
Automatically Extracting Structure and Data from
Business Reports

Stephen W. Liddle,† Douglas M. Campbell,‡ and Chad Crawford†

†School of Accountancy and Information Systems
Marriott School of Management

‡Computer Science Department

Brigham Young University, Provo, UT 84602-3087, U.S.A
Email: liddle@byu.edu, Phone: 801-378-8792, Fax: 801-378-5933

Abstract

A considerable amount of clean semistructured data is internally available to companies
in the form of business reports. However, business reports are untapped for data mining,
data warehousing, and querying because they are not in relational form. Business
reports have a regular structure that can be reconstructed. We present algorithms that
automatically infer the regular structure underlying business reports and automatically
generate wrappers to extract relational data.

Keywords: business reports, report structure, regular expressions, data and informa-
tion extraction, automatic wrapper generation

1 Introduction

A considerable amount of clean semistructured data is available to companies through internal

business reports created during periodic data processing. Business reports provide data for

monitoring account balances, inventory levels, transaction status, current production status,

etc. Although the subject matter may differ widely, many business reports share a similar

structure.

Businesses that employ state-of-the-art techniques capture reports in a Computer Out-

1

put to Laser Disk (COLD)1 storage system that is accessible through an enterprise-wide

network. COLD systems support queries based on date, title, free-text scanning (as in

regular-expression matching), and precomputed indexes whose definitions have been con-

structed manually at a significant cost in labor and systems-administration/maintenance

effort.

Because business reports are an integral part of the business process, when errors are

discovered, corrections must be made, and a new version of the report must be issued.

Compared to other sources of information, business reports are clean.2 If this clean data

were available in relational form, it could feed a data warehouse.

For various reasons, in some cases important historical and operational data is only avail-

able in a COLD system. In other cases, even when such data is available in legacy database

systems or file-processing systems, the variety of different data sources and “middleware”

access layers can make it difficult to assemble and integrate information from an organiza-

tion’s databases. Since an organization’s business reports provide a clean, comprehensive,

integrated view of the underlying data of interest, wrappers to extract this data could be less

expensive (and are sometimes the only option).

Giving a user finer granularity access to a business report allows more precise queries. If a

business report could be automatically decomposed into relational records, then it would not

be necessary for a company to have a mediator constructed for each and every one of its data

sources. Automatic decomposition would make possible the movement of information from

a COLD system into a relational database where data mining and other information tools

are available. Alternatively, automatic decomposition would support a direct SQL interface

to a COLD system, permitting data mining and queries directly on the COLD archive.

Without automatic decomposition, an end user must develop ad hoc techniques to extract

1Actual COLD systems may use other storage technology besides optical disk, for example tape or RAID;
we use the term “COLD” to denote any kind of report archive system. Recently this has also been termed
“enterprise reporting,” but for brevity we use “COLD.”

2As used in data warehousing, “clean” data is free of errors and redundancy, and is suitable for storing in
the warehouse.

2

information from a business report. For example, she may manually place data from a

business report into her spreadsheet. If she receives the business report electronically, she

may programmatically transfer the data to a database application such as Access [1] using

specialized tools such as awk [3], perl [25], Cambio [8], InfoXtract [6, 15], or Monarch [19]. The

difficulties she faces in an ad hoc approach are: the manual specification, the effort to set up a

process, the effort to maintain the process, and the acquisition of sufficient programming skills

to modify the process. Automatic decomposition eliminates the report-definition specification

inherent in manual or programmatic report-based information extraction.

Automated extraction is possible in narrow application domains [12, 13, 14]. However,

the techniques for narrow application domains are infeasible for large report bases because

ontologies would have to be manually constructed for each different business report. Semi-

automatic techniques for wrappers have also been explored [2, 5, 11, 16, 22], but these

techniques do not take advantage of the special structural properties of business reports. The

project most closely related to ours is NoDoSE [2], which attacks the more general problem

of extracting structure from any kind of semistructured document. We apply techniques

specific to the business-report domain.

This paper presents a system that utilizes a lattice of field descriptions to automatically

identify fields. From field-level descriptions, this system then infers line types that describe

the kinds of lines found in a particular business report, and it infers and factors out page head-

ers and footers, yielding a line-type sequence whose regular structure can be inferred using

standard algorithms [17, 18]. Our system, implemented in Java, stores extracted information

in relational tables according to line type and line-group structure.

The remainder of this paper has four sections. Section 2 gives a high-level system overview.

Section 3 gives a detailed description of key algorithms and data structures. Section 4 gives

the results of a report survey. Section 5 gives our conclusions.

3

Business
Report

Field
Description

Lattice

Extract Fields

Report
Structure
Definition

Report
Decomposition

Populated
Database

Infer Line Types

Infer Page Headers
and Footers

Infer Recursive Groups

Figure 1: Business report structure and data extraction process.

2 Overview

Figure 1 outlines the two phases of the business report decomposition process: (1) the four

steps of report-structure inference, and (2) report decomposition. The input is a business

report R, about which we make five assumptions:

1. R is composed of fields that are aggregated into lines, which are in turn aggregated
into larger structures.

2. R is in printable ASCII and represents meaningful human-readable information.3

3. R uses the ASCII form-feed character (FF) as the page delimiter, and the ASCII line-
feed character (LF) as the line delimiter.4

4. Each page has the same number of lines R
L
, and the width of each line isW characters,

padded with blanks if necessary.

