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Abstract

Data on the Web in HTML tables is mostly structured, but we usually do not know the struc-
ture in advance. Thus, we cannot directly query for data of interest. We propose a solution
to this problem based on document-independent extraction ontologies. The solution entails
elements of table understanding, data integration, and wrapper creation. Table understanding
allows us to recognize attributes and values, pair attributes with values, and form records.
Data-integration techniques allow us to match source records with a target schema. Ontolog-
ically specified wrappers allow us to extract data from source records into a target schema.
Experimental results show that we can successfully map data of interest from source HTML
tables with unknown structure to a given target database schema. We can thus “directly”
query source data with unknown structure through a known target schema.

1 Introduction

The schema-mapping problem for heterogeneous data integration is hard and is worthy of study

in its own right [MBR01]. The problem is to find a semantic correspondence between one or more

source schemas and a target schema [DDH01]. In its simplest form the semantic correspondence

is a set of mapping elements, each of which binds an attribute in a source schema to an attribute

in a target schema or binds a relationship among attributes in a source schema to a relationship

among attributes in a target schema. Such simplicity, however, is rarely sufficient, and researchers

thus use queries over source schemas to form attributes and relationships among attributes to

bind with target attributes and attribute relationships [MHH00, BE02]. Furthermore, as we shall

see in this paper, we may also need queries beyond those normally defined for database systems.

Thus, we more generally define the semantic correspondence for a target attribute as any named

or unnamed set of values that is constructed from source elements, and we define the semantic

correspondence for a target n-ary relationship among attributes as any named or unnamed set of

n-tuples over constructed value sets. The sets of values for target attributes may be constructed

in any way, e.g. directly taken from source values, computed over source values, or manufactured

from source attribute names or from strings in table headers or footers.
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Car Year Make Model Mileage Price PhoneNr Car Feature
0001 1999 Ford Mustang 42,130 $10,988 405-936-8666 0001 Yellow
0002 1998 Ford Taurus 63,168 $7,988 405-936-8666 0001 Power Steering

... ...
0011 1992 ACURA legend $9500 0002 Black
0012 2000 AUDI A4 $34,500 0002 Power Brakes
0013 1985 BMW 325e $2700.00 ...

... 0011 grey
0011 Auto
0011 AM/FM

...

Figure 1: Sample Tables for Target Schema

We limit our discussion here to HTML tables found on the Web.1 We consider these HTML

tables to be our sources. Our target schema is an augmented conceptual-model instance (defined,

explained, and illustrated in Section 2).

As a running example, we use car advertisements, which are plentiful on the Web and which

often present their information in tables. Suppose, for example, that we are interested in viewing

and querying Web car ads through the target database in Figure 1, whose schema is

{Car, Year, Make, Model, Mileage, Price, PhoneNr}
{Car, Feature}.

Figures 2 [Bob02], 3 [Bob02], and 4 [Aut01] show some potential source tables. The data in the

tables in Figure 1 is a small part of the data that can be extracted from Figures 2, 3, and 4.

1.1 Matching Problems

It is easy to see that Year in the source table in Figure 2 as well as Year in the source table in

Figure 4 map to Year in the target table in Figure 1. It is not so easy, however, to see that both

Exterior in Figure 2 and Colour in Figure 4 map to Feature in Figure 1 and even harder to see

that we should map the attributes Auto, Air Cond., AM/FM, and CD in Figure 4 as values for

Feature in Figure 1, but only for “Yes” values.

In the following list we describe many matching problems that arise when trying to match

source HTML tables with a target schema.

• Merged Attributes. Make and Model are separate attributes in Figure 1 but are merged as

one attribute in Figure 2.
1The problems encountered in HTML tables are more than sufficient for this investigation. Table extraction

within the broader context of images of paper tables and other types of electronic tables [LN99b] is also possible.
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Figure 2: Table from www.bobhowardhonda.com

• Subsets. Exterior in Figure 2 and Colour in Figure 4 contain colors. Colors in the target

are a special kind of Feature and thus the set of colors in Figures 2 and 4 are subsets of the

feature values we want for Figure 1. Indeed, these are proper subsets since there are also

many other feature values in Figures 2, 3, and 4.

• Synonyms. Mileage in Figure 1 and Miles in Figure 2 have the same meaning, but the

attribute names are not the same.

• Extra Information. The tables in Figure 1 make no request for photographs, which are

present in Figure 2.

• Information Hidden Behind a Link. The values for the attribute Make and Model are

linked to further information. Clicking on Ford Taurus in Figure 2 yields the information

in Figure 3.

• A List Rather than a Table. A one dimensional table and a list are similar in appearance.

Features in Figure 3 is a list, but could just as easily have been formatted as a table.

Although it is a list, we nevertheless wish to match Features in Figure 3 with Feature in

Figure 1.

• Tables for Layout Rather than Information. The structured information beginning with

Send Me More Information in Figure 3 is formatted using HTML table constructs, but

this “table” does not have the attribute-value characteristics of a table. Indeed, we do not

consider it to be a table even though it is constructed as an HTML table.

• Nested Tables. The table beginning with Price then Mileage in Figure 3 is nested within

the larger layout table (which could just have easily been a standard informational table).

