
Recognizing Records from
the Extracted Cells of Microfilm Tables ∗

Kenneth M. Tubbs
David W. Embley

Department of Computer Science
Brigham Young University

Provo, UT 84602
Contact Author: David W. Embley, (801) 422-6470

{tubbs,embley}@cs.byu.edu

ABSTRACT
Microfilm documents contain a wealth of information, but
extracting and organizing this information by hand is slow,
error-prone, and tedious. As an initial step toward automat-
ing access to this information, we describe in this paper an
algorithmic process to automatically identify record patterns
found in microfilm tables. Our table-processing algorithm
accepts an XML input file describing the individual cells of a
table taken from a microfilm document, finds for each record
in the document the cells that together comprise the record.
Two key features drive the algorithm: (1) geometric layout
and (2) label matching with respect to a given application
ontology. The algorithm achieved an accuracy of 92% on
our test corpus of genealogical microfilm tables.

Keywords: microfilm tables, automated recognition of record
patterns, geometric layout, ontology matching.

1. INTRODUCTION
Several million rolls of microfilm exist, and each roll con-
tains about a thousand images of data. Although of great
interest to many people, this wealth of information is nearly
inaccessible because extracting, checking, and indexing it by
hand is extremely time consuming.1 In this paper we make
an initial step toward automating access to this information.
Although only the beginning, the step we take is significant
because it lays the ground work (1) for organizing and in-
dexing the information and (2) for automatic (or semiauto-
matic) extraction of the data, which is mostly handwritten.

∗This material is based upon work supported by the Na-
tional Science foundation under Grant No. IIS-0083127.
1[14] estimates that it would take 104 years for 20,000 ex-
tractors working 100 hours per year to extract the informa-
tion from 2.5 million rolls of microfilm, the number of rolls
held by a large genealogical library.

We are able to organize and index the information because
we can identify records, determine which fields constitute a
record, what each field is, and where each field is located in
the image within the collection of images for a roll of mi-
crofilm. We are able to lay the groundwork for intelligent
recognition of handwriting because we can determine the
type of information in each cell.2

One type of microfilm document is a table with machine-
printed labels and handwritten values. As an example, Fig-
ure 1 shows a page from the 1910 U.S. Census. This type
of table appears as a rectangular grid of cells. A cell is a
rectangle within the grid. A series of horizontally connected
cells is a row, and a series of vertically connected cells is a
column. Tables contain three different types of cells: (1)
label cells, which contain machine-printed text, (2) value
cells, which contain handwritten data described by a label
cell, and (3) empty cells, which are empty, but may contain
“ditto” data implied by standard value factoring, and, in
any case, do provide layout information and complete the
rectangular shape of a table.3 (Note that the problem of
“discovering” which cells are label cells and which are value
cells is straightforward because the former enclose machine-
printed text and the latter are either empty or enclose hand-
written text—an observation which may easily be overlooked
because this problem is often one of the hardest to resolve
when building automated table-understanding systems.)

Building on research, including table zoning (e.g. [11, 18,
21]) and intelligent character recognition (ICR) for machine
printed text (e.g. [7, 17, 19]), we assume that we have, as
input, an XML document that describes three attributes
about each cell C in a table: (1) the upper-left and lower-
right coordinates of C, (2) whether C is empty, and (3) the
character string for C if C contains machine-printed text.4

2Intelligent character recognition for handwritten text is
extremely difficult, but researchers are beginning to make
progress (see for example [3, 4, 10, 20]). Their efforts, how-
ever, depend on good dictionaries, which in turn depend on
knowing what kind of information an intelligent character
recognizer is reading—a problem for which we provide a so-
lution in this paper.
3To simplify our discussion, when we are not interested in
whether an empty cell has an implied value or is simply
blank, we sometimes refer to empty cells as value cells.
4For this paper, we do not assume that any handwritten

Figure 1: Sample Table from the 1910 U.S. Census

Given this XML input file, we exploit the geometry of the ta-
ble, the readable printed text in table headings, and a given
application ontology in order to produce SQL insert state-
ments for the coordinates and types of fields for records for a
relational database, which is compatible with and generated
from the application ontology.

