
OSM-Logic:
A Fact-Oriented, Time-Dependent Formalization

of Object-oriented Systems Modeling

Stephen W. Clyde1, David W. Embley2, Stephen W. Liddle3, and Scott N.
Woodfield2

1 Computer Science Department
Utah State University, Logan, Utah 84322, USA

2 Department of Computer Science,
3 Information Systems Department,

Brigham Young University, Provo, Utah 84602, USA

Abstract. The lack of fact-oriented, time-dependent formalizations of
conceptual models leads to difficulties in inspecting and reasoning about
system properties and predicting future behavior from past behavior. We
can better serve these needs by formalized conceptualizations that more
closely match the demands of such applications. We therefore set forth
in this chapter a fact-oriented, time-dependent formalism, called OSM-
Logic, for object existence, object interrelationships, object behavior, and
object interaction. OSM-Logic is formally grounded in predicate calculus,
and is thus mathematically sound and well defined.

1 Introduction

Recent initiatives by government agencies (e.g., IARPA [IAR]) and by academic
think-tank groups (e.g., ACM-L [ACM]) require conceptualizations with the
ability to track behavior, model what has already happened and is currently
happening, and analyze past and present behavior. The objectives of tracking,
modeling, and analyzing include being able to predict future behavior, play out
“what-if” scenarios, and warn of possible impending disasters.

Conceptual models can provide the formal foundation for storing the neces-
sary information to support these initiatives. The conceptual models that meet
these requirements, however, must be powerful: they must be able to conceptual-
ize objects, relationships among objects, object behavior, and object interaction,
and the conceptualizations must be fact-oriented and time-dependent. Without,
being able to formalize and store time-dependent facts about objects—their
interrelationships, their individual behavior, and their interaction with other
objects—analysis of, and predictions based on, current, past, and proposed hap-
penings cannot be carried out. We thus seek for, and propose here, a formaliza-
tion of fact-oriented, time-dependent conceptualizations of objects—their exis-
tence, their interrelationships, their behavior, and their interactions with other
objects.

2 Stephen W. Clyde, et al.

To define precisely what we mean by fact-oriented, time-dependent concep-
tualizations, we note that conceptual modelers have observed that fact-oriented
modeling focuses of facts of interests that can be expressed as first-order-logic
predicates [ORM]. Further, for every fact, in addition to knowing if it is true, we
should know when it is true. Since facts hold at points in time or over a period
of time, we obtain time-dependent facts by adding to every logic predicate, an
argument for a time variable for facts that hold for a point in time and two time-
variable arguments for facts that hold over a period of time. Thus, as the basis
for our formalism, we seek for first-order-logic predicates augmented with either
one time variable for point-in-time facts or two time variables for time-period
facts. Further, all conceptualizations—including objects, relationships among
objects, object behavior, and object interactions—should be formalized with
fact-oriented, time-dependent first-order-logic predicates.

A number of conceptual-model formalizations have been developed as ev-
idenced by hundreds of articles and books ranging from the earliest abstract
formulations from more than 50 years ago [YK58] through books that encap-
sulate much of the 50-year history of conceptual modeling (e.g., [Oli07]) to a
recent handbook of conceptual modeling taking formal foundations for granted
and as being expected [ET11]. Although plentiful and useful for their intended
applications, none of the formalizations fully have the characteristics required
for fact-oriented, time-dependent conceptualizations of object and relationship
existence, object behavior, and object interaction for the applications we target
in this chapter. Only a few conceptual models even span the space from object
existence through object behavior, and of those that do, even fewer have formal
definitions. Those that span the space and have worked-out or mostly worked-
out formalisms include the Unified Modeling Language (UML) [UML], Object
Process Modeling (OPM) [Dor09], Object Role Modeling (ORM) [HM08], the
software production environment for MDA based on the OO-Method and OA-
SIS [PM07], the Higher-order Entity Relationship Model (HERM) [Tha00], and
Object-oriented Systems Modeling (OSM) [EKW92]. Even though these con-
ceptual models have formalizations that span the space from object existence to
object behavior, most of the behavior formalizations are neither fact-oriented nor
time-dependent, but are, instead, based on ideas from state charts, finite state
machines, and Petri nets. ORM and OSM formalisms are based on predicate
calculus, which does not inherently deal with time dependencies. However, with
some work, predicate calculus can be extended to a two-sorted first-order logic
that captures notions of time, including events, time intervals, and time depen-
dences. Because OSM is modeled completely in terms of predicate calculus, with
some work it can be made to be time dependent. Indeed, this is the contribution
of this chapter, where we formally define fact-oriented, time-dependent seman-
tics for OSM by showing how to convert any OSM model instance to formulas
in OSM-Logic [Cly93] and how to interpret these formulas.

Briefly and succinctly, OSM-Logic is a two-sorted, first-order logic language
with temporal semantics specifically developed for defining the meaning of OSM
model instances. Since OSM captures static and dynamic properties of real-world

OSM-Logic 3

systems, OSM-Logic must be able to express relationships among objects, object
behavior, and interactions with respect to time. In real-world systems, time
involves continuous intervals and individual points. Most changes in a system
of objects occur during time intervals and are not instantaneous. Even simple
changes like an object entering a new state or becoming a member of an object set
occur over a time interval. In fact, for any interpretation of a system, a change
that appears instantaneous may actually be occurring during a time interval
that is simply smaller than smallest unit of time in that interpretation. By using
a finer unit of time, what once appeared instantaneous can appear as a time
interval. On the other hand, an event is a single time point that represents a
true instantaneous occurrence. An event typically corresponds to the beginning
or end of a particular time interval during which something interesting occurred.

In the remainder of the chapter, we give the details of OSM-Logic. Section 2
describes OSM-Logic itself, Section 3 describes how we attach semantics to a set
of formulas, Section 4 summarizes the OSM-to-OSM-Logic conversion algorithm,
and we conclude in Section 5.