• Position and Composition of Attributes. The nested table in Figure 3 has its attributes in

the left column, rather than in the top row, which is more typical. The table in Figure 5
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Figure 3: Subtable Linked from www.bobhowardhonda.com
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Figure 4: Table from www.autoscanada.com

has compond attributes (e.g. CITY and HWY are subdivisions of FUEL ECONOMY ).

Furthermore, attributes may appear both in the top row and in the left column and may, at

the same time, be compound. Sometimes it is even hard to tell: are the Honda Civic strings

in Figure 5 attributes or values with implicit attributes?

• Missing Information. The tables in Figure 1 expect a phone number, but none of the tables

in Figures 2, 3, or 4 contain a phone number.

• External Factored Information. Although no phone number appears in the tables in Figures 2

or 3, phone numbers do appear in the text above the tables in Figure 3. Further, although

not shown, the footer information on the page below the table in Figure 2 also contains

phone numbers (including a fax number). A value, such as a dealer phone number, that

applies to all records in a table is often factored out, external to the table, and displayed

only once.

• Internal Factored Information. Sometimes cars are grouped by years or by makes or by some

other value, which is then factored out and written only once for each group. We may, for

example, write ACURA in only the first row in Figure 4, leaving the Make entry blank in

rows two and three. Double factoring and triple factoring (and more) is also possible. We

may, for example, factor the model Legend for rows two and three in Figure 4 in addition

to factoring ACURA for rows one through three.

• Multiple Occurrences of the Same Attribute-Value Pair. The price for the Ford Taurus in

Figures 2 and 3 appears three times, once under Price in Figure 2, once as the value for the
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Figure 5: Table with a More Complex Attribute Structure

Price attribute in the nested table in Figure 3, and once at the top of the layout table in

Figure 3. (Luckily, the values are all the same.) Other values also appear more than once.

The number of miles, in fact, appears with two different attributes, once with Miles and

once with Mileage.

• Multiple Values where One is Expected. The tables in Figure 1 expect at most one contact

phone number for each vehicle, but there may be several as Figure 3 shows.

• Attribute as Value. In Figure 4, observe that the features Auto, Air Cond., AM/FM, and

CD are all attributes rather than values. Here, we must understand that Yes and No are

not the values; rather they indicate whether the values Auto, Air Cond., AM/FM, and CD

should be included as Feature values in the tables in Figure 1.

This list is not exhaustive. It certainly illustrates, however, that there are many problems to

solve.

1.2 Matching Solutions—Our Contribution

Rather than directly try to find mappings from source schemas to target schemas as suggested

in [MHH00, DDH01, MBR01, BE02], our contribution in this paper is to argue for a different

approach, show that it works, and explain why it may be superior. The approach requires table

understanding [LN99b] and extraction ontologies [ECJ+99] and results in establishing a semantic

correspondence between a source schema and a target schema. Our approach includes four steps.

1. Form Attribute-Value Pairs. Using table understanding techniques, we determine, for ex-

ample, that <Year : 1999> and <Exterior : Yellow> are two of the attribute-value pairs for

the first record in Figure 2.

2. Adjust Attribute-Value Pairs. We convert, for example, the recognized attribute-value pair

<CD : Yes> in row one of Figure 4 to CD, meaning that this car has a CD player, and the

the pair <CD : No> in row two to a null string, meaning that this car has no CD player.
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3. Perform Extraction. The extraction ontology recognizes, for example, that the 42,130 in

the first row in Figure 2 should be extracted as the Mileage for the first car in Figure 1 and

that the first part of the value Ford Mustang should be extracted as the Make while the

second part should be extracted as the Model.

4. Infer Mappings. Given the recognized extraction (which, by the way, need not be 100%),

the system can infer the general mapping from source to target. Based on the extraction

examples above, the system would know, for example, that the Miles values in Figure 2 map

to Mileage in the target (Figure 1), that the first part of the Make and Model strings map

to Make, and that the remaining characters in the strings map to Model.

We present the details of our contribution in the remainder of the paper as follows. Section 2

describes extraction ontologies. Section 3 then provides the details for each of the four steps of

our approach. In Section 4, we report the results of an experiment we conducted in which we

derived source-target mappings for several dozen HTML tables for car advertisements, which we

found on the Web. We summarize and point to future research work in Section 5.

2 Extraction Ontologies

An extraction ontology is a conceptual-model instance that serves as a wrapper for a narrow

domain of interest such as car ads. The conceptual-model instance includes objects, relationships,

constraints over these objects and relationships, and descriptions of strings for lexical objects

and keywords denoting the presence of objects and relationships among objects. When we apply

an extraction ontology to a Web page, the ontology identifies the objects and relationships and

associates them with named object sets and relationship sets in the ontology’s conceptual-model

instance and thus wraps the page so that it is understandable in terms of the schema implicitly

specified in the conceptual-model instance. The hard part of writing a wrapper for extraction is to

make it robust so that it works for all sites, including sites not in existence at the time the wrapper

is written and sites that change their layout and content after the wrapper is written. Wrappers

based on extraction ontologies are robust.2 Robust wrappers are critical to our approach: without

them, we may have to create (by hand or at best semiautomatically) a wrapper for every new