5. Blank lines and blanks between fields are for human readability only.

3We use ASCII, but EBCDIC or another character set could be used in similar fashion. In the case of
EBCDIC, it is easy to translate from EBCDIC to ASCII format. In the case of non-English character sets
or non-U.S. business reports, different regular expressions would be required.

4There is no difficulty in using CR-LF as a line delimiter as on PC systems.

4

RUN 05/21/99 12:34:56 00551 L A R G E C D R E P O R T ACCR: 04/26/99 POST: 05/21/99 PAGE 001

CUST NBR CD NBR N A M E BALANCE RATE MATURITY OFC

006 9994 10355 JASON MASON CONSTRUCTION INC 100,000.00 .06005 03/07/99

008 9992 9657 FANNY M RYEBERG 300,000.56 .05990 04/22/99 MS

009 9991 9541 JOHN SMITH JR 1,100,000.00 .05990 04/22/99 MS

011 9989 11225 BARNEY FIFE 105,529.23 .06250 05/16/99

* * * TOTAL LARGE CD * * * 1,605,529.79

Figure 2: A typical type I report page.

CHECK# AMOUNT DATE CHECK# AMOUNT DATE CHECK# AMOUNT DATE

1001 23.99 4/9 1006 13.00 4/15 1011 7.63 4/21

1002 16.50 4/11 1007 9.99 4/15 1012 16.00 4/25

*1004 72.11 4/12 1008 155.76 4/15

1005 145.62 4/13 *1010 10.65 4/17 TOTAL CLEARED: $471.25

Figure 3: A portion of a typical type II report page.

We have observed two major categories of business report structure, distinguished by the

relationship between line and record structures. Both kinds of business reports have possible

page headers, possible page footers, and a report body that consists of repeating detail lines.

A type I detail line has columns (fields), belongs to a distinct line-type category, and contains

information about a single record. In contrast, a type II detail line contains fields pertaining

to several records. A type I business report contains only type I detail lines. A type II

business report contains type II detail lines (and may also contain type I detail lines).

Figure 2 gives an example of a simple type I report.5 Each detail line in Figure 2 describes

a particular certificate of deposit. Figure 3 shows a portion of a type II checking-account

statement. Each detail line in Figure 3 lists two or three cleared-check items, each of which

has a check number, amount, and date cleared.

When we correctly identify the basic line types that exist within a type I report, then

we can extract the report structure. In contrast, extracting the structure of a type II report

requires information beyond line classification. In this paper we discuss type I reports. Type

II reports are the subject of a separate paper.

Our process starts with a type I business report R, and a field-description lattice F

5None of the data in this paper is actual customer data, but the patterns are based on actual business
report structures not designed by us.

5

(described in Section 3.1), infers the structure of R, stores its definition in a relational

database, decomposes R, and stores its decomposition in the database. The contents of R

can now be queried. This paper focuses on the four steps of the report-structure inference

phase, which consists of the following four steps (corresponding to Algorithms 1 through 4

respectively).

1. For each line t of R, decompose t into its sequence of fields.

2. Infer B, the set of basic line types of R. For each line t of R, assign t its basic line type

from B.

3. Infer page headers and footers for R. Factor out the page structure from R’s line type

description.

4. Infer R’s recursive line groups.

This system is implemented in Java 2, using the OROMatcher 1.1 regular-expression

library [21] for matching and extracting substrings from lines. We used mySQL [20] for the

database management system and twz1jdbcForMysql [23] for the JDBC interface to mySQL.

Source code is available on our Web site [10].

2.1 Notation

Before proceeding, we introduce notation and terminology. In general, let R =

〈R[1], ..., R[R
P
]〉6 be a business report with R

P
pages, each with R

L
lines, R[i] denoting

the i’th page. Each page is a sequence of lines, so R[i] = 〈R[i][1], ..., R[i][R
L
]〉. Each line is

a sequence of W characters; after executing Algorithm 1 we can also represent a line as a

sequence of fields: R[i][j] = 〈R[i][j][1], ..., R[i][j][kij]〉.
Given a line t, we denote a substring of t from position j to k, 1 ≤ j ≤ k ≤ W , by

t[j, k]. A field f in t is a 4-tuple (j, k, i, s), where s = t[j, k] is the substring of t to which f

6We always denote an ordered sequence with angle brackets 〈 〉. Also, all indexes are 1-based.

6

corresponds, j is the starting position of f , k is the ending position, and i is a pattern index

to be defined in Section 3.1.

Let f1 = (j1, k1, i1, s1) and f2 = (j2, k2, i2, s2) be fields in lines t1 and t2 respectively. We

say that f1 and f2 overlap if there is a q such that j1 ≤ q ≤ k1 and j2 ≤ q ≤ k2. If f1 and f2

overlap, the overlap has one of five alignment values:

AGREE if j1 = j2 and k1 = k2 (share left and right endpoints),

ALIGN they do not AGREE, but both fields are numeric and aligned at

the decimal-point position,

LR they do not AGREE nor ALIGN, but j1 = j2 or k1 = k2,

CENTER they do not AGREE, ALIGN, nor are LR, but j1 + �k1−j1+1
2

� = j2 + �k2−j2+1
2

�
(center aligned),

OTHER none of the above apply.