2 OSM-Logic Language Definition

OSM-Logic is a multi-sorted language with two basic sorts, S = {st, so}; st is for
time points and so is for objects. OSM-Logic consists of an infinite set of symbols
arranged as prescribed in [End72]. Logic symbols include logical connectors, ∨,
⇒, ¬; time-variable symbols, Vt (e.g., t1, t2, ...); object-variable symbols, Vo;
equality symbols, =t for st and =o for so; and auxiliary symbols, parentheses
and comma. Parameters include quantifiers, {∃t,∀t} for st and {∃o,∀o} for so;1

time-constant symbols, Ct, object-constant symbols, Co; predicate symbols of sort
〈s1, ..., sn〉, where sj ∈ S for 1 ≤ j ≤ n2; and n-place function symbols of sort
〈s1, ..., sn, so〉, where sj ∈ S for 1 ≤ j ≤ n. Note that we have restricted the
results of functions to be objects.

Terms with sort st include time-variable and time-constant symbols (Vt∪Ct).
Terms with sort so include object-variable and object-constant symbols (Vo∪Co)
along with function terms, which we construct from function symbols by filling
each place of the symbol with a term of the designated basic sort. For example,
if + is a 2-place function symbol of sort 〈so, so, so〉 and x and y are object-
variable symbols in Vo, we construct a function term + written either +(x, y)
(prefix notation) or x+ y (infix notation).

An atomic formula is a sequence P (z1, ..., zn), where P is an n-place predicate
symbol or an equality symbol (in which case n = 2) of sort 〈s1, ..., sn〉 and z1,
..., zn are terms of sort s1, ..., sn, respectively. For example, let Pizza(, ,) be
a 3-place predicate symbol of sort 〈so, st, st〉 that represents the membership
of the Pizza object set in Figure 1. Also, let x be an object-variable symbol
and t1 and t2 be time-variable symbols. We can construct the atomic formula

1 When the sort is clear from the context, we may drop the t or o subscript from an
equality symbol or quantifier.

2 However, no predicate symbol has more than two places of sort st.

4 Stephen W. Clyde, et al.

Pizza

Crust

Topping Serving

Sauce Serving

Cheese Serving

x + y > 1

y:15

x:2

1
1

0:1

0:1

0:1

0:1

Medium PizzaLarge Pizza Small Pizza

U+

Order

Order #

Discount Time Frame

Total

Price Discount applies to

Pizza ordered during

Time Frame

0:*0:*

0:*

Orders with more

than 5 pizzas are

infrequent

0:*

1

1

1

has

has

0:11:20

Pizza, Time Frame Discount
1:2

Fig. 1. Sample ORM for Pizza Ordering System.

∀x∀y∀t1∀t2(Crust(x) is subpart of Pizza(y)(t1, t2)⇒ Crust(x, t1, t2))
∀x∀y∀t1∀t2(Crust(x) is subpart of Pizza(y)(t1, t2)⇒ Pizza(y, t1, t2))

Fig. 2. Sample OSM-Logic Formulas.

Pizza(x, t1, t2). We often write atomic formulas using an infix notation, as with
the general constraint in Figure 1 written x+ y > 1 rather than > (x+ y, 1).

A well-formed formula (wff) is constructed from atomic formulas, logical
connectors, and quantifiers in the traditional way. Figure 2 shows two wff’s
constructed from atomic formulas, the ⇒ logical connector, and universal quan-
tifiers. In the first formula, Crust() is subpart of Pizza()(,) is a predicate
symbol of sort 〈so, so, st, st〉 that represents the membership of the Crust is
subpart of Pizza relationship set in Figure 1. To aid readability, we write the ob-
ject terms for this predicate symbol in-line, using an infix notation. The second
predicate symbol in the first formula, Crust(, ,), represents the memberships
of the Crust object set in Figure 1. Informally, the first formula guarantees that
an object is a member of the Crust object set whenever it relates to a pizza
in the Crust is subpart of Pizza relationship set. Similarly, the second formula
guarantees that an object is a member of the Pizza object set whenever it relates
to a crust in the Crust is subpart of Pizza relationship set.

3 Interpretations

We establish the meaning of a formula or a set of formulas through an interpre-
tation.

An interpretation maps the language’s parameter symbols to a mathematical
structure, consisting of a time structure, a universe of objects, a set of functions,

OSM-Logic 5

and a set of relations. As a result, an interpretation gives meaning to the sym-
bols of the language. Without an interpretation, a formula is just a sequence of
symbols and nothing more. For example, the formulas shown in Figure 2 are by
themselves just sequences of symbols. An interpretation gives them meaning by
mapping Crust() is subpart of Pizza()(,), and Pizza(,) to relations, x and
y to objects, and t1 and t2 to time points.

Formally, we define an interpretation to be an 8-tuple 〈T, U, F, R, gT , gU ,
gF , gR〉 where T , U , F , and R form the mathematical structure and gT , gU , gF ,
and gR map parameter symbols to elements of T , U , F , and R, respectively:

T is a time structure such that it includes (1) a (possibly infinite) set of time
points TP, (2) an ordering < on TP, and (3) a time-interval magnitude
function f‖ : TP ×TP → U , such that f‖(τ1, τ1) = 0, f‖(τ1, τ2) = f‖(τ2, τ1),
and f‖(τ1, τ2) < f‖(τ1, τ3) for τ1 < τ2 < τ3.

U is a non-empty universe of objects.
F is a set of functions such that it includes the time-interval magnitude func-

tion. Each function in F of arity n has a sort 〈s1, ..., sn, so〉 where sj ∈ S
for 1 ≤ j ≤ n. The time-interval magnitude function has arity 2 and sort
〈st, st, so〉.

