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Abstract

To integrate data from disparate, heterogeneous information sources in an open environment,
data-integration systems demand a resolution of several major issues: (1) heterogeneity, (2)
scalability, (3) continual infusion and change of local information sources, (4) query processing
complexity, and (5) global schema evolution. Although several data-integration systems have
been proposed to address these problems, no single system addresses all the issues in a unified
approach. To resolve these problems, we offer TIQS, an approach to data integration that uses
semi-automatic schema matching to produce source-to-target mappings based on a predefined
conceptual target schema. In a unified approach, TIQS offers solutions for each of the five
major issues. Compared with other data integration approaches, our approach combines their
advantages, mitigates their disadvantages, and provides a viable alternative for flexible and
scalable data integration.

1 Introduction

Data integration refers the problem of combining data residing at autonomous and heterogeneous

sources and providing users with a unified global schema [Ull97, Hal01, CCGL02]. Two main

concepts constitute the architecture of a data-integration system [Ull97]: wrappers and mediators.

A wrapper wraps an information source and models the source using a source schema. A mediator

maintains a global schema and mappings between the global and source schemas. We focus here on

data-integration systems that do not materialize data in the global schema. Currently, there are

two main initiatives to integrate data and answer queries without materializing a global schema:

Global-as-view (GAV) [CGMH+94] and Local-as-View (LAV) [LRO96, GKD97]. In either a GAV

or LAV approach, whenever a user poses a query in terms of relations in the global schema, the
∗This material is based upon work supported by the National Science Foundation under grant IIS-0083127.
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mediator within the data-integration system uses a query-reformulation procedure to translate the

query into sub-queries that can be executed in sources such that the mediator can collect returned

answers from the sources and combine them as the answer to the query.

One of the important applications for data integration is to deal with the explosion of data

on the World Wide Web. E-business applications such as comparison shopping and knowledge-

gathering applications such as vacation planning raise the following major issues for approaches to

data integration. (1) Heterogeneity. The sources are autonomous, establishing their own vocabulary

and structure. (2) Scalability. The number of sources to access and integrate is large. (3) Continual

infusion and change of local information sources. New sources continually become available and

become part of the system. Sources within the system may change frequently. (4) Query processing

complexity. Users frequently pose queries, which can be complex with respect to the collection

of information sources. (5) Evolution. As applications evolve, Database Administrators (DBAs)

may wish to change the global schema to include some new items of interest. Most of the existing

approaches to data integration [CGMH+94, LRO96, GKD97, Ull97, FLM99, MHH+01, CCGL02],

however, have addressed only some of these issues. Thus, they do not meet the needs of the modern

E-business applications.1 To address these issues, we present an alternative point of view, called

TIQS (Target-based Integration Query System).

The following five characteristics describe TIQS. Each characteristic addresses one of the five

major issues.

1. Heterogeneity. Each relation in a target schema, which is our global schema, is predefined

and independent of any source schema. Moreover, we wrap sources in isolation, without

reference to the global schema.2 Thus, in TIQS, source and target schemas use different
1After describing our proposed solution we explain in Section 6, by way of comparison, how other proposed

solutions fail to address one or more of these issues.
2Often these sources are structured, and we simply take the local schema without change [ETL02].
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structures and vocabularies. A mapping tool [XE03] within TIQS produces a set of mapping

elements semi-automatically in a source-to-target mapping that maps a source schema to

a target schema. The mapping elements include both direct and many indirect semantic

correspondences. Thus, TIQS reduces heterogeneity by applying semantic correspondences

expressed using source-to-target mappings between target and source schemas.

2. Scalability. Although TIQS still requires a DBA to validate and sometimes adjust the gen-

erated source-to-target mappings, TIQS largely automates this mapping procedure [XE03].

This facilitates scalability—allows TIQS to automatically specify views over a large number

of source schemas that match with elements in the target schema.

3. Continual infusion and change of local information sources. When a new information source

becomes available (changes), a source-to-target mapping must be created (adjusted). With

the assistance of the semi-automatic mapping tool in TIQS, the maintenance requires little

manual work to create (adjust) mappings.

4. Query processing complexity. Whenever a user poses queries in terms of target relations, TIQS

uses its generated source-to-target mappings to reduce query reformulation to simple rule

unfolding (standard execution of views in ordinary databases). This reduces query processing

complexity.