A field type f for fields f1 = (j1, k1, i1, s1), ..., fn = (jn, kn, in, sn) is a 4-tuple (j, k, i, s)

where j = min(j1, ..., jn), k = max(k1, ..., kn), and i is index of the least upper bound of

the elements in the field-description lattice F that are indexed by i1, ..., in. F is defined in

Section 3.1. For each q, 1 ≤ q ≤ n, let s′q be sq padded with jq − j blanks on the left and
k − kq blanks on the right; then s = 〈s′1, ..., s′n〉.
A line type t for lines t1, ..., tm is a sequence of field types f1 = (j1, k1, i1, s1), ..., fn =

(jn, kn, in, sn) with two properties: (1) none of the field types may overlap, and (2) s1, ..., sn

are each ordered sequences containing m strings that correspond respectively to all the fields

in lines t1, ..., tm. By these two properties we guarantee that we can reconstruct the original

lines from a line type.

A group type d for R is a triple (a, b, c) where a is either a line type or an ordered sequence

〈d1, ..., dn〉 of group types, and b and c are respectively the minimum and maximum number

of consecutive occurrences of d observed in R.

7

3 Structure Extraction Algorithms

As outlined in Section 2, four algorithms extract a business report’s structure. Sections 3.1

through 3.4 describe Algorithms 1 through 4 respectively.

3.1 Field Detection

Consider the type I report of Figure 2. The first task is to decompose each line into fields.

This is done by applying Algorithm 1 to each line of R.

Let F be the field-description lattice of Figure 4. Indentation in Figure 4 represents

precedence, and the universal lower bound is the empty expression (not shown explicitly).

Each element of F is a class that describes a set of ASCII strings typically found in business

reports. Julian is the only class with two immediate successors (Date and Number). The

parenthesized numbers in Figure 4 are used in Section 3.2.1.

Let E = 〈E[1], ..., E[e]〉 be a sequence of regular expressions corresponding to the field-
description lattice of Figure 4 (except for the universal upper bound Any and the universal

lower bound ∅). E[e], the last element of the sequence E, has the property that it recognizes
any sequence of contiguous non-blank characters (E[e] corresponds to the class String in this

case). Table 1 in Appendix A shows the regular expressions of E. Notice that no expression

E[i] in E matches a string of only blank characters. Algorithm 1 extracts the fields in line t

according to E.

Algorithm 1. Extract fields from line.
Input: Regular-expression sequence E and line t.
Output: The sequence of disjoint fields that comprise t relative to E.

for i = 1 to e do
while E[i] matches t do

Set j to the start of the first match.
Let k be the largest k ≤W such that E[i] recognizes t[j, k].
Record the field as the 4-tuple (j, k, i, t[j, k]).
Replace the characters of t[j, k] with a special non-ASCII symbol.

end while
end for
Sort the fields by j, the beginning field position.

8

Any (1)
String (.6)

Time (.3)
Hour Minute Second (0)
Hour Minute (0)

Date (.3)
Julian (0)
Day Month Year (0)
Month Day Year (0)
Year Month Day (0)
Month Year (0)
Month Day (0)
Day Month (0)

Phone Number (.3)
Phone with Area Code (0)
Phone without Area Code (0)

ID Code (.3)
ID Begins with Letters (0)
ID Ends with Letters (0)
ID with Digits, Dashes (0)

Number (.1)
Julian (0)
Percent (0)
Negative (0)
General Number (0)
Fraction (0)
Currency (0)
Currency with Dollar Sign (0)

Page Number (0)
Field Label (0)
Dividing Line (0)

Figure 4: Field-classification lattice.

Regular-expression matching can be linear in the length of the text to be matched (if we

accept exponential space in pathological cases) [4], so the inner loop runs in O(W) time.
Since there are e expressions, the outer loop executes e times. Thus, Algorithm 1 executes in

O(eW) time. Since E[e], the last regular expression, always recognizes contiguous non-blank
characters, Algorithm 1 terminates and extracts all fields from t. The step that replaces the

characters of t[j, k] with a special symbol forces the fields to be disjoint since t[j, k] can no

longer be matched by any expression.

9

3.2 Basic Line-Type Inference

Algorithm 2 is the heart of our technique. It infers basic line types that describe categories

of lines in a business report. Before presenting the algorithm we define three field- and

line-distance measures.

We first introduce two different distances between fields: a first-order distance, and a

second-order distance. First-order distance measures field distance using a character-level

string comparison. Second-order distance yields a similarity metric based on the field-

classification lattice. A traditional method for characterizing string similarity is edit distance

[24], which describes the cost of transforming one string into the other. But the computation

of edit distance is O(mn) where m and n are the lengths of the strings being compared. Our

simple but adequate first-order distance can be computed in O(max(m,n)) time.
We measure field distances using the minimum of first- and second-order distances to-

gether with alignment information (e.g. are the two fields left justified or decimal-aligned).

Based on this field distance metric we define a line distance, used in Algorithm 2 to decide

when two line types belong to the same cluster.

3.2.1 Field Distance

Let s1 and s2 be non-empty ASCII strings. Without loss of generality, we assume that

|s1| ≤ |s2|. The first-order distance between s1 and s2, is:

δstring(s1, s2) =
|s2| − |s1|+∑|s1|

i=1 δK
(s1[i], s2[i])

|s2| (1)

where δ
K
(a, b) is the Kronecker delta function, namely 1 if a �= b and 0 if a = b.