table encountered; with them, the approach can be fully automatic.
2Page-specific, handwritten wrappers (e.g. the early wrappers produced for TSIMMIS [CGMH+94]) are not

robust. Machine-learning-based wrappers (e.g. [KWD97, Sod99]) are not robust since new and changed pages must
be annotated and learned. Wrappers that automatically infer regular expressions for Web pages (e.g. [CMM01]) are
robust in the sense that the regular-expression generator only needs to be rerun for new and changed pages; however,
high page layout regularity is required, an assumption that often fails, but which we intend to consider in our future
work with tables. Extraction ontologies (e.g. [ECJ+99]) are robust because they are based on conceptual-model
specifications of a domain of interest, not on page layout. Although they are hand-crafted, as ontologies typically
are, our experience shows that an expert can create a reasonably good extraction ontology for a narrow domain of
interest such as car ads in a few dozen person-hours.
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1. Car [-> object];

2. Car [0:1] has Year [1:*];

3. Car [0:1] has Make [1:*];

4. Car [0:1] has Model [1:*];

5. Car [0:1] has Mileage [1:*];

6. Car [0:*] has Feature [1:*];

7. Car [0:1] has Price [1:*];

8. PhoneNr [1:*] is for Car [0:1];

9. Year matches [4]

10. constant {extract "\d{2}";
11. context "\b’[4-9]\d\b";
12. substitute "ˆ" -> "19"; },
13. ...

14. Mileage matches [8]

15. ...

16. keyword "\bmiles\b", "\bmi\.", "\bmi\b",
17. "\bmileage\b", "\bodometer\b";
18. ...

Figure 6: Car-Ads Extraction Ontology (Partial)

An extraction ontology consists of two components: (1) an object/relationship-model instance

that describes sets of objects, sets of relationships among objects, and constraints over object and

relationship sets, and (2) for each object set, a data frame that defines the potential contents of

the object set. A data frame for an object set defines the lexical appearance of constant objects

for the object set and establishes appropriate keywords that are likely to appear in a document

when objects in the object set are mentioned. Figure 6 shows part of our car-ads application

ontology, including object and relationship sets and cardinality constraints (Lines 1-8) and a few

lines of the data frames (Lines 9-18).

An object set in an application ontology represents a set of objects which may either be lexical

or nonlexical. Data frames with declarations for constants that can potentially populate the

object set represent lexical object sets, and data frames without constant declarations represent

nonlexical object sets. Year (Line 9) and Mileage (Line 14) are lexical object sets whose character

representations have a maximum length of 4 characters and 8 characters respectively. Make, Model,

Price, Feature, and PhoneNr are the remaining lexical object sets in our car-ads application; Car

is the only nonlexical object set.

We describe the constant lexical objects and the keywords for an object set by regular expres-

sions using Perl syntax.3 When applied to a textual document, the extract clause (e.g. Line

10) in a data frame causes a string matching a regular expression to be extracted, but only if

the context clause (e.g. Line 11) also matches the string and its surrounding characters. A

substitute clause (e.g. Line 12) lets us alter the extracted string before we store it in an in-
3Thus, for example, “\b” indicates a word boundary, “\d” indicates a numeric digit, and so forth.
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termediate file. (For example, the Year data frame treats a year written “’95” as the constant

“1995”.) We also store the string’s position in the document and its associated object set name

in the intermediate file. One of the nonlexical object sets must be designated as the object set of

interest—Car for the car-ads ontology, as indicated by the notation “[-> object]” in Line 1.

We denote a relationship set by a name that includes its object-set names (e.g. Car has

Year in Line 2 and PhoneNr is for Car in Line 8). The min:max pairs in the relationship-set

name are participation constraints. Min designates the minimum number of times an object in

the object set can participate in the relationship set and max designates the maximum number

of times an object can participate, with * designating an unknown maximum number of times.

The participation constraint on Car for Car has Feature in Line 6, for example, specifies that a

car need not have any listed features and that there is no specified maximum for the number of

features listed for a car.

When we apply an extraction ontology to extract data, we first find record boundaries and

divide a document into chunks of information, one for each record. (Although difficult in general,

for tables whose tuples correspond to the object of interest, finding record boundaries is straight-

forward.) We then apply all regular expressions to each record, one at a time. For each record,

the result is list of five-tuples: <Recognized Character String, Object Set of String Recognizer,

Whether the Recognized String is a Keyword or a Value, Recognized String Start Location, String

Length>. To this list, we apply five heuristics.

1. Subsumed/Overlapping Constants. We assume that no Recognized String and no overlapping

part of a Recognized String corresponds with more than one Object Set. We thus discard

the 5-tuples of Recognized Strings subsumed by other Recognized Strings and also discard

the 5-tuples of Recognized Strings that overlap the tail-end of other Recognized Strings.

2. Keyword Proximity. For any Recognized String that is a possible Value for more than one

Object Set, the closest Keyword (if any) disambiguates the possibilities. We thus discard

all ambiguous Value 5-tuples except the closest ones to disambiguating Keywords. Having

finished using Keywords, we discard all Keyword 5-tuples.

3. Functional Relationships. If only one Value String for an Object Set should appear and only

one remains, it is selected as the value for the Object Set for the record.