5. Evolution. If the target schema evolves, the mapping tool of TIQS semi-automatically gener-

ates (or adjusts) mapping elements between the new target schema and the source schemas.

TIQS operates in two phases: design and query processing. In the design phase, the system

synergistically automates the generation of source-to-target mappings. Mapping elements in source-

to-target mappings are expressions over source schema elements that produce virtual target-view

elements. This leads automatically to a rewriting of every target element as a union of corresponding
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virtual target-view elements. In the query processing phase, a user poses queries in terms of target

relations. Query reformulation thus reduces to rule unfolding by applying the view definition

expressions for the target relations in the same way database systems apply view definitions.

The contributions of TIQS are: (1) a unified, scalable approach to data integration using source-

to-target mappings based on a predefined target schema in which query reformulation reduces

to query unfolding, (2) a practical approach whose implementation is readily available based on

schema-matching techniques described in [XE03], and (3) a correlation of research work on schema

matching [RB01] and data integration [Ull97], which are usually considered to be orthogonal.

Beyond previous work [EJX01, BE03, XE03], this paper unifies all the components of TIQS, presents

a formal representation of source-to-target mappings, reduces query-reformulation complexity based

on source-to-target mappings, and proves a theorem for sound and maximal query answers to user

queries.

We organize the contributions in this paper as follows. Section 2 presents the components of

TIQS. Section 3 describes the matching techniques to generate and the expression language to

represent source-to-target mappings. Section 4 shows an example of how to add a new information

source into TIQS. Section 5 discusses the solution to query reformulation and gives a theorem

to prove that TIQS returns all available answers to a query. Section 6 reviews and compares

alternatives to TIQS. In Section 7 we summarize and make concluding remarks.

2 The Data Integration System

Definition 1. A data-integration system I is a triple (T , {Si}, {Mi}), where T is a target schema,

{Si} is a set of n source schemas, and {Mi} is a set of n source-to-target mappings, such that for

each source schema Si there is a mapping Mi from Si to T , 1 ≤ i ≤ n.

We use rooted graphs to represent both target and source schemas in I. A graph includes a
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Figure 1: Source Graphs for Schema 1 and Schema 2

set of object sets O and a set of relationship sets R. Therefore, a schema element is either an

object set or a relationship set. An object set either has associated data values or has associated

object identifiers (OIDs), which we respectively call lexical and non-lexical object sets. The root

node is a designated non-lexical object set of primary interest. Figure 1, for example, shows two

schema graphs (whose roots are house and House). In the graphs, lexical object sets are dotted

boxes, non-lexical object sets are solid boxes, functional relationship sets are lines with an arrow

from domain object set to range object set, and nonfunctional relationship sets are lines without

arrowheads. For a schema H, which is either a source schema or a target schema, we let ΣH denote

the union of O and R. For source views, we let VH denote the extension of ΣH with derived object

and relationship sets, each of which corresponds a view defined over source H. We call derived

object and relationship sets in VH virtual elements of source H.

A source-to-target mapping Mi for a source schema Si with respect to a target schema T is a

function fi(VSi) → ΣT . Intuitively, a source-to-target mapping Mi represents inter-schema corre-

spondences between a source schema Si and a target schema T . If we let Schema 1 in Figure 1(a) be

the target and let Schema 2 in Figure 1(b) be the source, for example, a source-to-target mapping

between the two schemas includes a semantic correspondence, which declares that the lexical object
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set Bedrooms in the source semantically corresponds to the lexical object set beds in the target. If

we let Schema 1 be the source and Schema 2 be the target, a source-to-target mapping declares

that the union of the two sets of values in phone day and phone evening in the source corresponds

to the values for Phone in the target.

We represent semantic correspondences between a source schema S and a target schema T as a

set of mapping elements. A mapping element is either a direct match which binds a schema element

in ΣS to a schema element in ΣT , or an indirect match which binds a derived schema element in VS

to a target schema element in ΣT through an appropriate mapping expression over ΣS . A mapping

expression specifies how to derive a virtual element through manipulation operations over a source

schema. For either a direct match or an indirect match, the source schema element is a virtual

target-view element for the target schema element in the match. We denote a mapping element

as (t ∼ s ⇐ θs(ΣS)), where θs(ΣS) is a mapping expression that derives a virtual target-view

element s in VS , and t is a target schema element in ΣT . Note that the mapping expression may

be degenerate so that (t ∼ s) is possible.