R is a set of relations such that it includes the < ordering relation. Each relation
of arity n has a sort 〈s1, ..., sn〉, where sj ∈ S for 1 ≤ j ≤ n. The < relation
has arity 2 and sort 〈st, st〉.

gT is a mapping of time constant symbols to TP.
gU is a mapping of object constant symbols to U .
gF is a mapping of function symbols to F such that it maps an n-place function

symbol to an n-ary function of the same sort.
gR is a mapping of predicate symbols to R such that it maps an n-place predicate

symbol to an n-ary relation of the same sort.

To give OSM-Logic temporal semantics, we add three restrictions to the
definition of an interpretation. First, relations in R include exactly zero, one, or
two arguments of the time sort. We call these respectively time-invariant, event,
and temporal relations. The two time points in a tuple from a temporal relation
identify a time interval over which the other objects in the tuple are related.
Let τ1 and τ2 be time points. If τ1 < τ2, then the time interval [τ1, τ2) is the set
of time points t ∈ TP such that τ1 ≤ t < τ2. If τ2 < τ1 then the time interval
[τ1, τ2) is the set of time points t, such that τ2 ≤ t < τ1. If τ1 = τ2, then the
time interval [τ1, τ2) is the empty set. By definition, the time interval [τ1, τ2) is
the same as [τ2, τ1). The notation “[...)” reminds us that the interval includes
the starting point but not the ending point.

Second, we restrict temporal relations so if a temporal relation includes a
tuple that relates a set of objects for some time interval, then it also includes
tuples that relate the same set of objects for all non-empty sub-intervals of that
time interval. Let R be an n-ary temporal relation R. If (x1, ..., xn, t1, t2) ∈ R
and there exists t3 ∈ TP such that t1 < t3 < t2, then (x1, ..., xn, t1, t3) ∈ R
and (x1, ..., xn, t3, t2) ∈ R. The temporal relations ra, rb, and rc in Figure 3
satisfy this restriction.

6 Stephen W. Clyde, et al.

I = 〈T,U, F,R, gT , gU , gF , gR〉, where
T = { TP = {1, 2, 3, 4, 5}, the < ordering relation, and the time-interval

magnitude function f‖, where f‖(τ1, τ2) is the absolute value of τ2 − τ1
}

U = {p1, p2, p3, c1, c2, 0, 1, 2, 3, 4}
F = {f‖}
R = { ra , rb , rc , <

c1 p1 3 4 c1 2 4 p1 3 4 1 2
c2 p2 3 5 c1 2 3 p2 3 5 1 3
c2 p2 3 4 c1 3 4 p2 3 4 1 4
c2 p2 4 5 c2 3 5 p2 4 5 1 5

c2 3 4 2 3
c2 4 5 2 4
c3 4 5 2 5

3 4
3 5
4 5

}
gT = {}
gU = {}
gF = {〈‖, f‖〉}
gR = { 〈Crust() is subpart of Pizza()(,), ra〉,

〈Crust(, ,), rb〉,
〈Pizza, rb〉
}

Fig. 3. An Interpretation for the Formulas in Figure 2.

Third, we restrict temporal relations so if a temporal relation includes two
tuples with the same set objects and the tuples have adjacent or overlapping time
intervals, then the relation must also contain a third tuple with the same objects
and a time interval that spans both of the others. Two time intervals, [t1, t2) and
[t3, t4), are adjacent if t2 = t3 or t1 = t4 and overlapping if t1 < t3 < t2 < t4
or t3 < t1 < t4 < t2. We formally define this restriction as follows. Let R be an
n-ary temporal relation R. If (x1, ..., xn, t1, t2), (x1, ..., xn, t3, t4) ∈ R and the
time intervals [t1, t2) and [t3, t4) are either adjacent or overlapping, then (x1, ...,
xn, t5, t6) ∈ R where t5 = t1 and t6 = t4 if t1 < t3, otherwise t5 = t3 and t6 = t2.
The temporal relations ra, rb, and rc Figure 2 also satisfy this restriction.

Given an interpretation, a formula is either true or false. For example, con-
sider the interpretation I in Figure 3. Note that I maps the Crust() is subpart
of Pizza()(,) predicate symbol to ra, the Crust(, ,) predicate symbol to
rb, and the Pizza(, ,) predicate symbol to rc. Using I, the first formula in
Figure 2 is true, because every object x ∈ U , time t1 ∈ TP, and time t2 ∈
TP that is associated in the first, third, and fourth places of ra, respectively, is
also associated in rb. The second formula in Figure 2 is also true, because every
object x ∈ U , time t1 ∈TP, and time t2 ∈TP that are associated in the second,
third, and fourth places of ra, respectively, are also associated in rc.

OSM-Logic 7

If an interpretation I makes a formula α true, then I is called a valid inter-
pretation3 for α. If I makes each formula in a set of formulas true, then I is a
valid interpretation for the set of formulas. The interpretation in Figure 3 is a
valid interpretation for the set of formulas in Figure 2.

The semantics of a set of formulas Γ is defined by all the possible valid inter-
pretations for Γ. Intuitively, we think of a set of formulas in a logic language as a
declaration about the characteristic properties of a system. Valid interpretations
formalize this notion by defining all the possible situations that reflect these
characteristic properties. For example, consider a system described by the for-
mulas in Figure 2. The characteristic properties of this system are that whenever
an object is in the first place of ra, it must also be in the first place of rb, and
whenever an object is the second place of ra, it must also be in the first place
of rb. In other words, pizzas can relate only to crust objects and crust objects
can relate only to pizza objects in Crust is subpart of Pizza. The set of all valid
interpretations for these formulas represents precisely all situations that reflect
these characteristic properties.

4 OSM-to-OSM-Logic Conversion Algorithm

Using OSM-Logic we can now formally define the semantics of OSM by algo-
rithmically converting any OSM model instance to a set of OSM-Logic formulas.
Using an interpretation, we can then give meaning to the set of formulas by map-
ping their symbols to a mathematical structure. The mathematical structures of
the valid interpretations for these formulas represent all possible situations that
exhibit the characteristic properties described by the model instance.