4. Nonfunctional Relationships. If several Value Strings may appear for an Object Set, we take

them all as values for the Object Set for the record.

5. First Occurrence. If only one Value String for an Object Set should appear but several

remain, the first is selected as the value for the Object Set for the record.

See [ECJ+99] for details.
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3 Derivation of Source-to-Target Schema Mappings

We assume that each tuple in the top-level table corresponds to a primary object of interest.4 One

consequence of this assumption is that we can simply generate an object identifier for each of these

objects. Indeed, this is how we obtain the values under the attribute Car in Figure 1. Another

consequence of this assumption is that we can easily group the source information into record

chunks, one chunk of information for each object of interest. The information chunk for the 1998

Ford Taurus in Figure 2, for example, is the second tuple in the table plus all the information in

Figure 3. Having record chunks allows us to more easily build the atomic relationships between

an object of interest and its associated data once we find the semantic correspondence for each

target attribute. Hence, we are able to reduce the problem of finding a semantic correspondence

to just finding the semantic correspondence for each target attribute A, which we defined earlier

as the problem of finding the set of values constructed from source elements that corresponds to

A.

We accomplish this objective using a “back-door” approach. Instead of directly searching for a

mapping that associates each target attribute A with a value set in a source, we use our extraction

ontology to search for values in the source that are likely to be found in the value set for A. Then,

from the pattern of values we find, we infer what the mapping must be. This approach more

easily allows us to recognize some of the unusual indirect mappings we are likely to encounter

such as Attribute as Value, External Factored Information, and Merged Attributes as discussed

and illustrated in the introduction. The following four subsections correspond to the four steps of

our proposed approach.

3.1 Form Attribute-Value Pairs

The table understanding problem takes as input a table (for our work here, an HTML table) and

produces standard records as output. Each record produced is a set of attribute-value pairs. A

successful table-understanding system, for example, would produce the third record in the table

in Figure 4 as

{<Make: ACURA>, <Model : legend>, <Year : 1992>, <Colour : grey>,

<Price: $9500>, <Auto: Yes>, <Air Cond.: No>, <AM/FM : Yes>, <CD : No>}

The hard part of table understanding is to recognize which cells contain the attributes and

which contain the values and then to recognize which attributes go with which values. If we could

depend on the attributes always being in column headers with one attribute for every column,

attribute/value identification would be much simpler; but this is not always the case even though
4We do not address fundamental mismatches of primary objects in our work here. Whether this approach extends

to cases where we cannot easily find an alignment for the main objects of interest (cars in our example here) is a
question for future research.
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Year Make Model Price Year Make Model Price
1995 Ford F150 Super Cab $6,988 1995 Ford F150 Super Cab $6,988

Contour GL $3,988 1995 Ford Contour GL $3,988
ACURA INTEGRA LS $14,500 1995 ACURA INTEGRA LS $14,500
Honda Civic EX 1995 Honda Civic EX

1994 Ford F150 $4,488 1994 Ford F150 $4,488
Probe $3,988 1994 Ford Probe $3,988
Taurus LX $2,988 1994 Ford Taurus LX $2,988

(a) (b)

Figure 7: Internal Factoring in Tables

it is common. Furthermore, since HTML table creators do not always use the tags <th>, <td>,

and <tr> as they were intended, we cannot use HTML tags to solve this problem. [LN99a] has

a solution for a common subclass of HTML tables, but not for all HTML tables.5

Once we have identified attributes, we can immediately associate each cell in the grid layout

of a table with its attribute. If the cell is not empty, we also immediately have a value for the

attribute and thus an attribute-value pair. If the cell is empty, however, we must infer whether

the table has a value based on internal factoring or whether there is no value. Figure 7a shows an

example of internal factoring. The empty Year cell for the Contour GL, for example, is clearly

1995, whereas the Price for the Honda is simply missing. We recognize internal factoring in a

two-step process:6 (1) we detect potential factoring by observing a pattern of empty cells in a

column, preferrably a leftmost column or a near-leftmost column; (2) we check to see whether

adding in the value above the empty cell helps complete a record by adding a value that would

otherwise be missing.

Once we recognize the factoring in a table, we can rewrite the schema as a nested schema that

reflects the factoring and then unnest the table to distribute factored values and to return the

schema for the nested table to an unnested schema. Textually, we represent a nested component

of a schema by (Ai, ..., An)* where the Ai’s are attribute names. In general, nested components

may appear inside of and along side of other nested components. The nested schema that defines

the internal factoring for the table in Figure 7a is Y ear, (Make, (Model, Price)* )*.

To unnest a table with a nested schema, we use a µ operator whose definition is based on the

unnest operator in [KS91]. We write µN t to unnest the nested component N of nested table t.
5In our work here, we accept this simpler solution for now, but in some of our other work [Haa98, Tub01] we

have explored the attribute-recognition problem, and in future work, we intend to provide a general solution. Once
we have a general solution, the approach we propose here carries over without change.