As part of the mapping declarations, TIQS derives a set of inclusion dependencies for each

target element based on the collected source-to-target mappings. Each mapping element ω, (t ∼

s ⇐ θs(ΣS)), implies an inclusion dependency, which we denote as (S.s ⊆ t). This declares

that the facts for schema element s ∈ VS , can be “loaded” into the target as the facts for schema

element t.3 As is typical for integration systems with non-materialized global schemas, we make

an “Open World Assumption.” Thus, the facts for the source element s in the mapping element

ω are only a subset of facts for the target element t; and if there exists a source element s′ ∈ VS′

and another mapping element ω′, (t ∼ s′ ⇐ θs′(ΣS′)), the facts for both s and s′ can be facts for t.

In general, for each target schema element t ∈ ΣT in the data-integration system I, we denote the
3For TIQS and other integration systems, whose global schema is virtual, the “loading” is implicit.
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set of inclusion dependencies for t as {Si.sj ⊆ t|(t ∼ sj ⇐ θsj(ΣSi)) ∈ Mi, sj ∈ VSi , Si ∈ {Si} ∈

I,Mi ∈ {Mi} ∈ I, T ∈ I}.

3 Source-to-Target Mappings

Automated schema matching techniques have been proven to be successful in extracting mapping

elements between two schemas. [RB01] surveys these techniques. The mapping tool in TIQS

provides many mappings automatically, with accuracies ranging from 92%-100%; these mappings

are not just direct matches, but include many indirect matches discussed later in this paper.

3.1 Matching Techniques

The mapping tool uses four basic techniques for matching: (1) terminological relationships (e.g.

synonyms and hypernyms), (2) data-value characteristics (e.g. string lengths and alphanumeric

ratios), (3) domain-specific, regular-expression matches (i.e. the appearance of expected strings),

and (4) structure (e.g. structural similarities). In the following we give high-level descriptions of

the four matching techniques we use in the mapping tool. (See details in [XE03].)

• Terminological Relationships. The meaning of element names provides a clue about which

elements match. To match element names, we use WordNet [Mil95] which organizes English

words into synonym and hypernym sets. Other researchers have also suggested usingWordNet

to match attributes (e.g. [BCV99]), but have given few, if any, details. We use a C4.5 [Qui93]

learning algorithm to train a set of decision rules to compute confidence values each of which

gives the possibility that a source schema element matches with a target schema element.

• Data-Value Characteristics. Whether two sets of data have similar value characteristics pro-

vides another a clue about which elements match. Previous work in [LC00] shows that this

technique can successfully help match elements by considering such characteristics as string-

lengths and alphabetic/non-alphabetic ratios of alphanumeric data and means and variances
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of numerical data. We use features similar to those in [LC00], but generate a C4.5 decision

tree rather than a neural-net decision rule. Based on the decision tree, we generate confidence

values between two schema elements with respect to their value characteristics.

• Expected Data Values. Whether expected values appear in a set of data provides yet an-

other clue about which elements match. For a specific application, we can specify a domain

ontology [ECJ+99], which includes a set of concepts and relationships among the concepts

and a set of regular expressions that match values and keywords expected to appear for the

concepts. Then, using techniques described in [ECJ+99], we can extract values from sets of

data associated with source elements and categorize their data-value patterns based on the

regular expressions declared for target-application concepts. The derived data-value patterns

and the declared relationship sets among concepts in the domain ontology can help discover

both direct and indirect matches for schema elements.

• Structure. We consider structure matching as one more technique that provides a clue about

which elements match. Given the confidence measures output from the other matching tech-

niques as a guide, structure matching determines element matches by considering the context

of schema elements and exploiting structure properties of target and source schemas. The

structure-matching technique is the other key technique in addition to Expected Data Values

that can help us discover indirect as well as direct matches for schema elements.

3.2 Extended Relational Algebra

Each object and relationship set (including derived object and relationship sets) in the target

and source schemas are single-attribute or multiple-attribute relations. Thus, relational algebra

directly applies to the object and relationship sets in a source or target schema. The standard

operations, however, are not enough to capture the operations required to express all the needed
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source-to-target mappings. Thus, we extend the relational algebra.