The OSM-to-OSM-Logic conversion algorithm consists of a set of preliminary
transformations and a set of independent conversion procedures. The preliminary
transformations simply convert an OSM model instance to a standard form
(e.g., standardizing names and giving identifiers to unnamed elements). Each
conversion procedure generates OSM-Logic formulas for a particular type of
modeling component or modeling construct that links components together in a
specific way. In Sections 4.1 and 4.2 we summarize these procedures for OBMs
and OIMs respectively using the pizza example (Figure 1). Because the details
are extensive, we only summarize here; the full conversion algorithm is provided
in [CEW92].

We outline the conversion procedures in Figures 4, 5, and 6. We organize the
conversion procedures into sub-procedures for converting static and dynamic
properties in each of the sub-model types.

For example, the ORM conversion procedure (Figure 4) includes nine sub-
procedures for mapping static properties of ORMs into OSM-Logic, and two for
for mapping dynamic properties. The first static-property procedure generates
formulas that ensure the referential integrity of relationship sets. If an object o is
involved in the ith position of a tuple in some relationship set R, then o must be a

3 “Model” is the usual logic term, but since “model” is heavily overloaded in the
context of computer science, we use the term “valid interpretation” instead.

8 Stephen W. Clyde, et al.

Static Properties
1. Ensure referential integrity of relationship sets
2. Represent generalization/specialization relationship sets
3. Ensure generalization/specialization constraints
4. Represent aggregation relationship sets
5. Represent participation constraints
6. Represent co-occurrence constraints
7. Map variables used in constraints
8. Represent notes
9. Represent general constraints

Dynamic Properties
1. Represent “becoming” and “ceasing-to-be” for object sets
2. Represent “becoming” and “ceasing-to-be” for relationship sets

Fig. 4. Summary of ORM-to-OSM-Logic Conversion Procedures for Pizza Example.

member of the object set associated with the ith connection of R. The formulas in
Figure 2 illustrate this: the first guarantees that if 〈x, y, t1, t2〉 is a tuple in Crust
is subpart of Pizza, then x must be a member of Crust, and the second similarly
ensures the referential integrity of Pizza for the same relationship set. These
formulas are true for all time intervals. Apart from the addition of temporal
semantics, the formulas in Figure 2 are straightforward and correspond to what
one would expect for structural properties. We omit discussion of procedures 2–9
for ORM static properties because they are similarly straightforward.

However, converting dynamic properties with their full temporal formalisms
is a more interesting and less common problem that requires more explana-
tion. Formulas representing dynamic properties have time-dependent member-
ship conditions and are not true for all time intervals. In real-world systems,
classification and relationships change over time, so objects and relationships
become and cease to be members of object and relationship sets over time as
well. Thus, we must write formulas that capture the notions of “becoming” and
“ceasing-to-be” formally over time intervals. For each object and relationship
set we generate additional predicates (e.g., Becoming Pizza(, ,) of sort 〈so,
st, st〉 and Ceasing to be Crust() is subpart of Pizza()(,) of sort 〈so, so, st,
st〉) to represent these properties.

The conversion routine generates formulas like the following to capture the
semantics of these dynamic properties:

∀x∀t1∀t2(STI(Pizza(x, t1, t2), t1, t2)⇒
∃t3(t1 < t3 ∧ Becoming Pizza(x, t1, t3))) (1)

where STI(F, t1, t2) is shorthand notation for a starting-time interval formula
defined as (t1 < t2 ∧ F ∧ ∀t3(t3 < t1 ⇒ ¬F t1

t3) ∧ ∃t3(t3 < t1)). Formula 1
ensures that the time intervals are aligned such that when an object starts being
a member of the Pizza object set, it was in the process of becoming a pizza.
Other generated formulas ensure that all the required conditions relating the

OSM-Logic 9

Static Properties
1. Ensure referential integrity of states
2. Ensure referential integrity of transitions
3. Ensure referential integrity of real-time markers
4. Represent state conjunctions
5. Represent prior-state conjunction reset action
6. Represent transition firing phase
7. Ensure mutual exclusion of transition states
8. Ensure that objects are in at least one phase for each transition
9. Ensure that objects do not commit conflicting transitions
10. Represent real-time markers
11. Represent real-time constraint semantics

Dynamic Properties
1. Represent transition ready phase conditions
2. Represent transition committed phase conditions
3. Represent transition execution phase conditions
4. Represent transition finishing phase conditions
5. Represent transition inactive phase conditions
6. Specify when objects can enter each state
7. Specify when objects can exit each state

Fig. 5. Summary of OBM-to-OSM-Logic Conversion Procedures for Pizza Example.

Static Properties
1. Ensure referential integrity of temporal relations
2. Ensure that a single interaction only occurs once
3. Represent source/destination parameter exchange

Dynamic Properties
1. Guarantee alignment of interaction with object time intervals

Fig. 6. Summary of OIM-to-OSM-Logic Conversion Procedures for Pizza Example.

alignment of various dynamic time intervals hold true. There are eight such
conditions [CEW92]. The conversion procedure generates similar formulas for
relationship sets as well.4

4.1 Converting OBM Components

The procedures that convert the OBM components to OSM-Logic define the
static and dynamic behavioral properties for members of object sets. Static be-
havioral properties are object-set membership conditions involving object be-
havior represented by states, transitions, and real-time markers. Like the static
properties represented in an ORM instance, static behavioral properties for an
object set are conditions that must be satisfied for all time intervals. Dynamic

4 We also define shorthand notations for ending- and maximum-time intervals.
ETI(F, t1, t2) represents a formula that is true iff t1 and t2 represent an ending-
time interval for F , regardless of the interpretation. Similarly, MTI(F, t1, t2) is true
iff t1 and t2 represent a maximum-time interval.