6This procedure is more fully described in [EX00], where we explain how we use a multi-dimensional cosine
measure and a hill-climbing procedure to recognize factored values and appropriately distribute them to their
proper records.
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To unnest table Ta in Figure 7a, for example, we can apply µ(Make, Model, P rice)∗µ(Model, P rice)∗Ta,

which yields the table in Figure 7b. Here, we start with Y ear, (Make, (Model, Price)* )*. After

the first operation µ(Model, P rice)∗, the schema is Y ear, (Make, Model, Price)* and the Makes

have been distributed to the Models, i.e. Ford appears in the empty cells in the Make column in

Figure 7a in our example. Then after the second operation µ(Make, Model, P rice)∗, which distributes

the Years to each empty cell in the Year column, we have the table in Figure 7b. Alternatively, we

could have achieved the same result by applying µ(Model, P rice)∗µ(Make, (Model, P rice)∗)∗Ta, which

first distributes the years to each make and then distributes Year-Make pairs to each Model. In

either case, once we have resolved internal factoring with the µ operator, we immediately have

the table’s attribute-value pairs.

3.2 Adjust Attribute-Value Pairs

After discovering attribute-value pairs, we make some adjustments to prepare each record for

data recognition by means of an extraction ontology. We format attribute-value pairs for easy

recognition by the extraction ontology. We add in linked sub-information for each record (i.e. we

add the information in Figure 3 to the ordered pairs for the second record in Figure 2). If we wish

to process nontext items such as icons, we could replace them with text; for example, we could

replace a color-swatch icon with the name of the color.7 Finally, we process Boolean indicators,

such as “Yes/No” in Figure 4, by replacing them with attribute-name values.

For our running example, the adjusted attribute-value pairs in the third record in Figure 4

become

Make: ACURA; Model : legend ; Year : 1992; Colour : grey ; Price: $9500; Auto; AM/FM ;

Here, the Boolean-valued attribute-value pair <Auto: Yes> has become simply Auto, meaning

that the car has an automatic transmission, and the pair <AM/FM : Yes> has become AM/FM,

meaning that the car has an AM/FM radio. Further, the attributes for the No values, Air Cond.

and CD have disappeared altogether, meaning that the car has neither air conditioning nor a CD

player.

When attribute names are the values we want and the values are some sort of Boolean indicator

(e.g. Yes/No, True/False, 1/0, cell checked or empty), we transform the Boolean indicators into

attribute-name values with the help of a β operator which we introduce here. Syntactically we

write βA
T,F r where A is an attribute of relation r and T and F are respectively the Boolean

indicators for the True value and the False value given as A values in r. The result of the β

operator is r with the True values of the A column replaced by the string A and the False values

of A replaced by the null string. As an example, consider βAuto
Y es,Noβ

Air Cond.
Y es,No β

AM/FM
Y es,No βCD

Y es,NoT

which transforms the table T in Figure 4 to the table in Figure 8.
7Our current implementation does not replace nontext items with text. We leave this for future work.

12



Make Model Year Colour Price Auto Air Cond. AM/FM CD
ACURA INTEGRA LS 1995 Red $14,5000 Auto Air Cond. AM/FM CD
ACURA Legend 1988 Red $4,600.00
ACURA legend 1992 grey $9500 Auto AM/FM
AUDI A4 2000 Blue $34,500 Auto Air Cond. AM/FM CD
BMW 325e 1985 black $2700.00 AM/FM
CHEVROLET Cavalier Z24 1997 Black $11,995.00 Air Cond. AM/FM
Honda Civic EX 1995 White $6300 Auto Air Cond. AM/FM

Figure 8: Table in Figure 4 Transformed by the β Operator

3.3 Perform Extraction

Once we have adjusted attribute-value pairs as just discussed, we apply our extraction ontology.

For our running example, the extraction for the third record in Figure 4 yields

{<Car : 0011>, <Year : 1992>, <Make: ACURA>, <Model : legend>, <Mileage: >,

<Price: $9500>, <PhoneNr : >},
{<Car : 0011>, <Feature: grey>},
{<Car : 0011>, <Feature: Auto>},
{<Car : 0011>, <Feature: AM/FM>}.

We emphasize that our extraction ontology is capable of extracting from unstructured text as well

as from structured text. Indeed, we can directly extract the phone numbers and features from the

text, list, and horizontal table in Figure 3.8

For direct extraction we introduce the ε operator, which is based on a given extraction ontology.

We define εSt as an operator that extracts a value, or values, from unstructured or semistructured

text t for object set S in the given extraction ontology O according to the extraction expression for

S in O. The ε operator extracts a single value if S functionally depends on the object of interest

x in O, and it extracts multiple values if S does not functionally depend on x. As an example,

εPhoneNrP extracts 405-936-8666 from the unstructured text in page P in in Figure 3 and returns

it as the single-attribute, single-tuple, constant relation {<PhoneNr : 405-936-8666>}.
We can use the ε operator in conjunction with a natural join to add a column of constant

values to a table. For example, assuming that the phone number 405-936-8666 appears in page

P with the table in Figure 2, which indeed it does, we could apply εPhoneNrP 1 T to add a

column for PhoneNr to table T in Figure 2.
8For the results we obtain in Section 4, our implementation uses this technique. We process top-level tables

using table understanding as explained here, but we process pages linked from individual records only by applying
our extraction ontology to the raw semistructured information found in a linked page.
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At this point we could take a data-warehousing approach and directly insert this extracted

information into a global database as Figure 1 implies. Alternatively, instead of populating the

global database, we can use this information to infer a mapping from the source to the target and

extract information from sources whenever a query is posed against the global database schema.