Figure 2 shows the ontology we use to illustrate our ideas
and also to use as the basis for test cases we ran for our
results. As Figure 2 shows, the ontology declares the con-
cepts (boxed nodes in the graph in Figure 2, with dotted
boxes representing text values and solid boxes represent-
ing object-identifier values) and the relationships among the
concepts (arcs connecting boxed nodes). For example, the
relationship Father of Child relates the concept Father to
the concept Child.5 Figure 2 also declares generalizations
and specializations in isa hierarchies; notationally, an open
triangle declares an isa relationship (e.g. Child isa Person
and Birth isa Event. Filled-in triangles denote is-part-of hi-
erarchies (e.g. First Name is part of Full Name and Year is
part of Date. Symbols that decorate connections between re-
lationships and concepts are cardinality constraints; specif-
ically, they denote expected participation (e.g. a Person

text within table cells is readable.
5Arcs without labels all have the default label has or is for,
depending on which concept is the subject and which is the
object in a relationship-naming sentence (e.g. Person has
Age or Age is for Person).

is expected to be in 1 Family and a Family is expected to
consist of about 4.8 Persons).

Compared to previous work, our approach has both similar-
ities and differences. We use geometry and layout, as most
other researchers do (see [20] for an early journal paper on
this topic, [6] and [13] for a broad survey, and [8] and [13] for
an explanation of why table understanding is difficult). In
addition to structure, researchers have applied a variety of
techniques, including, table models [5, 9, 12, 15], grammar
matching [1], and keywords along with structure [16]. The
work in [9] most closely relates to our own. [9] uses frames
and measures similar to ours, but we use more measures
and our ontology is far richer than their frames. To the best
of our knowledge, no other researchers have used images of
microfilm tables as their test set.

2. RECORD RECOGNITION
In this section we describe our algorithm for generating
record groups of type-labeled value cells for genealogical mi-
crofilm tables. First our algorithm independently identifies
seven record-structure features resulting in seven evidence
matrices.6 We then iteratively apply six correlation rules,
stopping when we either achieve convergence or we have it-

6We identified these seven features, as well as other heuris-
tics and parameter settings, by examining 25 tables, which
we used as our development set.

Figure 2: Genealogy Ontology—for Label Matching and Database Generation

erated more than n times, where n is a user-chosen input
parameter.

2.1 Record-Structure Features
Let A be the union of the set of all label cells L, the set of
all value cells V , and the set of all empty cells E. Let C
be the set of all concepts in the genealogical ontology. Let
B = A ∪ C. An evidence matrix M is a |B| × |B| matrix
where each value Mij is a real number between 0 and 1 that
represents the confidence of a relationship between elements
in B. A confidence value of 0 indicates that the relationship
is nonapplicable or completely uncertain, while a confidence
value of 1 indicates that the relationship is completely cer-
tain. We generate confidence values by measuring features
about the table cells and their relationships among them-
selves and with ontology concepts that support or refute
the existence of the relationship expressed by M .

Feature 1. VR: Value Cells in Same Row
To determine whether value cell vi is in the same row as
value cell vj , the algorithm uses cell coordinates to measure
whether a continuous horizontal path of value or empty cells
exists between vi and vj through a horizontal sequence of
adjacent value cells or empty cells. (Note that we do not
just measure the center point of vi and vj to see if they
are within a top-to-bottom delta. Checking a sequence of

horizontally adjacent cells helps us avoid skew and warp that
may cause top-to-bottom deltas to yield incorrect results.)
If a path exists between vi, and vj , the algorithm sets V Rij

to 1, otherwise the algorithm sets V Rij to 0.
7

Feature 2. VC: Value Cells in Same Column
Similar to VR, the algorithm populates the VC matrix
by attempting to identify a continuous vertical sequence of
value cells and empty cells between each value-cell pair. If
a path exists between vi and vj , the algorithm sets V Cij to
1; otherwise the algorithm sets V Cij to 0.

Feature 3. VV: Value Cells Similarity
We observed from the development set that value cells in a
table containing the same type of data generally have the
same height and width. For each value cell pair (vi, vj), the
algorithm multiplies the normalized difference in height and
width between vi and vj . The normalized height (width)
difference is simply the difference in height (width) divided
by the largest difference in height (width) over all value cell
pairs. The algorithm subtracts the product from 1 to ensure
that small differences receive greater confidence values and
large differences receive lesser confidence values and then
stores the result in V Vij .