10 Stephen W. Clyde, et al.

Ready

Completed

Paid@Customer Pays

[4]

All Pizzas in the

Order are done

[3]

Pizzas given

to customer

[5]

> 24 hours

[6]

@Cancel

[1]

Canceled

Unpaid

Customer

Waiting

@Confirm

[2]

Open

a

b

(a to b) ≤ 20 minutes

Order

Fig. 7. State Net for the Order Object Set.

behavioral properties are object-set membership conditions that relate various
time intervals represented by OBM components.

Since an OBM instance is a collection of state nets and each state net de-
scribes object behavior for a single object set, we can execute the OBM con-
version procedures independently for each state net. Therefore, without the loss
of generality, we simplify our definition of the OBM conversion procedures by
describing them for a single state net. Using the state net shown in Figure 7
as an example, we summarize the OBM conversion procedures in the next two
subsections.

Static Properties. To represent the static behavioral properties described in
a state net, we construct predicates for the events and temporal relations repre-
sented by various components in the state net, including: states, state conjunc-
tions, transitions, triggers, actions, and real-time markers. We use component
names and identifiers, together with an object-set name for the associated object
set, to construct these predicates using a set of templates as Figure 8 shows. The
template parameters are defined as follows: 〈ObjectSet〉 is an object-set name
(e.g., Order). 〈SC〉 is a state name or a conjunction of state names (e.g., Paid
or Ready & Paid). 〈TID〉 is a transition identifier (e.g., [1]) and 〈RTM〉 is a
real-time marker (e.g., a or b). 〈PSC〉 and 〈SSC〉 are prior-state conjunctions
(e.g., Ready & Paid) and subsequent-state conjunctions (e.g., Customer Waiting
& Unpaid) respectively. 〈phase〉 is one of inactive, ready, committed, executing,
and finishing. When a transition is committed, executing, or finishing, we say
that it is firing, and so we also include a sixth firing phase that is equivalent to
the disjunction of the other three.

The templates in Figure 8 each include one symbol of sort so and one or
two symbols of sort st because all the predicates relate objects in an object set

OSM-Logic 11

Predicate Sort

〈ObjectSet〉() in state 〈SC〉(,) 〈so, st, st〉
〈ObjectSet〉() transition 〈TID〉 〈phase〉(,) 〈so, st, st〉
〈ObjectSet〉() transition 〈TID〉 trigger true(,) 〈so, st, st〉
〈ObjectSet〉() transition 〈TID〉 committed using 〈PSC〉() 〈so, st〉
〈ObjectSet〉() 〈PSC〉 reset(,) 〈so, st, st〉
〈ObjectSet〉() transition 〈TID〉 action done() 〈so, st〉
〈ObjectSet〉() transition 〈TID〉 finished using 〈SSC〉() 〈so, st〉
〈ObjectSet〉() passed 〈RTM〉 at time() 〈so, st〉

Fig. 8. Predicate Templates for OBM Components.

to events (e.g., finishing a transition) or time intervals (e.g., being in a state)
associated with an OBM model instance.

Using the generated predicate symbols, we construct formulas for the static
behavioral properties. In all, there are 23 conversion procedures that generate
formulas. However, only 11 of them produce formulas for our sample model
instance. The first three generate referential-integrity formulas, which we do not
show here. They guarantee, for example, that when an object is in the Open
state, it is a member of the Order object set, etc.

A fourth procedure generates formulas like Formula 2 to guarantee equiva-
lence between a state conjunction and the conjunction of its states.

∀x∀t1∀t2((Order(x) in state Ready(t1, t2) ∧ Order(x) in state Paid(t1, t2))

⇔ Order(x) in state Ready & state Paid(t1, t2)) (2)

A fifth procedure generates formulas like Formula 3 that specify what it
means for a prior-state conjunction to be reset (i.e., an object uses the prior-
state conjunction to commit a transition).

∀x∀t1∀t2((NTI(Order(x) in state Ready(t1, t2),t 1t2) ∧
NTI(Order(x) in state Paid(t1, t2), t1, t2))⇔ (3)

Order(x) Ready & Paid reset(t1, t2))

Here, NTI(Order(x) in state Ready(t1, t2), t1, t2) is a shorthand for the following
formula that is true if and only if x is not in the Ready state for all time points
in [t1, t2) time interval.

t1 < t2 ∧ ∀t3∀t4((t1 ≤ t3 ∧ t3 ≤ t2 ∧ t1 ≤ t4 ∧ t4 ≤ t2)⇒
¬Order(x) in state Ready(t3, t4)) (4)

Similarly, NTI(Order(x) in state Paid(t1, t2), t1, t2) represents a formula that is
true if and only if x is not in the Paid state for all time points in time interval
[t1, t2). Like the STI notation, an NTI shorthand can be substituted with the
formula it represents without changing the meaning of the original formula.

A sixth procedure generates formulas that equate the firing phase of each
transition with the concatenation of its committed, executing, and finishing

12 Stephen W. Clyde, et al.

phases. A seventh procedure generates formulas that guarantee the elementary
phases of a transition are mutually exclusive. An eighth procedure generates
formulas to guarantee that objects in the associated object set are in at least
one phase of each transition in a state net. We do not give examples here.

A ninth procedure generates formulas like Formula 5 to guarantee that ob-
jects never commit conflicting transitions with common prior states at the same
time. Two transitions are conflicting if they share prior states (e.g., transitions
[1] and [3] conflict w.r.t. Customer Waiting).

∀x∀t(Order(x) transition [1] committed using

Customer Waiting & Unpaid(t)⇒ (5)

¬Order(x) transition [3] committed using Customer Waiting(t))

A tenth procedure generates formulas like Formula 6 that restrict temporal
relations represented by the predicate symbols for real-time markers so that they
only relate objects to time points for which the objects passed to the real-time
markers.

∀x∀t(Order(x) passed a at time(t)⇔
Order(x) transition [4] finished using Paid(t)) (6)

Formula 6 specifies that if an object passes real-time marker a at time t, that
object finishes transition [4] and enters the Paid state at time t and the con-
verse. Thus the temporal relation represented by the predicate symbol Order()
passed a at time() is equivalent to the temporal relationship represented by the
predicate symbol Order() transition [1] finished using Paid().