3.4 Infer Mappings

We record the sequence of transformations produced when we form attribute-value pairs and when

we adjust attribute-value pairs in preparation for extraction, and we observe the correspondence

patterns obtained when we extract tuples with respect to a given target ontology. Based on this

sequence of transformations and these correspondence patterns, we can produce a mapping of

source information to a target ontology. As a simple example, consider mapping the table Ta in

Figure 7a to the target schema for the tables in Figure 1. We first apply the µ operator to do the

unnesting and obtain table Tb in Figure 7b. We then observe that objects extracted for the Year

object set in the target come from the Year column in Tb. Similarly, for Make, Model, and Price,

we also observe a direct correspondence. Hence, we can record the semantic correspondence of Ta

and the target schema as the mapping Year = πY earµ(Make, Model, P rice)∗µ(Model, P rice)∗Ta, Make

= πMakeµ(Model, P rice)∗Ta, Model = πModelTa, and Price = πPriceTa.

Creating an inferred mapping has two important advantages. (1) The global view can be

virtual. Since we have a formal mapping, we can translate any query applied to the global view

to a query on the source, optimize it, execute it, and return the results from the source for the

global query.9 (2) We can obtain additional values not recognized by the ontology, but which are

nevertheless valid values in the source. For example, Super Cab may not be technically part of

the model for the 1995 Ford F150 in Figure 2, and the ontology may therefore not recognize it

as part of the model. Nevertheless, someone declared Super Cab to be part of the model, and

we should therefore extract it as such. Using the mapping, we extract full strings under Model

in Figure 7a and thus we obtain F150 Super Cab as the model for the 1995 Ford even though

the extraction ontology may only pick up F150 as the model. As another example, the mapping

approach would obtain all the Features in the list in Figure 3 even though the ontology may not

recognize all of them as features. When we use the mapping, we generalize over the structure and

infer additional information not specifically recognized by the ontology.10

9Since the main contribution of this paper is the derivation of the mappings, not local query rewriting [LRO96,
Ull97], we leave for future research a full explanation of this procedure. The idea, however, is quite straightforward
once we have the semantic correspondence. Since we know the record structure of the source, we can add object
identifiers for each value in the value sets. We can then join over these OID-augmented value sets to obtain a
universal relation. Since the mappings result in sets associated with target attributes, if we add columns of null
strings for each target attribute with no correspondence, we will have a universal relation over the target attributes.
We can now project onto the schema for each of the target tables. We thus have a standard view definition, which
we can substitute for each of the table references in a global query. We can then optimize the query and execute it
on the source, returning only those values from the source that contribute to the global query result.

10For future research, we are considering the possibility of strengthening recognizers for extraction ontologies
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Make Model
Ford Mustang
Ford Taurus
Ford F150 Super Cab
Ford F150
Ford Contour GL
Ford Probe
Ford Taurus LX

Figure 9: Columns Added to the Table in Figure 2 by the δ Operator

To complete our task, we now define a few more operators. These operators, together with the

ones we defined earlier, provide the complete set of operators we need for mapping all the HTML

tables we have encountered.11

For merged attributes we need to split values. We can divide values into smaller components

with a δ operator which we introduce here. We define δA
B1,...,Bn

r to mean that each value v for

attribute A of relation r is split into v1, ..., vn, one for each new attribute B1, ..., Bn respectively.

Associated with each Bi is a procedure pi that defines which part of v becomes vi. In this

paper we specify each procedure pi by regular expressions with extract and context phrases

similar to those defined for extraction ontologies discussed earlier in Section 2. The result of the

δ operator is r with n new attributes, B1, ..., Bn, where the Bi value on row k is the string

that results from applying pi to the string v on row k for attribute A. As an example, consider

δMake and Model
Make,Model T , where T is the table in Figure 2, the expression associated with Make is extract

"\S+" context "\S+\s" which extracts the characters of the string value up to the first space,

and the expression associated with Model is extract "\S.*" context "\s.+" which extracts all

the remaing characters in the string after the first space.12 This operation adds the two columns

in Figure 9 to the table in Figure 2.

For split attributes we need to merge values. We can gather values together and merge them

with a γ operator which we introduce here. Syntactically, we write γB ← A1+...+Anr where B is a

new attribute of the relation r and each Ai is either an attribute of r or is a string. The result

of the γ operator is r with an additional attribute B, where the B value on row k is a sequential

concatenation of the row-k values for the attributes along with any given strings. As an example,

consider γModel with Trim ← Model+" "+TrimT1 which converts Table T1 in Figure 10 to Table T2.

We can use standard set operators to help sort out subsets, supersets, and overlaps of value sets.

as they encounter additional values recognized through mappings, but not recognized directly through regular
expressions. Strengthening ontologies in this way is similar to the work on learning reported in [JMNR99, RJ99].