7To distinguish the seven feature matrices, we name them
by their two-letter code, e.g. V R for this matrix.

Feature 4. LL: Composite Labels
The algorithm considers three features, F1, F2, and F3 to
determine whether label cells form a composite label.8 The
algorithm computes the value of LLij for each label cell li
and label cell lj as the product (F1ij × F2ij × F3ij) of the
three features, F1, F2, and F3, which we now describe.

F1 Because label cells in the same composite label are likely
to be close in euclidean space, F1 represents the dis-
tance between the midpoints of the each label cell with
every other label cell. To make the F1ij values fall
between 0 and 1, we normalize the distance by divid-
ing the euclidean distance between the midpoints of li
and lj by the maximum distance between all label-cell
pairs. To make small distances have high confidence
values we subtract this normalized distance from 1.

F2 Because a composite label must eventually connect with
the value cells, we determine whether a line passes
through the midpoints of a pair of a label cells and
through the rectangle of any value cell. The algorithm
calculates the slope and intercept of the line that runs
between the midpoints of a pair of label cells. It then
determines whether this line passes through a value
cell. If so, the pair is a potential composite label, and
the algorithm sets the confidence value to be 1 for F2ij ;
otherwise it sets the value to be 0.

F3 Because cells of a composite label should share a com-
mon boarder with at least one other cell in the com-
posite label, F3 determines whether there is a common
boarder. For each label cell li the algorithm finds all
label cells that share a border to the left, right, above,
and below. For example, to find a cell directly to the
left of li, the algorithm looks at all label cells with
a midpoint to the left of li’s midpoint and between
li’s top and bottom coordinates. A label cell lj shares
a border on the left, if the distance between the left
border of li and the right border of lj is less than or
equal to 3 pixels. (We use a threshold of 3 because
the padding between label cells in the development set
is no more than 3.) The algorithm calculates label
cells bordering to the right, above, and below in the
same way. If a border exists between li and lj , the
confidence value of F3ij is 1 and otherwise 0.

Since we compute the confidence value of LLij as F1ij ×
F2ij × F3ij , it is either 0 or the value of F1ij .

Feature 5. LV: Label Cells Describe Value Cells
A label cell at the top (left) of a column (row) typically
describes the type of the value cells in the column (row).
Let li be a label cell and vj be a value cell. The algorithm
determines if li heads the column or row of vj by considering
two features, F1ij and F2ij , and storing their product in
LVij.

F1 The first feature determines whether a continuous path
of cells exists between a label cell li and a value cell vj

through a horizontal or vertical sequence of adjacent
value cells or empty cells. If a path does not exist,
the label cell does not head the row or column. The

8Almost every label in Figure 1 is composite, i.e. consists
of a general header and one or more nested subheaders.

algorithm computes the path between cells by first de-
termining the cell directly to the left, right, above, and
beneath each table cell. To compute the cell directly
to the left of any given cell c, the algorithm looks at
all cells with a midpoint to the left of c’s midpoint
and between c’s top and bottom coordinates. It then
selects the cell with the shortest euclidean distance be-
tween its midpoint and c’s midpoint. The algorithm
computes the cell directly right, above, and beneath c
in a similar way. By observing the development set, we
discovered that genealogical tables most often contain
columns of value cells headed above by a label cell. In
contrast, the least common orientation occurred when
a label cell described the contents of a value cell above
it. To enforce this bias, we varied the confidence val-
ues assigned to label-cell/value-cell pairs in LV by the
likelihood of their orientation. If a vertical path of
cells exists between label cell li and value cell vj and
vj is below (above) li, the F1ij value is 1 (0.25). If a
horizontal path exists between li and vj and vj is to
the right (left) of li, the F1ij is 0.75 (0.50). If a path
does not exist between li and vj , the F1ij value is 0.