Let f1 = (j1, k1, i1, s1) and f2 = (j2, k2, i2, s2) be field types. Recall that s1 and s2 are

ordered sequences of strings. The first-order field distance between f1 and f2 is:

δ1(f1, f2) =
|s1|∑
p=1

|s2|∑
q=1

δstring(s1[p], s2[q])

|s1| · |s2| (2)

10

Our first-order distance uses a (trivial) lattice on characters and ignores the higher-order

structure associated with fields. Our second-order distance uses the regular-expression se-

quence E and field-description lattice F described in Section 3.1. E and F have three

important properties:7

1. Lattice. Each pair of elements in F has a unique least upper bound.

2. Covering. Every ASCII string is a member of at least one class in F .

3. Consistency. Let F [i] and F [j] be classes in F , and let E[i] and E[j] be the regular

expressions in E that correspond to F [i] and F [j], respectively. If F [i] precedes F [j]

then the language recognized by E[i] is a subset of the language recognized by E[j].

We define a function ν that assigns each element of F a value; more specific classes have

lower values than more general classes. Values for ν, in the interval [0, 1], are shown in

parentheses in Figure 4, and were determined empirically.

Given these properties, we define the second-order field distance. Let f1 = (j1, k1, i1, s1)

and f2 = (j2, k2, i2, s2) be two field types. Let F [i1] (F [i2]) be the class in F corresponding

to the regular expression E[i1] (E[i2]) that recognizes f1 (f2), and let lub be the least upper

bound of F [i1] and F [i2]. Without loss of generality, we assume that ν(F [i1]) ≤ ν(F [i2]).

The second-order field distance between f1 and f2 is:

δ2(f1, f2) = min(1, P · ν(lub)− ν(F [i2])) (3)

The difference component of Equation 3 returns a low value for fields whose classes are

relatively close. The P term is an empirical constant to penalize fields whose least upper

bound is relatively general; we assigned P a value of 1.1 in our experiments. Finally, to

ensure that a distance stays in the interval [0, 1], Equation 3 uses the min(1, ...) expression.

7These properties require careful construction of the field-description lattice and regular-expression se-
quence, and we do not formally prove that they hold. For our purposes it is sufficient simply to assume
that these properties hold. For the lattice F in Figure 4 the class Any is defined to be the set of all ASCII
strings. The consistency property can be guaranteed if we replace each superior regular expression s by the
disjunction of s with each regular expression i that is inferior to s.

11

Given the first- and second-order field distances of Equations 1 and 3, we define

δfield(f1, t2), the field distance between field type f1 = (j1, k1, i1, s1) in line type t1 and

the sequence of field types of line type t2, as follows. If f1 either overlaps no field types

of t2 or overlaps more than one field type of t2, we define δfield(f1, t2) to be 1. Oth-

erwise, let f2 = (j2, k2, i2, s2) be the single field type in t2 that overlaps f1, and let

M = min(δ1(f1, f2), δ2(f1, f2)). Equation 4 gives the definition of δfield(f1, t2):

δfield(f1, t2) =M + (1−M) · A (4)

where A is the alignment value of the overlap of f1 and f2, defined in Section 2.1. We

determined alignment values empirically, choosing 0, 0, .1, .2, and .4 for AGREE, ALIGN,

LR, CENTER, and OTHER, respectively.

3.2.2 Line Distance

Let n1 be the number of field types in line type t1, and let n2 be the number of field types

in line type t2. Based on δfield, we define δline(t1, t2), the line distance between t1 and t2. If

both n1 and n2 are 0, then the value of δline is defined to be 0. If either n1 or n2 is 0 but

not both, then the value of δline is defined to be 1. Otherwise, δline is defined according to

Equation 5:

δline(t1, t2) =
1

2

(
n1∑
i=1

δfield(t1[i], t2)

n1

+
n2∑
i=1

δfield(t2[i], t1)

n2

)
(5)

3.2.3 Line-Type Inference

Algorithm 2. Infer B, the set of basic line types for report R.
Input: R, after Algorithm 1.
Output: B, the set of basic line types for R, and

L, a mapping from the lines of R to line types in B.

Make a copy Q of R:
for each R[i][j], 1 ≤ i ≤ R

P
, 1 ≤ j ≤ R

L
do

Create a new line type t1 for R[i][j].
if t1 duplicates a line type t2 in Q then

12

Generalize t2 to cover t1.
else

Add t1 to Q.
end if

end for
Reduce line types in Q to B:

Let B = ∅.
for each line type Q[i], 1 ≤ i ≤ |Q| do

Let m be the smallest δline(Q[i], t) from Q[i] to any line type t in B.
if B = ∅ or m > T then

Add Q[i] to B.
else

Generalize t to cover Q[i].
end if

end for
Construct array L so that L[i][j] is the line type in B that covers line R[i][j].

Algorithm 2 terminates in O(G · R
P
· R

L
) time, where G is the cost of the “generalize”

operation, described below. T = .3 is a threshold chosen empirically. Line types t1 and t2

are duplicates if and only if their associated field-type sequences are identical up to the field

text, i.e. (a) they have the same number of field types, (b) the corresponding field types have

the same left and right positions, and (c) the corresponding field types are both recognized

by the same regular expression.