To motivate our use of standard and extended operators, we list the following problems we must

face in creating derived object and relationship sets over source schemas.

• Union and Selection. The object sets, phone day and phone evening in Schema 1 of Fig-

ure 1(a) are both subsets of Phone values in Schema 2 of Figure 1(b), and the relationship

sets agent − phone day and agent − phone evening in Schema 1 are both specializations

of Agent − Phone value pairs in Schema 2. Thus, if Schema 2 is the target, we need the

union of the values in phone day and phone evening and the union of the relationships in

agent − phone day and agent − phone evening in Schema 1; and if Schema 1 is the target,

we should use Selection to find a way to separate the day phones from the evening phones

and separate the relationships between agents and day phones from those between agents and

evening phones.

• Merged and Split Values. The object sets, Street, City, and State are separate in Schema 2

and merged as address of house or location of agent in Schema 1. Thus, we need to split the

values if Schema 2 is the target and merge the values if Schema 1 is the target.

• Object-Set Name as Value. In Schema 2 the features Water front and Golf course are

object-set names rather than values. The Boolean values “Yes” and “No” associated with

them are not the values but indicate whether the valuesWater front andGolf course should

be included as description values for location description of house in Schema 1. Thus, we

need to distribute the object-set names as values for location description if Schema 1 is the

target and make Boolean values for Water front and Golf course based on the values for

location description if Schema 2 is the target.

• Path as Relationship Set. The path house− basic features− beds in Schema 1 semantically
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corresponds to the relationship setHouse−Bedrooms in Schema 2. Thus, we need to join and

project on the path if Schema 2 is the target and make a derived object set for basic features

and derived relationship sets for house − basic features and basic features − beds over

Schema 2 if Schema 1 is the target.

Currently, we use the following operations over source relations to resolve these problems4. (See

Appendix A for examples that illustrate how the new operators work.)

• Standard Operators. Selection σ, Union ∪, Natural Join 1, Projection π, and Rename ρ.

• Composition λ. The λ operator has the form λ(A1,...,An),Ar where each Ai, 1 ≤ i ≤ n, is either

an attribute of r or a string, and A is a new attribute. Applying this operation forms a new

relation r′, where attr(r′) = attr(r) ∪ {A} and |r′| = |r|. The value of A for tuple t of row l

in r′ is the concatenation, in the order specified, of the strings among the Ai’s and the string

values for attributes among the Ai’s for tuple t′ of row l in r.

• Decomposition γ. The γ operator has the form γR
A,A′r where A is an attribute of r, and A′ is a

new attribute whose values are obtained from A values by applying a routine R. Typically, R

extracts a substring from a given string to form part of a decomposition. Repeated application

of γ allows us to completely decompose a string. Applying this operation forms a new relation

r′, where attr(r′) = attr(r) ∪ {A′} and |r′| = |r|. The value of A′ for tuple t of row l in r′ is

obtained by applying the routine R on the value of A for tuple t′ of row l in r.

• Boolean β. The β operator has the form βY,N
A,A′r, where Y andN are two constants representing

Y es and No values in r, A is an attribute of r that has only Y or N values, and A′ is a new

attribute. The β operator requires the precondition (attr(r)− {A}) → {A}. Applying this
4In the notation, a relation r has a set of attributes, which corresponds to the names of lexical or non-lexical

object sets; attr(r) denotes the set of attributes in r; and |r| denotes the number of tuples in r.
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operation forms a new relation r′, where attr(r′) = (attr(r)−{A})∪{A′} and |r′| = |σA=Y r|.

The value of A′ for tuple t in r′ is the literal string A if and only if there exists a tuple t′ in

r such that t′[attr(r)− {A}] = t[attr(r)− {A}] and t′[A] is a Y value.

• DeBoolean β. The β operator has the form βY,N
A,A′r, where Y and N are two constants

representing Y es and No values, A is an attribute of r, and A′ is a new attribute. Applying

this operation forms a new relation r′, where attr(r′) = (attr(r) − {A}) ∪ {A′} and |r′| =

|πattr(r)−{A}r|. The value of A′ for tuple t in r′ is Y if and only if there exists a tuple t′ in r

such that t′[attr(r)− {A}] = t[attr(r)− {A}] and t′[A] is the literal string A′, or is N if and

only if there does not exist a tuple t′ in r such that t′[attr(r)− {A}] = t[attr(r)− {A}] and

t′[A] is the literal string A′.