F2 The second feature compares the height and width of
each value cell with the height and width of each label
cell. We observed in the development set that a value
cell in a row generally has the same height as the label
cell that heads the row, and a value cell in a column
generally has the same width as the label cell that
heads the column. To measure this, the algorithm cal-
culates the difference in height (width) between each
label-cell/value-cell pair and then normalizes the dif-
ference by dividing by the largest height (width) over
all label-cell/value-cell pairs. The algorithm then sub-
tracts this result from 1 to ensure that small differences
receive high confidence values and large differences re-
ceive low confidence values.

Feature 6. LO: Label Cell Maps to Ontology
The algorithm tries to match each label cell with a concept
in the ontology. As an example, printed text The name of
every person whose place of abode on the first day of June,
1870 was in this family matches the concept Full Name in
the ontology in Figure 2. To establish a match, the algo-
rithm computes the product two features, F1ij and F2ij to
determine whether label cell li matches ontology concept oj .

F1 The algorithm first removes stop words (the articles,
prepositions, and other common words) from the printed
text associated with each label cell.9 The algorithm
then matches the synonyms10 of the concept names in
the ontology in Figure 2 with the text of the label cells,
giving preference to words matched at the beginning
of the character string for a label cell. Specifically, if
a synonym for an ontology concept oj matches a word
in label cell li, the algorithm sets F1ij to 1 divided
by the position of the matched word in the label cell’s
character string without the stop words. We divide

9We generated the list of stop words by using the common
words from the labels of the table cells in our development
set.

10We selected synonyms by placing the ontology-concept
name n in the list plus all synonyms found in labels of our
set of development documents.

by this position of the word because we observed that
in our development set the label cells generally have
representative words at the beginning of the label’s
character string.

F2 To further weight the matched words near the begin-
ning of a label when there are several matches, the
algorithm sets F2 to 1 divided by the count of pre-
viously matched words in the character string of the
label cell.

Feature 7. FM: Label Cell Factoring
Given label-cell/ontology-concept matches, the algorithm
can use the position of an ontology-recognized label cell in
relation to the position of another ontology-recognized label
cell to predict whether the values of one of the label cells
factors the values of the other label cell. In the development
set, the value cells of a label cell li only factored the value
cells of another label cell lj if li was above or to the left
of lj . To support this preference, the algorithm determines
whether the midpoint of a label cell li is to the left or if the
midpoint of li is above the midpoint of label cell lj . If so,
FMij is 1 and is otherwise 0. (Note that this simply marks
the possibility that the values of li factor the values of lj ;
we need correlation-rules adjustments before we have a final
answer.)

2.2 Correlation Rules
A correlation rule is an expression for updating the values
of an evidence matrix using (1) the values of another evi-
dence matrix, (2) information from the genealogical ontol-
ogy, or (3) other values elsewhere in the same evidence ma-
trix. These correlation rules attempt to find corroborating
evidence to increase confidence values or to find conflicting
evidence to decrease confidence values.

The algorithm iteratively applies a set of six correlation rules
to refine the seven populated evidence matrices. We iter-
ate through the rules because each rule makes only a small
change to the confidence values of a matrix at each step or
only performs an action when the values of in an evidence
matrix reach a predefined threshold. Thus one rule cannot
dominate the effects of other rules, and each rule is depen-
dent upon the changes made by other rules. In addition, the
rules work together to allow the confidence values to gradu-
ally settle. The algorithm iterates until no rules can update
confidence values, or until it reaches 1000 iteration. We set
the maximum number of iterations to 1000 because apply-
ing more than 1000 iterations had no effect on the results
for the development set.

The first correlation rule uses the confidence values in VV
that relate geometrically similar value cells to support the
concept that value cells associated with the same label cell
in LV should be geometrically similar. The evidence matrix
LV stores the confidence value of a label cell heading the
column or row of a particular value cell. The correlation
rule disassociates a value cell that is not similar to other
value cells associated with its label cell as follows. Let A
be the set of all value cells that are headed by a label cell
li with a confidence value greater than 0.5 in LV. For each
value cell vj in A, we consider every other value cell vk in
A (i.e. with vj fixed, we consider all k where 1 ≤ k ≤ |A|
and j �= k). If the confidence value of every vj-vk pair is less

than 0.5 in VV, the algorithm disassociates vj from A by
placing a 0 at position LVij . Note that i references the label
cell li, and j references the value cell vj to be removed.