We now define what it means to generalize a line type t2 to cover line type t1. For each

field type f2 = (j2, k2, i2, s2) in t2, let m be the number of field types in t1 that overlap f2.

We denote these m field types as f1,1 = (j1,1, k1,1, i1,1, s1,1), ..., f1,m = (j1,m, k1,m, i1,m, s1,m).

There are three possibilities for m:

1. m = 0; do nothing with f2.

2. m = 1; set j2 = min(j2, j1,1); set k2 = max(k2, k1,1); set i2 to the least upper bound of

i2 and i1,1; and set s2 to s2 ∪ s1,m, padded with blanks as needed.

3. m > 1; set j2 = min(j2, j1,1, ..., j1,m); set k2 = max(k2, k1,1, ..., k1,m); set i2 to e; pad the

strings in s2 with blanks as needed, and add to s2 the strings from s1,1, ..., s1,m, joined

and filled/padded with blanks as needed.

13

If any field type f1 in t1 was not overlapped by some field type in t2, add f1 to t2. After

modifying t2, if any field types in t2 now overlap each other, combine them as described above

in step 3.

3.3 Page Header/Footer Inference

A type I business report may have page header and/or a page footer. A page header for

report R is a sequence of line types that appears at the beginning of each page in R. If

line-type sequence A = 〈a1, ..., ah〉 is a page header for R, then (∀i, 1 ≤ i ≤ RP
)(∀j, 1 ≤ j ≤

h)R[i][j] = aj . Similarly, a page footer is a sequence of line types Z = 〈z1, ..., zf〉 that appears
at the end of each page in R (we assume that a page footer always starts at the same offset

from the top of page). To distinguish between report detail and page headers or footers, we

require that each non-blank line type t ∈ A ∪ Z have the following properties for each page
R[i]:

• t does not repeat in R[i] two or more times in immediate succession, and
• t appears only once or twice on any single page R[i].

Algorithm 3. Infer page headers and footers from line types.
Input: Array L from Algorithm 2.
Output: Page-header sequence A, page-footer sequence Z, and

line-type sequence L̄ with A and Z factored out.

Mark non-blank line types that cannot be page header/footer candidates:
If L[i][j] = L[i][j + 1] and L[i][j] is non-blank, then mark both L[i][j] and L[i][j + 1].
If (∃j, k, l)j �= k �= l and L[i][j] = L[i][k] = L[i][l], then mark L[i][j], L[i][k], and L[i][l].

Infer page header:
Find the largest h, 0 ≤ h ≤ R

L
such that (∀i, j)L[i][1] = L[j][1] ∧ ... ∧ L[i][h] = L[j][h].

Set A to the first h line types of page R[1] (A may be empty).
Infer page footer:

Find the smallest f, h ≤ f ≤ R
L
such that (∀i, j)L[i][f] = L[j][f] ∧ ... ∧ L[i][R

L
] = L[j][R

L
].

If such an f exists, set Z to line types f through R
L
of page R[1];

otherwise let Z be the empty sequence and set f to R
L
+ 1.

Reduce L to L̄ by removing page structure and blank lines:
Let L̄ be the sequence of line types

〈L[1][h + 1], ..., L[1][f − 1], ..., L[R
P
][h+ 1], ..., L[R

P
][f − 1]〉

Remove all blank line types that appear in L̄.

14

Note that whereas L is a two-dimensional array, L̄ has only one dimension. Algorithm 3

terminates in O(R
L
·R

P
) time.

3.4 Recursive Group Inference

After the page-specific structure of a business report R has been factored out, we can focus

on inferring the structure of R’s detail section. Miclet’s technique [17, 18] is a reasonable and

general way to infer regular structure from a set of example strings. Because of the nature of

business reports and the simplifying assumptions this allows, it is possible to infer structure

from a single example. Our Algorithm 4 is a variant of Miclet’s technique, using different

decision heuristics governing when we should reduce a recursive group, and restricted to a

single example string (the array L̄ of line types).

Business reports created with a report-writer8 are built up from groups of the form uvkw,

where u is a (possibly empty) group header section, v is a detail section that repeats one

or more times, and w is a (possibly empty) group footer section. Each of the u, v, and w

sections may themselves be composed of other uvkw structures. We make three assumptions

about the uvkw structure of line-group types for a business report R reduced by Algorithms

1 to 3 to L̄:

1. k ≥ 2; that is, v appears consecutively somewhere in L̄.

2. If group v appears k ≥ 2 times consecutively in L̄, it forms the vk component of a uvkw
structure (and there is no predetermined upper bound for k). Also, uvw (where k = 1)
may appear in L̄ as long as uvkw, k ≥ 2 also appears elsewhere in L̄.

3. Groups u, v, and w may not appear in L̄ individually (outside of a uvkw sequence).
There are no optional lines in a group. If the real report structure is uvkw, u and w
always appear together with vk.9

We give three examples, representing a line types with lowercase letters. Example 1.

The sequence abccc is a line group with a group header u = ab, a detail section vk = ck,

and an empty group footer, w = ∅. The reason for this particular uvkw solution is that c

8Most business reports created by custom programming also follow these conventions.
9This assumption does not hold for all type I business reports, but we leave such reports for future

investigation.