• Skolemization ϕ. The ϕ operator has the form ϕfA
(r), where fA is a skolem function, and

A is a new attribute. Applying this operation forms a new relation r′, where attr(r′) =

attr(r)∪ {A} and |r′| = |r|. The value of A for tuple t of row l in r′ is a functional term that

computes a value by applying the skolem function fA over tuple t′ of row l in r.

4 Example

As an example, let Schema 1 in Figure 1 be a target schema T of a data-integration system I.

Assume a new information source becomes available for I, and let Schema 2 be a source schema

S for the new information source after having been wrapped by a wrapper. A mapping tool in I

generates a source-to-target mapping between S and T . Figure 2 illustrates the derivation over the

source schema S and the virtual target-view elements in the source-to-target mapping. The shaded

boxes denote derived object sets, and the dashed lines denote derived relationship sets. There are

two main steps in the derivation.

Step 1: Use instance-level information to derive virtual source elements. The implemented match-
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Figure 2: Derivation of Virtual Elements from Schema 2 for Schema 1

ing system applies expected-data-value techniques [EJX01] to derive object and relationship sets

over S. Figure 2(a) shows the derived object and relationship sets after applying the following

instance-level transformations.

• Derivation of location description′ and House− location description′.

House− location description′ ⇐ ρGolf course′←location description′β“Y es”,“No”
Golf course,Golf course′(House−Golf course)∪

ρWater front′←location description′β“Y es”,“No”
Water front,Water front′(House−Water front)

location description′ ⇐ πlocation description′(House− location description′)

• Derivation of Address′ and Address−Address′.

Address−Address′ ⇐ πAddress,Address′λ(Street,“, ”,City,“, ”,State),Address′(Address− Street
1 Address−City 1 Address− State)

Address′ ⇐ πAddress′(Address− Address′)
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• Derivation of phone day′, Agent−phone day′, phone evening′, and Agent−phone evening′.5

Agent− phone day′ ⇐ ρPhone←phone day′σKEY WORD(day)(Agent− Phone)
phone day′ ⇐ πphone day′(Agent− phone day′)
Agent− phone evening′ ⇐ ρPhone←phone evening′σKEY WORD(evening)(Agent− Phone)
phone evening′ ⇐ πphone evening′ (Agent− phone evening′)

Step 2: Use schema-level information to derive virtual source elements. The matching techniques

apply source and target schema structural characteristics to derive object and relationship sets over

S. Figure 2(b) shows the object and relationship sets in VS after applying the following schema-level

transformations.

• Derivation of Agent− location′, location′, House− address′, and address′.

House− address′ ⇐ ρAddress′←address′πHouse,Address′(House− Address 1 Address− Address′)
Agent− location′ ⇐ ρAddress′←location′πAgent,Address′(Agent− Address 1 Address− Address′)
address′ ⇐ πaddress′(House− address′)
location′ ⇐ πlocation′(Agent− location′)

• Derivation of basic features′, House − basic features′, basic features′ − Square feet, ba-

sic features′ −Bedrooms, and basic features′ −Bathrooms.6

House− basic features′ ⇐ ϕfbasic features′ (House)

basic features′ −Bathrooms⇐ πbasic features′,Bathrooms(House− basic features′ 1 House−Bathrooms)
basic features′ −Bedrooms⇐ πbasic features′,Bedrooms(House− basic features′ 1 House−Bedrooms)
basic features′ − Square feet⇐ πbasic features′,Square feet(House− basic features′ 1 House− Square feet)

• Specializations of Agent− phone day′ and Agent− phone evening′.7

Agent− phone day′ ⇐ σCOMPATIBLE(agent−phone day)(Agent− phone day′)
Agent− phone evening′ ⇐ σCOMPATIBLE(agent−phone evening)(Agent− phone evening′)

5We may be able to recognize keywords such as day-time, day, work phone, evening, or home associated with
each listed phone in the source. If so, we can apply the selection operator to sort out which phones belong in which
set (if not, a human expert may not be able to sort these out either). We implement the KEYWORD predicate by
applying data-extraction techniques described in [ECJ+99].

6When applying the Skolemization operator to derive the virtual element basic features′, the system makes
basic features′ functionally dependent on House to match the functional dependency between basic features and
house in the target schema.