11

The second correlation rule reassigns a label cell that maps
with high confidence to two or more subpart concepts of an
is-part-of relationship in the ontology to the superpart. For
example, if a label cell maps with high confidence to both
First Name and Last Name in Figure 2, the correlation rule
discards these two mappings and replaces them with a single
high-confidence mapping from the label cell to the superpart
concept Full Name. Specifically, the algorithm checks each
label li that associates with two or more subpart concepts
in an is-part-of relationship with a confidence value greater
than 0.5 in LO and maps li to the superpart by placing a 1
in the LO matrix at LOij for label li and concept oj and by
placing 0 at LOik1 and at LOik2 for label li and concepts
ok1 and ok2 .

The third correlation rule raises the confidence values for the
label cells that associate with value cells in likely geometric
orientations. Recall that we populated the LV matrix with
different values depending on whether the value cell was
below (1), right of (0.75), left of (0.5), or above (0.25) a
label cell. The algorithm associates each label cell li with
the all the value cells that have the highest confidence of
association with li and increments the confidence value in
the LV matrix 0.1 at each step of the iteration for each of
these label-cell/value-cell pairs.

The fourth correlation rule distributes label-to-concept map-
pings across multilevel groups of label cells. We do this to
combine groups of label cells into one composite label. For
example, Figure 1 has a three-level group of label cells where
the label cell RELATION maps to the concept Relationship
in the ontology (Figure 2), the label cell Relationship of the
Person to the Head of the Family also maps to Relationship,
and the label cell 4 does not map to any concept in the
ontology. To create a composite label, the algorithm first
gathers all the multilevel groups of labels using the confi-
dence values in the LL matrix. If the confidence value for
two labels is greater than 0.5, then the algorithm groups the
labels. We do this recursively to create groups of multilevel
label cells. Next, the algorithm copies the concepts associ-
ated with each label in the group to the other concepts in
the label cell in the group. In our example, the algorithm
assigns Relationship to 4, which is merely a column num-
ber. By distributing the concept mappings to each label cell
in a composite label, we aggregate the label cells into one
composite label with appropriate mappings to ontological
concepts.

The fifth correlation rule refines the factoring matrix, FM,
using the ontology O. Each concept has a particular ex-
pected participation in each of its incident relationships.
The 4.8 in Figure 2, for example, declares that there should
be approximately 4.8 people in each family. As we can see
from the example in Figure 3 when we factor NAME by No.
of Schedule, there are about 4.8 people in each family (by
actual count there are 6 families and 25 people, which is 4.2

11We set the constant values in this and other correlation
rules based on our observations of iteratively applying the
correlation rules to the development set.

Figure 3: Portion of a Microfilm Table with Factor-
ing

people per family in this example). The algorithm considers
each label-cell/ontology-concept pair that has a confidence
value greater than 0.5 in LO. The algorithm updates FM,
using the formula: FMij = FMij(1.6−|Oij−Nj/Ni|), where
Oij is the expected participation of concept i in a relation-
ship with concept j, Nj is the number of non-empty value
cells for label cell lj in LV with a confidence value greater
than 0.5, Ni is the number of non-empty value cells for label
cell li in LV with a confidence value greater than 0.5, and
1.6 is a parameter, which we experimentally determined us-
ing the development-set data. If the result FMij is less than
0 (greater than 1), the algorithm sets FMij to 0 (1). To il-
lustrate, let concept i be ROAD ... in Figure 3 and concept
j be NAME ..., then since ROAD ... is left of NAME ...,
FMij is 1 (see Feature 7), and since Oij = 4.8, Nj = 25,
and Ni = 4, the new value for FMij is 1(1.6− |4.8− 25/4|)
= 0.15.12

The sixth correlation rule increases the confidence value for
a label cell that maps to two or more concepts in the label-
to-ontology-concept matrix LO, allowing all to be accepted
when the concepts are separated by only one relationship in
the ontology. When the algorithm populates LO, it assigns
lower confidence values to concepts that match words at the
end of an concept’s character string. The goal of this sixth
correlation rule is to increase the confidence values for these
tail-end concepts if they relate closely to the other concepts
that map to the label cell. Thus, if only one relationship
separates two concepts, the algorithm changes the lesser of