Finally, an eleventh procedure generates formulas like Formula 7 to express
real-time constraints. The real-time constraint, (a to b) ≤ 20, in Figure 7 is an
a OSM-Logic Formula, where to and ≤ are predicate symbols and a and b are
variables representing values for real-time markers.

∀x∀t1∀t2((Order(x, t1, t2) ∧ t1 < t2 ∧Order(x) passed a at time(t1) ∧
Order(x) passed b at time(t2) ∧ ∀t3((t1 < t3 ∧ t3 < t1)⇒ (7)

(¬Order(x) passed a at time(t3) ∧ ¬Order(x) passed b at time(t3))))⇒
(t1 to t2) ≤ “20”)

The last part of Formula 7 is derived from the real-time constraint. Here, as in
Figure 7, “20” represents 20 minutes. An interpretation of this formula would
map this constant symbol to an appropriate object in the range of the time-
interval magnitude function. As a result, minutes is normalized to the time
unit represented in the interpretation. The to symbol in the (t1 to t2) formula
represents the time-interval magnitude function.

OSM-Logic 13

Dynamic Properties. The dynamic behavioral properties are conditions that
relate various time intervals represented by OBM components. We use the pred-
icate symbols described in the prior section to express dynamic behavioral prop-
erties in OSM-Logic. There are 12 conversion procedures that generate formulas
for these properties, 7 of which generate formulas for our sample model instance.
We present these 7 procedures here. One procedure generates formulas that re-
late certain time intervals associated with an object and the ready phase of a
transition to other time intervals that occur just before, during, and just after
the ready phase. For example, the procedure generates the following formulas
for transition [1].

∀x∀t1∀t2(STI(Order(x) transition [1] ready(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧ (NTI(Order(x, t3, t1), t3, t1) ∨ (8)

Order(x) transition [1] inactive(t3, t1))))

∀x∀t1∀t2(Order(x) transition [1] ready(t1, t2)⇒
(Order(x) in state Open(t1, t2) ∨ (9)

Order(x) in state Customer Waiting & state Unpaid(t1, t2)))

∀x∀t1∀t2(Order(x) transition [1] ready(t1, t2)⇒
Order(x) transition [1] trigger true(t1, t2)) (10)

∀x∀t1∀t2(ETI(Order(x) transition [1] ready(t1, t2), t1, t2)⇒
∃t3(t2 < t3 ∧ (NTI(Order(x, t2, t3), t2, t3) ∨

Order(x) transition [1] committed(t2, t3) ∨ (11)

Order(x) transition [1] inactive(t2, t3))))

Formula 8 defines what happens before an object enters the ready phase of
transition [1]. The first part of this formula is true when [t1, t2) is a starting-
time interval for an object x being in the ready phase of transition [1]. In other
words, t1 is the time point when x enters the ready phase of transition [1].
The second part is conditional upon the first. It specifies that there is a time
point t3 before t1 such that either x is not a member of Order or x is in the
inactive phase of transition [1] during the [t3, t1) time interval. Formulas 9 and
10 define what must be true while an object is in the ready phase of transition [1].
Formula 9 specifies that at least one of the transition’s prior-state conjunctions
must be true, and Formula 10 specifies that the transition’s trigger must be true.
Formula 11 defines what happens after an object is the ready phase of transition
[1]. The first part of this formula is true when [t1, t2) is an ending-time interval
for an object x being in the ready phase of transition [1]. In other words, t2 is the
time point when x exits the ready phase. The second part, which is conditional
upon the first, specifies that there exists a time t3 after t2 such that either x is
not a member of Order, x is in the committed phase of transition [1], or x is in
the inactive phase of transition [1] during the [t2, t3) time interval.

Another procedure generates formulas like Formulas 12–16 that define what
happens before and after an object is in the committed phase of a transition.

14 Stephen W. Clyde, et al.

∀x∀t1∀t2(STI(Order(x) transition [1] committed(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧Order(x) transition [1] ready(t3, t1))) (12)

∀x∀t1(Order(x) transition [1] committed using Open(t1)⇒
∃t3∃t4(t3 < t1 ∧ t1 < t4 ∧Order(x) in state Open(t3, t1) ∧

Order(x) transition [1] ready(t3, t1) ∧ (13)

Order(x) transition [1] committed(t1, t4) ∧
Order(x) Open reset(t1, t4)))

∀x∀t1(Order(x) transition [1] committed using Open(t1)⇒
¬Order(x) transition [1] committed using (14)

Customer Waiting & state Unpaid(t1))

∀x∀t1(STI(Order(x) transition [1] committed(t1, t2), t1, t2)⇒
(Order(x) transition [1] committed using Open(t1) ∨
Order(x) transition [1] committed using (15)

Customer Waiting & state Unpaid(t1)))

∀x∀t1∀t2(ETI(Order(x) transition [1] committed(t1, t2), t1, t2)⇒
∃t3(t2 < t3 ∧Order(x) transition [1] executing(t2, t3))) (16)

Formulas 12 through 16 specify what must be true just prior to or at the time an
object enters the committed phase of transition [1]. Formula 12 guarantees that
an object is in the ready phase of transition [1] just prior to starting the com-
mitted phase. Formula 13 says that if an object commits transition [1] using the
Open state at time point t1, then the object is in the ready phase of transition
[1] and in the Open state just before t1. Further, it says that the object is in the
committed phase at t1 and that the Open state is reset at t1. Formula 14 guar-
antees that an object can commit transition [1] with only one of its prior-state
conjunctions at a time. Formula 15 says that if [t1, t2) is a starting-time interval
for an object being in the committed phase of transition [1], then that object
committed the transition at time t1 using one of its prior-state conjunctions.
Formula 16 guarantees that an object is in the executing phase of transition [1]
just after it exits the committed phase.