7The system specializes the relationship sets in the source so that they are compatible with the functional de-
pendencies in the corresponding relationship sets in the target. The predicate COMPATIBLE defaults to the first
one or allows a user to decide how the selection should work. See [BE03] for a full explanation about source-target
constraint incompatibilities.
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At this point, Figure 2(c) is the subgraph of Figure 1(b) that contains exactly the virtual target-

view elements in the mapping elements between S and T . For example, we have (house ∼ House),

(address ∼ address′), (house − address ∼ House − address′),8 and so forth. For each mapping

element (t ∼ s ⇐ θs(ΣS)) between S and T , the mediator of I derives an inclusion dependency

(S.s ⊆ t) for t. Thus, for each schema element t in a target schema T ∈ I, there is a set that

contains all inclusion dependencies for t collected from all the information sources in I.

In summary, when a new information source becomes a part of the system I, a mapping tool

exploits schema-matching techniques to semi-automatically generate a source-to-target mapping

between the target schema T of I and a source schema for the new information source. Based

on the source-to-target mapping, the mediator of I adjusts the inclusion dependencies for target

relations in T automatically.

5 Query Reformulation

In the design phase, the data-integration system I collects the information including a target

schema T , a set of source schemas {Si}, and a set of source-to-target mappings {Mi}. In the

query-processing phase, the system reformulates user queries in polynomial time.

To specify the semantics of I, we start with a valid interpretation DSi of a source schema

Si ∈ {Si} ∈ I, 1 ≤ i ≤ n. For an interpretation of a schema H to be valid, each tuple in DH

must satisfy the constraints specified for H. In our running example, let S2 denote the information

source whose schema is Schema 2 in Figure 1(b). For purposes of illustration, assume that we have

one additional information source, which we denote as S3, and assume that the wrapped Schema

for S3 is exactly the same as Schema 1 in Figure 1(a). Further, assume that both S2 and S3 have

valid interpretations. The tables in Figure 3 show some partial populated data for relations in S2

8Here, of course, we implicitly have the mapping expressions for address′ and House− address′, which we have
just discussed.
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House Water front
h1 Yes
h2 No
h3 Yes

House Golf course
h1 Yes
h2 Yes
h3 No

House Square feet
h1 990
h2 1420
h3 2500

(a) Partial Populated Data for Relations in S2

house location description
h10 Water front
h11 Golf course

house basic features
h10 b10
h11 b11

basic features SQFT
b10 1000
b11 1500

(b) Partial Populated Data for Relations in S3

Figure 3: Some Partial Populated Data for Relations in Sources

and S3.

A target interpretation DSiT with respect to a source interpretation DSi in I (1) is a valid

interpretation of T , and (2) satisfies the mapping Mi between Si and T with respect to DSi .

Assume that the mapping function for Mi is fi. If fi matches sk with tj, c is a tuple for tj in

DSiT if and only if c is a tuple for sk derived through applying the mapping expression θsk
(ΣSi)

over DSi . For our running example, let the target schema be Schema 1 in Figure 1(a). Section 4

describes the source-to-target mapping between the target schema and the source schema for S2

in Figure 1(b). Based on the source-to-target mapping, a valid target interpretation DS2T with

respect to a valid interpretation DS2 contains tuples in a valid interpretation for the schema in

Figure 2(c). Moreover, since we assume that the source schema for S3 is exactly the same as the

target schema T , the source-to-target mapping between the target schema and the source schema

for S3 is trivial. Thus, the tuples in a valid target interpretation DS3T with respect to DS3 are

those of source relations in S3.

The semantics of I, denoted as sem(I), are defined as follows: sem(I) = {DSiT | DSiT is

a target interpretation with respect to DSi , Si ∈ I}.9 Intuitively, the semantics of I represent

9When sources share objects, both the object-identification problem and the data-merge problem need a resolution.
(Note that neither this paper nor other papers that focus on data integration with virtual global schemas resolve
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relevant data allowed in a predefined target schema T retrieved from available heterogeneous in-

formation sources. We are able to prove that if a source has a valid interpretation, then we can

“load” data from the source into the target such that the part of the target populated from the

source will necessarily have a valid interpretation [BE03].