12Note that in this example ROAD ... does not factor NAME
...; No. of Schedule does. Indeed, further note that if we let
i be No. of Schedule and j be NAME, FMij = 1.

the confidence values to the greater of the two.13 Suppose,
For example, that a label cell maps to the concept State
with a confidence value of 0.78 in LO and maps to the con-
cept Birth with a confidence value of 0.32 in LO. Observe
in Figure 2 that State is-part-of a Location and Birth is-a
specialization of Event, and that a single relationship con-
nects Location and Event. Hence, the algorithm increases
confidence value of Birth to 0.78.

3. EXPERIMENTAL RESULTS
3.1 Results
We ran the algorithm on a development set of 25 tables taken
from 5 different microfilm rolls and a test set of 75 tables
taken from 15 different microfilm rolls (20 different micro-
film rolls altogether). We measured the overall success of
the algorithm by observing the accuracy of the fields in the
generated SQL statements, where accuracy is the harmonic
mean 2/((1/P)+(1/R)) [2], which depends on the precision
P , the number of correctly populated fields divided by the
total number of populated fields, and the recall R, the num-
ber of correctly populated fields divided by the total number
of value fields the algorithm should have correctly placed in
the table.

We tuned the algorithm on the development set until we
obtained an accuracy of 99.71%. We could not obtain 100%
without some significant changes to to the way we build our
factoring matrix LO. Figure 3 helps us see the problem.14

The second column in Figure 3 labeled ROAD ... matches
Location in our ontology (Figure 2), but the first column
labeled No. of Schedule does not match anything in our
ontology. Since we factor only with respect to columns that
match our ontology, we grouped families 23 and 24 and also
25 and 26 who happen to live together in the same household
as separate families.

After tuning the algorithm on the 25 development tables, we
ran our algorithm on the 75 test tables. Although ground-
truthing can be hard for some tables [8], we encountered
no difficulty in determining correctness for the genealogical
microfilm tables we encountered. Table 1 shows the results
obtained by our algorithm along with a breakdown of the
results for each of the seven evidence matrices after iterating
over the correlation rules.

3.2 Discussion
The algorithm correctly identified all rows and columns. In-
deed, it even correctly separated columns from headers and
footers and rows from left and right margins. When not

13We only compare two at a time, but we do compare all
pairs when there are more than two label cells in a composite
label.

14By itself, Figure 3 would have declared that there is no
factoring at all (recall that we computed the factoring confi-
dence value for ROAD ... factoring NAME ... for this page
to be 0.15, too low too declare any factoring). Since micro-
film rolls repeat the same filled-in table in image after image,
however, we always consider several several images, not just
one, when we investigate factoring. When we considered
multiple images in the microfilm roll from which Figure 3
was taken, the system declared that ROAD ... does indeed
factor NAME ..., i.e. in subsequent pages there were signifi-
cantly fewer households comprised of more than one family.

Evidence Matrix Name Abbreviation Precision Recall Accuracy

Value-Cell Pairs (Rows) VR 100 100 100
Value-Cell Pairs (Columns) VC 100 100 100
Value-Cell Pairs (Similar Shape) VV 100 100 100
Multilevel Labels LL 100 99.67 99.82
Label-Cell / Value-Cell Pairs LV 100 98.12 98.97
Label-Cell-to-Ontology Mappings LO 84.98 92.76 88.18
Factored Label Cells FM 100 93.40 93.47
All Database Fields 93.20 92.41 92.15

Table 1: Results for the 75 Test Tables

100% correct, its recall values for correctly composing mul-
tilevel labels, for correctly labeling value cells, for correctly
mapping labels to the ontology, and for correctly recogniz-
ing the factoring in the form were all better than 90%. The
precision for all evidence matrices except mapping labels to
ontology concepts was 100%. Thus, except for being too ag-
gressive in declaring label-to-ontology mappings about 15%
of the time, the system never declared a false relationship
in a processed evidence matrix.

Although highly accurate, it is interesting to consider the
five recall and precision measures that are less than 100% in
Table 1.

