed by

each data frame in the library. This is done using by combining the external representations

into a single regular expression as described in Section 3.2. This regular expression then

replaces any parameters in the external representations for each comparison method to create

a final regular expression for each comparison method in each data frame.

These regular expressions are run against the query and any matching values are

removed from the query. The purpose of the constraint text removal is to remove noise

from the query. The words that make up the condition may are unlikely to occur in a large

number of relevant documents. For example the string “less than $15K” will not show up in

a relevant document containing an item with a cost of $13000. After the constraint text is

removed, the query is referred to as the reduced free form query. Note that if no constraints

are extracted from the original query, the reduced free form query will be equivalent to the

original query.

4.3 Keyword Search

After the constraint extraction step, keyword search will be performed using the reduced free

form query. The model for keyword search will perform stemming and remove stopwords

before employing a vector space model type search. If after removing stopwords the query

is the empty string (because the constraint extraction removed everything except for stop-

words), the reduced free form query will be replaced with the original query to ensure that

some results are obtained. The Lucene engine will be used for indexing all test documents

and for performing the keyword search.
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4.4 Data Frame Filter

Documents retrieved after running the reduced free form query will be subjected to filtering

based on the extracted constraints. First each document will be subjected to preprocessing in

order to remove any meta-data or markup. For the web pages used in this project the pages

were stripped of HTML tags. Then the data frames that successfully extracted constraints

from the query will be run against each document. In this case the external representation

of the data frame will be compiled as a regular expression and the contents of document will

be tested for matches. In the event that a match is found, the data frame canonicalization

method will be used to convert it to a standard format and this value will be used to test

against the constraint. The filtering step requires that each constraint extracted from the

query be explicitly passed by at least one extracted value from the document.

4.5 Result Ranking

The initial ranking of results is provided by keyword search using the reduced free form

query. This order is maintained for the final ranking with the exception of that documents

that are deemed non-relevant because they do not pass constraints are removed.

4.6 Output

The output web page displayed to the user provides links to a highlighting script with the

URL to the original document, the conditions extracted from the query, and extracted text

satisfying those conditions passed as arguments. This script highlights the extracted values

enabling the user to quickly determine which text was used to satisfy constraints. In the

event that more than one extracted value satisfies the query, each value will be highlighted

in the text. This might occur, for example, if an advertisement lists prices for multiple items.

The user also has the ability to mouse over that text to see which condition the highlighted

text satisfied. Figure 4.1 shows an example of a highlighted page generated by the script.
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Figure 4.1: Example Highlighted Page.

Test Queries
1) Find me a Wii game.
2) Find me a Honda for under 15 thousand dollars.
3) Roller Coaster more than 150 ft high
4) mountains at least 15K ft
5) games under $25
6) mountains less than 4 km
7) ps games < 40 bucks
8) coasters longer than 1000 feet
9) car for under 5 grand newer than 1990 with less than 115K miles
10) more than 15K miles under 5 grand newer than 2004

Figure 4.2: Test Queries.
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Chapter 5

Experimental Results

In evaluating the prototype system we seek to test the claim of increased precision.

Due to this claim and studies that indicate that a typical user only looks at approximately

the first three documents [7] we record precision over the top three results for a variety of

experiments.

5.1 Experimental Setup

The prototype system was tested using two small test sets created from crawling actual

documents on the web. Each test set contains 50 advertisements each from the car+trucks

and video gaming sections of http://provo.craigslist.org, as well as 25 documents each from

a list of roller coasters and a list of mountains on http://en.wikipedia.org.

The first test set is a development-test set that experimenters had access to while

creating the data frames. The regular expressions for the data frames were tested against

these documents to ensure values were extracted properly. To ensure that the system also

performs well against unseen pages the second test set was withheld as a blind test set. After

data frames were deemed to be sufficiently robust, experiments were run against the blind

test set without allowing experimenters to see the documents before hand.

A set of ten predetermined queries was used to test the system (see Figure 4.2). Note

that the first and last query should both be processed as keyword queries with no increase

in precision. The first because there are no constraints, and the last because there are no
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Figure 5.1: Example of Noise in Documents.

keywords remaining after constraint extraction. This leaves eight queries on which a possible

precision increase may occur.

Each query is processed in three distinct manners. First the entire free form query

is processed as if a keyword query. Second, constraints are removed from the query and the

reduced free form query is used as a keyword query. Finally, the entire system with data

frame augmentation is employed. For each of these methods the precision for the top three

documents is reported.

5.2 Results

The results for the development test set can be seen in Table 5.1. As expected, queries

one and ten showed no difference in precision. For the eight queries containing constraints,

removing the constraints and using keyword search improved the precision in four of the

eight cases (50%). Precision remained the same in two cases and lowered in two cases.

Running the full system with data frame augmentation resulted in improved precision

over keyword search in five of the eight (62.5%) queries containing constraints. In the

remaining three cases the data frame augmentation performed equally well as keyword search.

However, the full system only produced 100% precision for three of the eight (37.5%) of the

time.