In this paper, a query can be a conjunctive query, a conjunctive query with arithmetic compar-

isons, or a recursive query. We use logic-rule notation in [Ull88] to express user queries. Here, the

queries are in terms of elements in ΣT , which means that a predicate in a query body is either a

target relation in ΣT or a head predicate of a logic rule. We call a predicate representing a target

relation appearing in a query body a target predicate. Like pure DataLog, we do not allow nega-

tions of predicates that appear in user queries because we adopt the “Open World Assumption”

in our approach. In our running example, assume that a user wants an answer to the query, “For

houses on water-front property, list the number of square feet.” We can express this query, which

we denote as qexample, using the following logic rule.

house− SQFT (x, y) : − house− basic features(x, z) & basic features− SQFT (z, y)
& house− location description(x, “Water front”)

Let q be a user query such as the one above. When evaluating q over sem(I), the system

I transparently reformulates q as qExt, which is a query evaluated by retrieving data from the

underlying information sources in I. Let D = {DSi |Si ∈ {Si} ∈ I} be the set of valid interpretations

of source schemas in I. By reformulating q as qExt, the system transforms the task of evaluating q

over sem(I) into a task of answering qExt over D.

The system I reformulates a user query q by applying the inclusion dependencies for target

relations collected in the design phase. Since a user poses queries in terms of elements in ΣT , each

target relation ri that appears in the body of q corresponds to a set of inclusion dependencies IDi,

1 ≤ i ≤ N and N = |ΣT |. We expand the user query q for each inclusion dependency (Sj .sk ⊆ ri)

these problems. The focus of this paper is on mediation, mappings, and query reformulation.)
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in IDi, where sk ∈ VSj (1 ≤ j ≤ n and n is the number of sources), and where ri is a target

predicate that appears in the body of q, by adding a logic rule, ri(X) : − Sj.sk(X), where X is

a vector of variables. Thus, the added logic rules as well as the logic rule of q together form the

query qExt.

To reformulate qexample for our running example, the system I applies inclusion dependen-

cies for target relations house − basic features, basic features − SQFT , and basic features −

location description appearing in the body of query qexample. In addition to the logic rule above for

the user query qexample, the following logic rules are added to form the reformulated query qExt
example.

house− basic features(x, z) : − S2.House− basic features′(x, z)
house− basic features(x, z) : − S3.house− basic features(x, z)
basic features− SQFT (z, y) : − S2.basic features

′ − Square feet(z, y)
basic features− SQFT (z, y) : − S3.basic features− SQFT (z, y)
house− location description(x, v) : − S2.House− location description′(x, v)
house− location description(x, v) : − S3.house− location description(x, v)

To evaluate a reformulated query qExt over sources, the system I decomposes qExt into sub-

queries, and retrieves and combines query answers to sub-queries from individual information

sources. We use a logic program PExt
D to describe the evaluation of qExt over D, where D is

the set of valid interpretations of source schemas in I. The logic program PExt
D is defined as

follows.

• Rules. The logic rules for qExt.

• Facts. For each source relation Sj .sk in the body of the logic program for qExt, we treat data

for the source relations as ground facts. For example, if a tuple t is in the source relation

Sj .sk, we have the fact10: Sj.sk(t).

By evaluating PExt
D , the facts for the head predicate of q are query answers to the reformulated

query qExt over D, which we denote as qExt
D . Note that when sending a sub-query to obtain data

10We use this logic program to capture the semantics of qExt
D . In real-world applications, query processing in I can

optimize the evaluation of qExt.
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from an information source Sj, the system I also sends the mapping expression θsk
(ΣSj ) to the

source Sj so that the source Sj correctly executes the mapping expression to derive source facts for

sk. Given the data in Figure 3 for our running query example, qexample, we add the following list

of source facts from S2 and S3 to the rules in qExt
example above to form a logic program PExt

exampleD.