• Recall for Multilevel Labels. One of our test tables
had very narrow label cells and highly skewed vertical
columns. With respect to our test (Feature 4), this
combination caused us to miss forming a group when
it really did exist.

• Recall for Label-Cell / Value-Cell Pairs. In one of our
test tables the label Men Married was the label for a
double column, the first of which was for the man’s
last name and the second of which was for the man’s
first name. For this table, the algorithm mapped the
label cell Men Married to the concept Full Name. Al-
though the algorithm declares that both columns to-
gether represent a name, it was unable to separately
declare the last and first names. Having access to some
of the values (assuming ICR for handwriting will even-
tually be possible), the algorithm could be augmented
to use this information and an example (which actu-
ally appeared) such as “Zwicker” in the first column
and “John” in the second column to sort out first and
last names.

• Recall for Label-Cell-to-Concept Mappings. The algo-
rithm sometimes incorrectly matched concepts with la-
bel cells with long character strings of machine-printed
text. Although not very readable, it is nevertheless
clear that many of the labels in Figure 1 are long.
Of the 75 test tables, 40 exhibited this problem to
some degree, and the system mapped several of them
correctly. As one specific incorrect example, the algo-
rithm mapped the label cell with the machine-printed
text State here the particular Religion, or Religious
Denomination, to which each person belongs. [Mem-
bers of Protestant Denominations are requested not to
describe themselves by the vague term ’Protestant,’ but
to enter the name of the Particular Church, Denom-
ination, or Body, to which they belong.].” Since the

label cell’s text begins with the word State, the algo-
rithm mapped the label cell to the concept State for
Location in Figure 2. Natural language processing can
be used to overcome this problem by detecting the
part-of-speech and meaning of these words. Since the
word State in the label cell is a verb, it is possible to
determine that the algorithm should not match it to
the noun State that is a location.

• Recall for Factored Label Cells. We identified and dis-
cussed this error in connection with our explanation
about why we could not obtain 100% for our develop-
ment set. A potential solution to this problem would
be to observe that nonempty cells, especially nonempty
cells on the left, matter—in Figure 3 No. of Schedule,
including in particular the 24 and the 26, factor fami-
lies even though the label does not match the ontology.

• Precision for Label-Cell-to-Concept Mappings. An in-
teresting example happened when the system falsely
declared that the label RELIGIOUS PROFESSION
should map to the concept Occupation. We usually
think of a profession as an occupation, but the help we
needed here, again, was natural language processing,
which would have identified the adjective RELIGIOUS
as modifying the noun to give the nominalized verb a
different meaning.

Finally, we observe that with an overall accuracy of 92.15%,
the algorithm correctly identified records, correctly obtained
each field, and correctly associated it with related fields.15

We further note that because the tables in each microfilm
roll are usually the same, it is reasonable for a human to
verify the work done by the automatic record recognizer
and adjust the results when they are not 100% accurate.
Thus, with (possibly) minor adjustments, all records for the
(approximately) 1,000 images on a roll of microfilm could be
correctly identified and properly highlighted and categorized
(as Name, Age, Occupation, Date of Birth, ...) for extraction
work either by a human extractor, a semiautomatic extrac-
tor, or (in the future, when ICR for handwriting works well
enough) a fully automatic extractor.

15The relational database generated from the ontology in
Figure 2 included 5 tables: the first called Person with
21 attributes, the second called Family with 7 attributes,
the third called Event with 11 attributes, the fourth called
Mother Child with 2 attributes, and the fifth called Fa-
ther Child also with 2 attributes.

4. CONCLUDING REMARKS
We have described an algorithmic process to automatically
identify record patterns found in microfilm tables with ma-
chine-printed labels and handwritten values. Our approach
exploited both geometric and ontological properties of ta-
bles, making use of a set of seven evidence matrices to es-
tablish initial geometric and ontological properties and then
iterating over six correlation rules to corroborate evidence to
strengthen or weaken the confidence values in the evidence
matrices. After iterating to settle conflicts, the algorithm
produced SQL insert statements for each value cell belong-
ing to a record in the original document. The algorithm
achieved a precision of 93.20 percent, a recall of 92.41 per-
cent, and an accuracy of 92.15 percent on the database fields
populated from the microfilm tables in our test set.