A third procedure generates formulas like Formulas 17–18 to require that an
object is in the committed phase of transition [1] prior to being in the executing
phase, and is in the finishing phase after being in the executing phase.

∀x∀t1∀t2(STI(Order(x) transition [1] executing(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧Order(x) transition [1] committed(t3, t1))) (17)

∀x∀t1∀t2(ETI(Order(x) transition [1] executing(t1, t2), t1, t2)⇒
∃t3(t2 < t3 ∧Order(x) transition [1] finishing(t2, t3))) (18)

OSM-Logic 15

A fourth procedure generates formulas like Formulas 19–22 to express the
dynamic properties of the finishing phase, such as how the completion of ac-
tions and the entering of subsequent-state conjunctions relate to the finishing of
transitions.

∀x∀t1∀t2(STI(Order(x) transition [1] finishing(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧Order(x) transition [1] executing(t3, t1) ∧ (19)

Order(x) transition [1] action done(t1)))

∀x∀t1(Order(x) transition [1] finished using Canceled(t1)⇒
∃t3∃t4(t3 < t1 ∧ t1 < t4∧
Order(x) transition [1] finishing(t3, t1) ∧ (20)

Order(x) in state Canceled(t1, t4)))

∀x∀t1∀t2(ETI(Order(x) transition [1] finishing(t1, t2), t1, t2)⇒
Order(x) transition [1] finished using Canceled(t2)) (21)

∀x∀t1∀t2(ETI(Order(x) transition [1] finishing(t1, t2), t1, t2)⇒
∃t3(Order(x) transition [1] inactive(t2, t3))) (22)

Formula 19 guarantees that an object must be in executing phase of transition
[1] prior to be being in the finishing phase. In addition, it specifies that the time
point when an object enters the finishing phase corresponds to the time point it
completed the action of transition [1]. Formula 20 says that if an object finishes
transition [1] and enters the Canceled state at time t1, then that object is in
the finishing phase of transition [1] prior to t1, and it is in the Canceled state at
t1. Formula 21 guarantees that if [t1, t2) is an ending-time interval for an object
in the finishing phase of transition [1], then that object finished transition [1]
using the Canceled state at time t2. Formula 22 guarantees that an object is in
the inactive phase of transition [1] after it is in the finishing phase.

A fifth procedure generates formulas like Formulas 23–24 to define dynamic
properties of the inactive phase of a transition.

∀x∀t1∀t2(STI(Order(x) transition [1] inactive(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧ (NTI(Order(x, t3, t1), t2, t3) ∨ (23)

Order(x) transition [1] finishing(t3, t1))))

∀x∀t1∀t2(ETI(Order(x) transition [1] inactive(t1, t2), t1, t2)⇒
∃t3(t2 < t3 ∧ (NTI(Order(x, t2, t3), t2, t3) ∨ (24)

Order(x) transition [1] ready(t2, t3))))

Formula 23 guarantees that an object is either not a member of the Order object
set or in the finishing phase of transition [1] prior to being in the inactive phase
of transition [1]. Formula 23 specifies that an object is either not a member of
the Order object set or in the ready phase of transition [1] after being in the
inactive phase of transition [1].

16 Stephen W. Clyde, et al.

Open

Waiting for

Request

Pizza Request

Made

Add Pizza to

Order

Pizza Request

 (Size, Cheese Servings,

 Topping Servings)

Fig. 9. Details of the Open State for the Order Object Set.

The last two procedures generate formulas like Formulas 25–26 that specify
when objects can enter and exit a state. An object can enter (exit) a state only
when the object uses it to finish (commit) a transition.

∀x∀t1∀t2(STI(Order(x) in state Canceled(t1, t2), t1, t2)⇒
Order(x) transition [1] finished using Canceled(t1)) (25)

∀x∀t1∀t2(ETI(Order(x) in state Canceled(t1, t2), t1, t2)⇒
Order(x) transition [6] committed using Canceled(t2)) (26)

Formula 25 guarantees that the time point when an object starts being in the
Canceled state corresponds to when it finishes transition [1] using the Canceled
state. Similarly, Formula 26 specifies that the time point when an object stops
being in the Canceled state corresponds to when it commits transition [6].

4.2 Converting OIM Components

Static Properties. To express static interaction properties, we first construct
predicate symbols for an OBM. For example, we construct the predicate symbol
Interaction Pizza Request(): to Order() transition [7] firing with Size() Cheese
Servings() Topping Servings()(,) for the interaction described in Figure 9. (A
preliminary transformation supplied [7] as the identifier for the transition in Fig-
ure 9.) The predicate symbol construction varies for each interaction component
C, depending on whether C has an activity description; whether C has an origin,
a destination, or both; if C has an origin, whether it is an object set, state, or
transition; if C has a destination, whether it is an object set, state, or transition;
and whether C has object descriptions.

All interaction predicate symbols start with Interaction and a place that
represents interaction objects. If an interaction component has an activity de-
scription, we use that description to label the first place. For the interaction in
Figure 9, we embed its activity description, Pizza Request, in the predicate sym-
bol just before the first place. Next, we include places for the interaction’s origin
and destination. Since our sample interaction does not have an origin, we only

OSM-Logic 17

include a place for its destination. We prefix the destination place with to Order
to help identify it. Also, since the destination of the interaction is transition [7],
we embed transition [7] firing after the destination place to indicate that only
objects firing transition [7] can receive this type of interaction. Next, we add
a place for each object description associated with the interaction component.
An object description identifies a parameter object that origin and destination
objects exchange during the interaction. For our example, Size, Cheese Servings,
and Topping Servings are the object descriptions. Finally, we add on two places
of sort st to represent the time interval during which the interactions occur.

Using the predicate symbols generated for interaction components, objects
sets, states, and transitions, we generate the formulas for static interaction prop-
erties. There are 10 conversion procedures that generate interaction formulas;
however, only 3 of them pertain to our sample model instance.