11In future research, we would like to obtain a general completeness result.
12In Perl, “\s” matches a white space character, “\S” matches a non-space character, “.” matches any character,

“+” indicates one or more repetitions, and “*” indicates zero or more repetitions.
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T1 Make Model Trim T2 Make Model Trim Model with Trim
Ford Contour GL Ford Contour GL Contour GL
Ford Taurus LX Ford Taurus LX Taurus LX
Honda Civic EX Honda Civic EX Civic EX

Figure 10: Application of the γ Operator to Table T1 Yielding Table T2

Target Attribute Source Derivation Expression for Value Sets
Year πY earT

Make πMakeT

Model πModelT

Price πPriceT

Feature ρColour ← FeatureπColourT
∪ ρAuto ← FeatureπAutoβ

Auto
Y es, NoT

∪ ρAir Cond. ← FeatureπAir Cond.β
Air Cond.
Y es, No T

∪ ρAM/FM ← FeatureπAM/FMβ
AM/FM
Y es, No T

∪ ρCD ← FeatureπCDβ
CD
Y es, NoT

Figure 11: Inferred Mapping from Source Table T in Figure 4 to Target Table in Figure 1

We can, for example, take a union of the exterior colors in Figure 2 and features in Figure 3 to form

part of the set for Feature in Figure 1. After adding needed projection and renaming operations,

this union is ρExterior ← FeatureπExteriorT ∪ ρFeatures ← FeatureT/Make and Model/Features, where

T is the table in Figure 2 and T/Make and Model/Features is a path expression that follows the

link under Make and Model in table T to the Features list in Figure 3. When we need subsets of

a set, we can extend the standard selection operator σCr to allow C to be a regular expression

that identifies the subset of values we wish to include. Given that we can also apply set-difference

operations, we can resolve overlapping sets by operator combinations.

Now that we have the operators we need, we can give examples. Figure 11 gives the mapping

from the source table in Figure 4 to the target table in Figure 1. Observe that we have transformed

all the Boolean values into attribute-name values and that we have gathered together all the

features as Feature values. Figure 12 gives the mapping for the car ads from the site for Figures 2

and 3. For purposes of illustration, we assume for the mapping in Figure 12 that we have recognized

the list and the horizontal table in Figure 3 as tables. Observe that we have split the makes and

models as required, matched the synonyms Miles and Mileage, extracted the PhoneNr from the

free text, and gathered together all the various features as Feature values.
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Target Attribute Source Derivation Expression for Value Sets
Year πY earT

Make πMakeδ
Make and Model
Make, Model T

Model πModelδ
Make and Model
Make, Model T

Mileage ρMiles ← MileageπModelT

Price πPriceT

PhoneNr εPhoneNrT/Make and Model

Feature ρExterior ← FeatureπExteriorT
∪ ρFeatures ← FeatureT/Make and Model/Features
∪ ρBody Type ← FeatureT/Make and Model/Body Type
∪ ρTransmission ← FeatureT/Make and Model/Transmission
∪ ρEngine ← FeatureT/Make and Model/Engine

Figure 12: Inferred Mapping from the Source Tables T in Figure 2 and T/Make and Model in
Figure 3 to the Target Table in Figure 1

4 Experimental Results and Discussion

We gathered tables of car advertisements from many more than a hundred different English-

language sites (several dozen were from non-U.S. sites). Because of human resource limitations,

however, we analyzed only 60. In gathering tables, we encountered very few our implemented

system could not process. Our system does not (yet) (1) convert color-swatch icons to color names,

(2) recognize check marks rendered from images, (3) read legends for abbreviated attribute names

in column headers, and (4) handle embedded links to subpages describing more than one car.

Every car-ads table we encountered had simple attributes in the top row; thus we discarded no

tables for structural reasons.

Of the 60 car-ads tables we analyzed, 40 included links to other pages containing additional

information about an advertised car (Figures 2 and 3 show a typical example). For all 60 tables,

we first applied our system to identify and list attribute-value pairs for tuples of top-level tables,

and then for the 40 tables with links, we appropriately associated linked information (without

alteration) with each tuple. We then applied our extraction step and looked for mapping patterns.

Since our objective was to obtain mappings (rather than data), it was not necessary for us to

process every tuple in every table. Hence, from every table, we processed only the first 10 car

ads. As a threshold, we required six or more occurrences of a pattern to declare a mapping. A

human expert judged the correctness of each mapping.13 We considered a mapping declaration

for a target attribute to be completely correct if the pattern recognized led to exactly the same

mapping as the human expert declared, partially correct if the pattern led to a unioned (or
13Although expert judgement for tables can sometimes be hard [HKL+01], establishing correctness results for

car-ads for our target table was not difficult.
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intersected) component of the mapping, and incorrect otherwise. For data outside of tables, the

system mapped an individual value to either the right place or the wrong place or did not map

a value it should have mapped. Because of differences in granularity, we separate table mappings

from individual-value mappings in reporting our results.