The results for the blind-test set can be seen in Table 5.2. For the blind-test set

removing constraints from the original query made virtually no difference in precision results

as six of the eight (75%) of the queries showed no difference in precision. For the two

remaining queries one improved and one decreased. The full system improved for four of the

13



Query Keyword Query Reduced Query Data Frame Augmented Query
1 0.33 0.33 0.33
2 0.67 1.00 1.00
3 0.33 0.33 0.67
4 1.00 0.67 1.00
5 0.00 0.33 0.67
6 0.00 0.00 0.33
7 0.33 0.00 0.33
8 0.33 1.00 1.00
9 0.33 0.33 0.67
10 0.00 0.00 0.00

Table 5.1: Precision@3 for development-test set.

Query Keyword Query Reduced Query Data Frame Augmented Query
1 0.67 0.67 0.67
2 0.67 1.00 1.00
3 0.67 0.67 0.67
4 0.33 0.33 0.67
5 0.67 0.67 1.00
6 0.00 0.00 0.00
7 0.33 0.33 0.33
8 0.67 0.67 1.00
9 0.67 0.00 0.67
10 0.33 0.33 0.33

Table 5.2: Precision@3 for blind test set.

eight queries (50%) and remained the same for other four. The system only obtained 100%

precision for three of the queries.

Overall the data frame augmentation approach performed significantly better than

the keyword search baseline (see Figure 5.3). The keyword query approach achieved about

42% precision while the prototype system obtained about 62% precision. Studies indicate

that users expect about 50% precision from keyword search in the top three results [7]. The

12% increase over this expectation thus represents significant potential for this approach.

Furthermore, the prototype results in increased precision for 56% of the queries.
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Precision@3/Query Type Keyword Query Reduced Query Data Frame Augmented Query
Dev-Test Queries 33% 40% 60%
Blind-Test Queries 50% 46% 63%
Overall 42% 43% 62%

Table 5.3: Summary Precision Comparison.

5.3 Issues

In evaluating the precision of the prototype system two issues were discovered that lead to

less than perfect precision. The first issue is that the keyword search does not rank results

adequately or does not retrieve all of the relevant documents for filtering. This is most

noticeable for the query “ps games under $25.” A domain specific search engine or a user

with knowledge would recognize “ps” as refering to playstation. However, a simple keyword

search engine does not recognize that this is referring to same concept. As such, the filtering

begins with documents that do not necessarily meet the playstation requirement but pass

the filter because they contain a price under $25.

The second reason for receiving less than perfect results is the presence of other

numbers on the page that strictly satisfy the constraint but do not satisfy what the user

is actually looking for. For example, one document stated that there was less than 3000

miles on the tires (see Figure 5.1). The filter picked up the 3000 miles as satisfying the

constraint of being under 115K miles and allowed the page to pass despite the fact that

elsewhere on the page it says the car has 127K miles on it. This problem was more prevalent

when dealing with the roller coaster documents. These documents often contained distance

information about the length, height, drop, and even elevation of the amusement park in

which the reside, not to mention historical information. As such, it was often possible that

some of these distance measures could satisfy the constraint even though it was not relevant

to the user.

It is also worth noting that the reduced keyword query occasionally performs worse

than the original keyword query. The lowering of precision usually occurred in cases where
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the noise from the constraint text actually helped find relevant documents. For example, for

the query “games < 40 bucks”, one of the relevant documents contained the word “bucks”

and was picked up by the original free form query but not by the reduced free form query.

It is not clear whether using the reduced query is actually beneficial, although this opens

avenues for further study.
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Chapter 6

Conclusions and Future Work

We have developed a prototype system that combines traditional keyword search and

limited semantics in order to obtain higher precision results for the class of queries that

contain numerical constraints. This system works by extracting constraints from the query

through the use of data frames, performing a keyword search using non-extracted words, and

filtering the returned document set using the numerical constraints. Experimental results

indicated that for queries with numerical conditions this approach increases precision for 56%

of the queries. Furthermore, there is a 20% difference in the precision between the keyword

baseline and the data frame augmented search (42% and 62% respectively). Additionally,

this system causes no degradation in performance to queries with no numerical conditions.

6.1 Future Work

While this shows great promise there is still much work yet to do. This work demonstrates

that there is value for filtering on simple numeric constraints but there are many other types

of constraint of interest to a user. Further research is needed on how well other constraints can

perform in combination with keyword search. Additionally, the trade offs between precision

and recall are ignored in this work but offer ample research opportunities, especially as more

sophisticated filters can be developed.

Furthermore, there are other issues to consider in actually employing such a system.

Each data frame must be run against the query. As the number of data frames increases

overhead is added that will slow down the processing time. Further research is needed
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on method to reduce this overhead by only running data frames that are likely to extract

constraints rather than the full set.

Additionally, the prototype performs the extraction required for filtering documents

at query execution time. This type of filtering takes a few seconds for short documents

and the processing time grows linearly with the length of the document. This delay in

displaying results in an unreasonable wait time for users. Further research is required into

proper storage/indexing of terms in relation to data frames and how such a system could be

brought up to scale for large document collections or even the world wide web.

This type of system also sets up motivation for a pay-as-you-go [9] framework for

information retrieval. In such a framework, a user always has the baseline of keyword search

but can add semantics to the system through components such as data frames to achieve

higher precision results. The user must pay the price to get higher precision by taking the

time to build the data frame. Or, one could imagine data frame libraries on the web from

which a user can pick and choose to build specialized searches of interest to him/her and

change the way people search for hard to find information.
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