One procedure generates formulas that guarantee the referential integrity of
temporal relations represented by interaction predicate symbols. For example,
any origin object for an interaction must be a member of the object set associated
with the interaction component’s origin. A second procedure generates formulas
like Formulas 27–28 to ensure that a single interaction occurs only once.

∀x0∀x1∀x2∀x3∀x4∀t1∀t2∀t3∀t4((STI(Interaction Pizza Request(x0) :

to Order(x1) transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t1, t2), t1, t2) ∧
Interaction Pizza Request(x0) : to Order(x1) (27)

transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t3, t4))⇒ (t1 ≤ t3 ∧ t1 ≤ t4))

∀x0∀x1∀x2∀x3∀x4∀t1∀t2∀t3∀t4((ETI(Interaction Pizza Request(x0) :

to Order(x1) transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t1, t2), t1, t2) ∧
Interaction Pizza Request(x0) : to Order(x1) (28)

transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t3, t4))⇒ (t3 ≤ t2 ∧ t4 ≤ t2))

Formula 27 specifies that if an interaction, x0, starts at time t1 and it also occurs
during the interval [t3, t4), then the time points, t3 and t4, are no earlier than
t1. Similarly, Formula 28 says that if an interaction, x0, ends at time t2 and it
also occurs during the interval [t3, t4), then the time points, t3 and t4, are no
later than t2.

A third procedure generates formulas like Formula 29 to guarantee that
source and destination objects exchange only one set of parameter objects during
a single interaction.

18 Stephen W. Clyde, et al.

∀x0∀x1∀t1∀t2∃1x2
∃1x3
∃1x4

(Interaction Pizza Request(x0) :

to Order(x1) transition [7] firing with Size(x2) (29)

Cheese Serving(x3) Topping Serving(x4)(t1, t2))

Dynamic Properties. To express dynamic interaction properties we gener-
ate one or two additional predicate symbols for each interaction that represent
the potential for interaction to occur. One predicate symbol, which we gener-
ate only when the interaction has an origin, relates interactions and objects to
time intervals during which the objects are potential origins for the interactions.
The other predicate symbol, which we generate only when the interaction has a
destination, relates interactions and objects to time intervals during which the
objects are potential destinations for the interactions. For example, we generate
the predicate symbol Receive Interaction Pizza Request(): to Order() transi-
tion [7] firing with Size() Cheese Servings() Topping Servings()(,), for the
interaction in Figure 9.

Our algorithm includes only one procedure that generates formulas for dy-
namic interaction properties. The formulas guarantee that the maximum-time
interval for an interaction (1) starts after a time interval corresponding to its
origin object’s potential to be an origin, and (2) ends before a time interval corre-
sponding to its destination object’s potential to be an destination. For example,
the procedure generates the following formula for our sample model instance.

∀x0∀x1∀x2∀x3∀x4∀t1∀t2(

(MTI(Interaction Pizza Request(x0) :

to Order(x1) transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t1, t2), t1, t2)⇒
∃t3∃t4(t1 ≤ t3 ∧ t3 < t2 ∧

Receive Interaction Pizza Request(x0) : to Order(x1)

transition [7] firing with Size(x2) Cheese Servings(x3) (30)

Topping Servings(x4)(t3, t4)∧
∀t5((t3 ≤ t5 ∧

ETI(Receive Interaction Pizza Request(x0) : to Order(x1)

transition [7] firing with Size(x2) Cheese Servings(x2)

Topping Servings(x3)(t3, t5), t3, t5))⇒ t2 ≤ t5))))

5 Concluding Remarks

We have shown how to formalize conceptualizations for applications that need a
time-dependent facts. The conceptualizations span the space of object existence,

OSM-Logic 19

the existence of relationships among objects, individual object behavior, and
interactions between among groups of objects. The formalization defines the
semantics of OSM by showing how to convert any populated OSM model instance
to formulas in OSM-Logic and how to interpret these formulas.

References

[ACM] ACM-L-2010 workshop. http://www.cs.uta.fi/conferences/acm-l-2010/.
[CEW92] S.W. Clyde, D.W. Embley, and S.N. Woodfield. The complete formal defi-

nition for the syntax and semantics of osa. Technical Report BYU-CS-92-2,
Department of Computer Science, Brigham Young University, February 1992.

[Cly93] S.W. Clyde. An Initial Theoretical Foundation for Object-Oriented Systems
Analysis and Design. PhD thesis, Brigham Young University, 1993.

[Dor09] D. Dori. Object-Process Methodology: A Holistic Systems Paradigm. Springer,
Berlin, Germany, 2009.

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems
Analysis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New
Jersey, 1992.

[End72] H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, Inc.,
Boston, Massachusetts, 1972.

[ET11] D.W. Embley and B. Thalheim, editors. Handbook of Conceptual Modeling:
Theory, Practice, and Research Challenges. Springer, Heidelberg, Germany,
2011.

[HM08] T.A. Halpin and T. Morgan. Information Modeling and Relational Databases.
Morgan Kaufmann, Burlington, Massachusetts, 2nd edition, 2008.

[IAR] Knowledge discovery and dissemination program. http://www.iarpa.gov/-
solicitations kdd.html/.

[Oli07] A. Olivè. Conceptual Modeling of Information Systems. Springer, Berlin,
Germany, 2007.

[ORM] The ORM Foundation. http://www.ormfoundation.org.
[PM07] O. Pastor and J.C. Molina. Model-Driven Architecture in Practice: A Soft-

ware Production Environment Based on Conceptual Modeling. Springer, New
York, New York, 2007.

[Tha00] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-
nology. Springer, Berlin, Germany, 2000.

[UML] Omg: Documents associated with UML version 2.3. http://www.omg.org/-
spec/UML/2.3/.

[YK58] J.W. Young and H.K. Kent. Abstract formulation of data processing prob-
lems. The Journal of Industrial Engineering, 9(6):471–479, 1958.