15

is the only repeating line type in our example. Example 2. The sequence abccabcccc is

(abc2)(abc4) which matches (abc+)(abc+). Thus, an expression to describe the structure of

such a report is (abc+)+. Example 3. The sequence abccbccdabcd is formed by repeating

and nesting. We first create the inner group e = bck, with header b and detail section c.

By substitution, the sequence is now aeedaed. Let f = aekd, with header a, detail section

ek, and footer d. By substitution, the sequence is now ff , which is a group with an empty

header and footer, and a detail section fk. The expression describing this report structure is

(a(bc+) + d)+.

Essentially, Algorithm 4 reduces the regular expression defined by the line-type sequence

L̄ to a more compact regular expression G that describes the recursive structure of L̄.

Algorithm 4. Infer recursive line-type groups.
Input: Basic line-type sequence B from Algorithm 2

and line-type sequence L̄ from Algorithm 3.
Output: Recursive line-group structure.

Let g be a set of group types that contains one entry for each line type in B.
Map L̄ to G by substituting each line type with its corresponding group type from g.
changed = true
while |G| > 1 and changed = true do

changed = false
for i = 1 to |G| do

Find the smallest j > i such that G[i] = G[j] and conditions 1, 2, and 3 hold.
Let v = 〈G[i], ..., G[j − 1]〉.
Condition 1. Every group type in v is unique.
Condition 2. The sequence vv occurs in G.
Condition 3. After substituting a new group type for each occurrence of

v in G, there is no group type in v that still occurs in G.
if j exists then

Create a new group type x whose definition is the sequence v.
Add x to g.
Substitute x in G everywhere v appears.
changed = true
Replace all consecutive occurrences of x...x in G by a single x, and mark x

with the minimum and maximum consecutive-occurrence counts.
end if

end for
end while

16

Algorithm 4 is a least-fixed point algorithm, where the fixed point upon which we converge

is a regular expression to describe L̄. Because |G| is initially |L̄|, the while loop can execute

at most |L̄| times (since we only loop as long as a change has been made, and a change must
always reduce the size of G by at least 1). The for loop also executes at most |L̄| times.
Verifying Conditions 1, 2, and 3 and substituting x for v can both be done in L̄ time. Thus,

Algorithm 4 executes in O(|B| + |L̄|3) time. In practice, Algorithm 4 usually took between

one and three passes to converge, running orders of magnitude faster than the worst case

just described. (This is because vk sequences tend to be long.)

4 Results

There are five areas where we used empirically determined values to control the business-

report structure and data extraction process: (1) the regular expressions used to recognize

fields, (2) the values (ν) associated with each class in the field-description lattice F , (3) the

value of alignment constants (AGREE, ALIGN, LR, CENTER, OTHER), (4) the threshold

for line-type generalization, and (5) the penalty for least-upper-bound generality in Equa-

tion 3. We used hundreds of reports from four different organizations as the basis for our

choices.

To test our process, we used 76 business reports from a separate organization that had

not been used in the training phase. Of these 76 reports, 7 were not type I. An additional 7

reports were too short to be meaningful (i.e. they comprised a single page containing only

page headers or a single detail line). Of the 62 remaining reports, our process correctly

extracted the structure and data for 40 reports, but failed with 22. The 22 failures point out

directions for future enhancement. We discuss four.

1. E, our sequence of regular expressions for matching fields, was sometimes insufficient.

We give four examples. (i) In one case, two fields that were usually separated by a single

blank space had a number sign (#) instead of a space on one line. This caused the two fields

to be recognized as a single string, which in turn caused the creation of an extra line type that

17

interfered with the recursive line-type group inference (Algorithm 4). (ii) In another case, we

discovered decimal-aligned numeric fields that were left-filled with underscores. Furthermore,

these underscores abutted the string field on the left (e.g. “One 5.52” and “Two 934.22”).

Our system recognized the string portion together with the padding underscores as a single

field, and the numbers as a second field. Because of the overlapping of these fields, our system

generated too many line types for this report. (iii) In another case, we discovered currency

amounts specified with 4 digits after the decimal point, rather than the more common 2

digits. Due to the order of our expressions, our system broke such fields in two, which caused

too many line types to be generated. (iv) Finally, we found a string field that had two

internal spaces (e.g. “XXXX XX”), but our String pattern only expects one internal space.

This caused the field to be split and an extra line type to be generated. All of these problems

can be corrected by tuning E. For our test set, the amount of tuning required would have

been small. Adjustments to E are also required for non-U.S. business reports.

2. By far the most common reason for our process to fail was the problem of optional

fields in a line type. With more fields present on a line, our distance formulas are more

tolerant to optional fields. However it is often the case that lines with few fields also have

optional fields, and for lines with many fields, it is also often the case that several fields are

optional. Optional fields may lead to our system generating too many line types. Tuning the

threshold T of Algorithm 2 for a particular report can sometimes fix this problem, but it is

not a general solution.

3. There were several cases where we did not generalize two line types because of the

simplistic structure of Algorithm 2, which decides when to generalize based on a threshold.

In a future study we will apply clustering techniques such as recursive partitioning or nearest

neighbor (as in [9]) to find a better decision function to control when we generalize line types.