4.1 Results

We divided the 60 car-ads tables into two groups: 10 “training” tables and 50 “test” tables. We

used the 10 “training” tables to adjust our car-ads extraction ontology to recognize ordered pairs

derived from our table-understanding procedure and also to fine-tune our ontology and update

it with the latest makes, models, and features.14 Adjusting for recognizing ordered pairs was

straightforward—we simply added the various attribute names we found in the training set as

keywords and sometimes as context identifiers for values (particularly for Mileage and Price,

which both need something other than standard numbers to correctly identify them). Updating

our ontology with the latest makes, models, and features was also straightforward, although it

was a bit tedious especially for features, which tend to be more prolific in dealer sites on the Web

than in classified ads posted by individuals.

For the 10 training tables, we were able to identify 100% of the 57 mappings while declaring

no false mappings. Furthermore, we correctly found 94.6% of the values in the linked data, while

incorrectly declaring only 5.4%. These numbers decreased for the 50 test tables. For these 50

test tables, we were able to completely identify 94.7% of the 300 mappings and partially identify

1.3%, while declaring no false mappings and failing to declare only 4% of the mappings. Based

on a sample of nearly 3,000 values found in unstructured secondary pages, we found that the

precision and recall ratios for the 50 test tables were approximately 86% and 97% respectively.

This corresponds well with our previous car-ads experiments [ECJ+99].

Of the 357 mappings we discovered, 172 were direct, in the sense that the attributes in the

source and target schemas were identical. Of the 185 indirect matches, 29 used synonyms and thus

required only renaming with a ρ operator, 5 had Boolean values and thus required a β operator,

68 included features scattered under various attributes and in raw text and thus required ∪ and

ε operators, 19 provided only factored telephone numbers and thus required ε and 1 operators,

89 needed to be split and thus required a δ operator, and some required combinations of these

operators (e.g. synonyms and union). The values we needed to split came in a variety of different

combinations and under a variety of different names. We found, for example, Description as

an attribute for the combination Year+Make+Model+Feature, Model Color as an attribute for

Make+Model+Color, and Model as an attribute for Year+Make+Model.
14Our car-ads extraction ontologies had originally been constructed to recognize free-form car-ads, written as they

usually appear in the classified ads of newspapers [ECJ+99].
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4.2 Discussion

As mentioned in our earlier discussion, discovering correct mappings can lead to an increase in

values extracted compared to values that would have been extracted by the extraction ontology

alone and can also therefore lead to the acquisition of additional knowledge for the extraction

ontology. In our experiments, we required a 60% or greater match to declare a mapping match.

Overall, we actually achieved roughly 90–95%, a much higher percentage. This, however, leaves

about 5–10% of the approximately 3,000 values encountered in tables as being unrecognized by

the extraction ontology (and potentially many more since we processed only 10 car ads per site).

Examples include non-U.S. models such as the Toyota Starlet or Nissan Presea; elaborately de-

scribed features such as “telescoping steering wheel”; abbreviations not encountered previously

such as “leath int” for “leather interior”; and features simply not encountered before, such as

“trip computer”.

We missed 12 mappings and only partially identified 4 mappings. Our system missed 6 map-

pings of car model because the extraction ontology was targeted to U.S. car-ads, and so non-U.S.

car-ads introduced models that our system did not recognize. Two more mappings of car model

were missed because the extraction ontology was not sufficiently robust (for Jaguar and SAAB

models). The system missed 1 price mapping and 1 mileage mapping because the extraction

ontology was overly restrictive. All of these problems can be corrected by minor adjustments to

the extraction ontology. The final 2 missed mappings require more work. In both of these cases a

cell contained two dollar-amount values, one for list price and another for sale price. Our system

picked up the list price instead of the sale price.

The 4 partial mappings were for car features. Two of these cases could also be corrected by

minor adjustments to the extraction ontology. A more interesting case was a table that included

a “Description” column that contained an unstructured paragraph of text that would be more

appropriately treated as if it were a linked page (where we expected to find unstructured text).

Another interesting case was a table that included listings for trailers mixed in with car ads (e.g.

“1999 Load Rite Trailer”).

5 Conclusion

In this paper, we suggested a different approach to the problem of schema matching, one which

may work better for the heterogeneous HTML tables encountered on the Web. In essence, we

transformed the matching problem to an extraction problem over which we could infer the semantic

correspondence between a source table and a target schema. We then showed how to discover the

appropriate queries for source-to-target mapping rules. We gave experimental evidence to show

that our approach can be successful. In particular, we correctly inferred 94% of the appropriate
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mappings to our target car-ads ontology from 60 HTML car-ads Web tables with a precision of

98%.

As a next step in our work on extraction from HTML tables, we intend to implement the ideas

we have on forming attribute-value pairs for tables in linked information, for nested tables, and

for less common cases—where attributes for multiple records appear on the left, where attributes

appear both on top and on the left, and where attributes are nested and compound. Once we

have attribute-value pairs, we can directly apply the mapping techniques discussed here.

Many tables are behind forms, in the so-called “hidden Web” [RGM01], and we are currently

working on extracting data from the hidden Web [LYE01]. Once extracted, if the result is a table,

we can use the techniques presented here to extract the data into a target view. If the result is

not a table, we use previous techniques we have developed [ECJ+99] to extract the data. Further,

we also plan to piece together all the components we have developed in our data-extraction work

[DEG] into a comprehensive extraction tool.

Acknowledgements: This material is based upon work supported by the National Science Foundation under grant

No. IIS-0083127.
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