5. REFERENCES
[1] A. Amano, N. Asada, T. Montoymam, T. Sumiyoshi,

and K. Suzuki. Table form document synthesis by
grammar-based structure analysis. In Proceedings of
the Sixth International Conference on Document
Analysis and Recognition (ICDAR’01), pages 533–537,
Seattle, Washington, September 2001.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, Menlo Park,
California, 1999.

[3] A. El-Nasan and G. Nagy. Ink-link. In Proceedings of
the 15th International Conference on Pattern
Recognition (ICPR-2000), pages 573–576, Barcelona,
Spain, September 2000.

[4] A. El-Nasan and G. Nagy. On-line handwriting
recognition based on bigram co-occurrences. In
Proceedings of the Sixteenth International Conference
on Pattern Recognition (ICPR’02), Quebec City,
Canada, August 2002. to appear.

[5] E. Green and M. Krishnamoorthy. Model-based
analysis of printed tables. In Proceedings of the Third
International Conference on Document Analysis and
Recognition (ICDAR’95), pages 214–217, Montréal,
Canada, August 1995.

[6] J. Handley. Chapter 8: Document recognition. In
E. Dougherty, editor, Electronic Imaging Technology,
pages 289–316, 1999.

[7] H. Hou. Digital Document Processing. Wiley, New
York, New York, 1983.

[8] J. Hu, R. Kashi, D. Lopresti, G. Nagy, and
G. Wilfong. Why table ground-truthing is hard. In
Proceedings of the Sixth International Conference on
Document Analysis and Recognition, pages 129–133,
Seattle, Washington, September 2001.

[9] M. Hurst and S. Douglas. Layout and language:
Preliminary investigations in recognizing the structure
of tables. In Proceedings of the International
Conference on Document Analysis and Recognition
(ICDAR’97), pages 1043–1047, Ulm, Germany,
August 1997.

[10] S. Jager. Recovering Dynamic Information from
Static, Handwritten Word Images. PhD thesis,
University of Freiburg, 1997.

[11] A. Jobbins and L. Evett. Segmenting documents using
multiple lexical features. In Proceedings of the Fifth
International Conference on Document Analysis and
Recognition (ICDAR’99), pages 721–724, Bangalore,
India, September 1999.

[12] T. Kochi and T. Saitoh. User-defined template for
identifying document type and extracting information
from documents. In Proceedings of the Fifth
International Conference on Document Analysis and
Recognition, pages 127–130, Bangalore, Indea,
September 1999.

[13] D. Lopresti and G. Nagy. Automated table processing:
An (opinionated) survey. In Proceedings of the Third
IAPR Workshop on Graphics Recognition, pages
109–134, Jaipur, India, September 1999.

[14] D. Olsen. Challenges in constructing a digital
microfilm library. In Proceedings of the Second Annual
Family History Technology Workshop, Provo, Utah,
April 2002.

[15] C. Peterman, C. Chang, and H. Alam. A system for
table understanding. In Proceedings of the Symposium
on Document Image Understanding Technology
(SDIUT’97), pages 55–62, Annapolis, Maryland,
April/May 1997.

[16] P. Pyreddy and W. Croft. TINTIN: A system for
retrieval in text tables. In Proceedings of the 2nd ACM
International Conference on Digital Libraries,
Philadelphia, Pennsylvania, July 1997.

[17] S. Rice, G. Nagy, and T. Nartker. Optical Character
Recognition: An Illustrated Guide to the Frontier.
Kluwer Academic Publishers, Boston, Massachusetts,
1999.

[18] Y. Tang, S. Lee, and C. Suen. Automatic document
processing: A survey. Pattern Recognition,
29(12):1931–1952, 1996.

[19] J. van Vliet. Document Manipulation and Typography.
Cambridge University Press, Cambridge,
Massachusetts, 1988.

[20] T. Watanabe, Q. Quo, and N. Sugie. Layout
recognition of multi-kinds of table-form documents.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(4):432–445, 1995.

[21] K. Zuyev. Table image segmentation. In Proceedings
of the International Conference on Document Analysis
and Recognition (ICDAR’97), pages 705–708, Ulm,
Germany, August 1997.