Such techniques are more likely to be general across business reports with very different line

types, and will not be as sensitive to the order of processing line types.

4. Sometimes our uniformity assumption for line-type groups did not hold. That is,

18

Algorithm 4 assumes that if uvkw is a line-type group, then u, vk, and w always appear

together. In some cases lines in a uvkw structure are optional, and in other cases (especially

for short lines) a single line type may be reused in two distinct uvkw structures. Algorithm 4

needs to be revised to accommodate optional lines in a line-type group.

5 Conclusions

It is possible to automatically extract structure and data from business reports. Our process

correctly extracted the structure and data in 40 out of 62 type I business reports in a test

set we had not seen before.

While these initial numbers are encouraging, much work remains to be done. In Section 4

we mentioned four areas needing improvement: (1) field recognition, (2) detecting optional

fields, (3) improved line-type clustering techniques, and (4) handling optional lines within a

line-type group. We also plan to study structure and data extraction for type II reports. Here

it may be possible to use segmentation techniques like those applied in document imaging

and optical character recognition (OCR) algorithms (e.g. [7]). This may also enable more

accurate extraction of fields from lines, and may shed light on improved techniques for type I

line-type clustering. In the current investigation we have assumed fixed-width fields (padded

with blanks as needed); since some reports have variable-width fields, our process needs to

be extended to accommodate such reports. Also, our assumption that fields are separated by

white space does not always hold (some reports are designed to be printed on forms, which

may have lines between characters to divide fields). Future work should examine ways to

determine field boundaries in the absence of white space.

One weakness of our approach is the number of fixed, empirically determined constants

associated with our algorithms. We can surely achieve better results by using adaptive

techniques to dynamically compute and adjust these constants whenever possible.

After we have more fully mapped out structure and data extraction for type II reports,

we will construct a compressed data structure that contains a full inverted index of the

19

information in a business report R, together with sufficient information to reconstruct the

original pages of R from the inverted index. Often it is not enough to merely return the

data associated with a particular page; regulatory constraints (at a financial institution,

for example) may require that original pages be returned (e.g. records may be subject to

subpoena in legal proceedings, in which case the original report pages must be printed). Thus,

after fully inverting the data in a report, we must still be able to retrieve the original report

pages, including white space. The extensive structural information our system generates

constitutes an excellent domain-specific model for compressing reports.

Our business-report structure and data extraction system is implemented in Java. We also

implemented a graphical pattern editor tool to assist in the creation and debugging of regular

expressions for field extraction. This tool, available from our Web site as PatternEditor 1.0

[10], has general applicability for regular-expression debugging beyond our current project.

References

[1] Microsoft Corporation access page. URL: http://www.microsoft.com/access/.

[2] B. Adelberg. NoDoSE—a tool for semi-automatically extracting structured and
semistructured data from text documents. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD’98, pages 283–294, Seattle,
Washington, June 1998.

[3] A.V. Aho, B.W. Kernighan, and P.J. Weinberger. The AWK Programming Language.
Addison-Wesley, Reading, Massachusetts, 1988.

[4] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, principles, techniques, and tools.
Addison-Wesley, Reading, Massachusetts, 1986.

[5] N. Ashish and C. Knoblock. Wrapper generation for semi-structured internet sources.
SIGMOD Record, 26(4):8–15, December 1997.

[6] Bruce Silver Associates. Mining mainframe reports: Intelligent data extraction
from print streams, October 1997. URL: http://www.iacorporation.com/assets/press -
releases/InfoXtract White Paper.html.

[7] H.S. Baird. Background structure in document images. International Journal of Pattern
Recognition and Artifical Intelligence, 8(5):1013–1030, 1994.

[8] Data Junction Corporation home page. URL: http://www.datajunction.com/.

[9] R. Chung and K.L. Leung. An iterative clustering algorithm for interpretation of im-
perfect line drawings. International Journal of Pattern Recognition and Artifical Intel-
ligence, 10(8):867–886, 1996.

20

[10] Data Extraction Group home page. URL: http://www.deg.byu.edu/.

[11] R. Doorenbos, O. Etzioni, and D. Weld. A scalable comparison-shopping agent for the
World-Wide Web. In Proceedings of the First International Conference on Autonomous
Agents, pages 39–48, Marina del Ray, California, February 1997.

[12] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.K. Ng, and
R.D. Smith. Conceptual-model-based data extraction from multiple-record Web pages.
Data and Knowledge Engineering, page to appear, November 1999.

[13] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, Y.K. Ng, D.W. Quass, and R.D.
Smith. A conceptual-modeling approach to extracting data from the web. In Proceedings
of the 17th International Conference on Conceptual Modeling, ER’98, Lecture Notes in
Computer Science, 1507, pages 78–91, Singapore, November 1998. Springer Verlag.

[14] D.W. Embley, D.M. Campbell, R.D. Smith, and S.W. Liddle. Ontology-based extraction
and structuring of information from data-rich unstructured documents. In Proceedings of
the 1998 ACM CIKM Seventh International Conference on Information and Knowledge
Management (CIKM’98), pages 52–59, Bethesda, Maryland, November 1998.

[15] IA Corporation home page. URL: http://www.iacorporation.com/.

[16] N. Kushmerick, D.S. Weld, and R. Doorenbos. Wrapper induction for information ex-
traction. In Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence, IJCAI’97, pages 729–735, Nagoya, Japan, August 1997.

[17] L. Miclet. Regular inference with a tail clustering method. IEEE Transactions on
Systems, Man and Cybernetics, 9:737–743, 1979.

[18] L. Miclet. Structural Methods in Pattern Recognition. North Oxford Academic Publishers
Ltd, London, 1986.

[19] DataWatch Corporation home page. URL: http://www.datawatch.com/.

[20] mySQL home page. URL: http://www.mysql.com/.

[21] Savarese.Org home page. URL: http://www.savarese.org/.

[22] S. Soderland. Learning to extract text-based information from the World-Wide Web.
In Proceedings of the Third International Conference on Knowledge Discovery and Data
Mining, KDD-97, pages 251–254, Newport Beach, California, August 1997.

[23] twz1jdbcForMysql home page. URL: http://www.voicenet.com/˜zellert/tjFM/.

[24] R.A. Wagner and M.J. Fisher. The string to string correction problem. Journal of the
ACM, 21(1):168–173, 1974.

[25] L. Wall and R.L. Schwartz. Programming Perl. O’Reilly and Associates, Sebastopol,
California, 1991.

21

PageNumber \bpage\s*(no\.?\s*)?\d+\b
DividingLine ^\s*([- =.*]{3,}\s*)+\s*$
HourMinuteSecond \b{HOUR}{TIMESEP}{MIN}(\2[0-5]\d{AMPM}?|{AMPM})\b
MonthDayYear \b({MONTH}{DATESEP}{DAY}\5{YEAR}|

{MONTH}\s*{DAY},\s+{YEAR})\b
DayMonthYear \b{DAY}{DATESEP}{MONTH}\2{YEAR}\b
YearMonthDay \b{YEAR}{DATESEP}{MONTH}\3{DAY}\b
Fraction \s\.\d+(-|CR)?(?=(\D|$))
Julian \b{YEAR}{DAYOFYR}(?=([]|$))

DollarSign $\s*{NUM}
PhoneAreaCode \b{AREACODE}{PHONE}\b
MonthYear \b{MONTH}{DATESEP2}{YEAR}(?=([]|$))

MonthDay \b{MONTH}{DATESEP2}{DAY}(?=([]|$))

DayMonth \b{DAY}{DATESEP2}{MONTH}(?=([]|$))

Negative \({NUM}\)|(^|[])-{NUM}|(\b{NUM}(-|CR)(?=[]|))

Currency \d*(,\d\d\d)*\.\d\d(?=(\D|$))
Percent -?(\d+(\.\d+)?|\.\d+)%(?=([]|$))

PhoneNoAreaCode \b{PHONE}\b
IDBeginsAlpha \b[a-z]\w*(-\w+)*-\w*\d\b
IDEndsAlpha \b\d\w*(-\w+)*-\w*[a-z]\b
IDDigitDash \b\d+(-\d+)+\b
HourMinute \b{HOUR}{TIMESEP}{MIN}\b
GeneralNumber \b{NUM}
FieldLabel \b\w+(\s\w+)*:(?=\s)
String [^]+([][^]+)*

Table 1: Ordered field recognition pattern definitions.

A Field Pattern Details

The actual expressions used to determine fields are shown in Table 1. These are Perl 5

regular expressions with the addition of our own simple macro substitution mechanism. A

macro is a name in curly braces, such as {HOUR}. Table 2 gives the macro definitions. For
those who are not familiar with Perl 5 regular expressions, the OROMatcher documentation

contains a helpful quick reference [21]. Note that the expressions in Table 1 are listed in

order of disambiguation precedence (e.g. PageNumber > DividingLine > FieldLabel >

. . .> String).

22

NUM {NUM1}|{NUM2}|{NUM3}|{NUM4}|{NUM5}|{NUM6}
NUM1 \b\d{4,}\.\d+(?=(\D|$))
NUM2 \b\d{1,3}(,\d\d\d)+\.\d+(?=(\D|$))
NUM3 \b\d{1,3}(,\d\d\d)+(?=(\D|$))
NUM4 \b\d{1,3}\.\d+(?=(\D|$))
NUM5 \.\d+\b
NUM6 \b\d+(?=(\D|$))
MONTH {STRMONTH}|{NUMMONTH}
STRMONTH ((jan|feb|mar|apr|may|jun|jul|aug|sept?|oct|nov|dec)

\.?|january|february|march|april|june|july|august|
september|october|november|december)\b

NUMMONTH 0?[1-9]|1[012]

DATESEP {DATESEP2}|[]

DATESEP2 [-/]

DAY 0?[1-9]|[12]\d|3[01]
DAYOFYR 0(0[1-9]|[1-9]\d)|[12]\d\d|3([0-5]\d|6[0-6])
YEAR \d\d|(1[89]|2[01])\d\d
HOUR [1-9]|[01]\d|2[0-4]
SEC {MIN}
MIN [0-5]\d
AMPM \s*[aApP]\.?\s*[mM]\.?
PHONE \d{3}{PHONESEP}\d{4}
AREACODE (1{PHONESEP})?(([(]\d{3}[)]({PHONESEP}|[])?)|

((\d{3}){PHONESEP}))
PHONESEP [-.]

TIMESEP [:.]

Table 2: Field pattern macros.

23