S2.House− location description′(h1,Water front)
S2.House− location description′(h3,Water front)
S2.House− location description′(h1, Golf course)
S2.House− location description′(h2, Golf course)
S2.House− basic features′(h1, fbasic features′ (h1))
S2.House− basic features′(h2, fbasic features′ (h2))
S2.House− basic features′(h3, fbasic features′ (h3))
S2.basic features

′ − Square feet(fbasic features′ (h1), 990)
S2.basic features

′ − Square feet(fbasic features′ (h2), 1420)
S2.basic features

′ − Square feet(fbasic features′ (h3), 2500)
S3.house− location description(h10,Water front)
S3.house− location description(h11, Golf course)
S3.house− basic features(h10, b10)
S3.house− basic features(h11, b11)
S3.basic features− SQFT (b10, 1000)
S3.basic features− SQFT (b11, 1500)

Note that the facts for S2 have been transformed according to the source-to-target mapping in

Section 4. By evaluating this logic program PExt
exampleD, we obtain the house−SQFT facts (h1, 990),

(h3, 2500), and (h10, 1000) in qExt
exampleD.

With query reformulation in place, we can now prove that query answers to any query are

sound—every answer to a user query is a fact according to the semantics of I—and maximal—the

query answers contain all the facts the sources have to offer with respect to the facts allowed in the

global target schema. Let qI denote the query answers to a user query q over the semantics of I,

sem(I), which represents all data relevant to the target schema T from all information sources in

I. The proofs are based on an observation that the semantics of qI can be captured using a logic

program PI . The logic program PI is defined as follows.

• Rule. A user query q in terms of target relations in T .

• Facts. For each tuple t for a target relation r in DSjT , where DSjT ∈ sem(I) and Sj ∈ {Sj} ∈
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I, we have the fact: r(t). (Note that these facts include all facts the sources have for T .)

The facts for the head predicate of q by evaluating PI are the query answers qI . Based on the

characteristics of the two logic programs PExt
D and PI , we can now prove the following theorem.

Theorem. Let I = (T, {Si}, {Mi}) be a data-integration system. Let D = {DSi |Si ∈ {Si} ∈ I}

be the set of valid interpretations of source schemas in I. Let qI be the query answers obtains by

evaluating q over sem(I) and let qExt
D be the query answers obtained by evaluating qExt over D.

Given a user query q in terms of target relations, a tuple a = < a1, a2, . . . , aM > where M is the

number of variables and constants in the head predicate of q, is in qI if and only if a is a tuple in

qExt
D .

Proof (sketch). The two logic programs PExt
D and PI respectively capture the semantics of qExt

D and

qI . We use resolution to show that a tuple a = < a1, a2, . . . , aM > is a fact for the head predicate

of query q by evaluating PI if and only if the tuple a is a fact for the head predicate of query q by

evaluating PExt
D . Based on the evaluation theory of logic programs in [SC90] and the definitions of

PExt
D and PI , we obtain the contradictions required by resolution. (See Appendix B for a detailed

proof for this theorem.) 2

6 Related Work

[CLL01] surveys the most important query processing algorithms proposed in the literature for

LAV [LRO96, GKD97] and describes the principle GAV [CGMH+94] data-integration systems and

the form of query processing they adopt. In a GAV approach, query reformulation reduces to rule

unfolding. However, changes in information sources or adding a new information source requires a

DBA to revise the global schema and the mappings between the global schema and source schemas.

Thus, GAV is not scalable for large applications. LAV scales better and is easier to maintain than

GAV because DBAs create a global schema independently of source schemas. Then, for a new (or
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changed) source schema, the DBA only has to give (adjust) a source description that describes

source relations as views of the global schema. Automating query reformulation in LAV, however,

has exponential time complexity with respect to query and source schema definitions. Thus, LAV

has low query performance when users frequently pose complex queries.

[FLM99] proposes a Global-Local-as-View (GLAV) approach, which combines the expressive

power of both LAV and GAV. In a GLAV approach, the independence of a global schema, the

maintenance to accommodate new sources, and the query-reformulation complexity are the same

as in LAV. However, instead of using a restricted form of first-order logical sentences as in LAV and

GAV to define view definitions, GLAV uses flexible first-order sentences such that it allows a view

over source relations to be a view over global relations in source descriptions. Thus, GLAV can

derive data using views over source relations, which is beyond the expressive ability of LAV, and it

allows conjunctions of global relations, which is beyond the expressive ability of GAV. Our solution,

TIQS, also has the ability to derive views over source schemas. The sets of view-creation operators

in TIQS, however, are more powerful because GLAV has nothing comparable to merge/split or

Boolean operators. Moreover, GLAV claims no ability to semi-automate the specification of source

descriptions.

[CCGL02] proposes a translation algorithm to turn LAV into GAV such that it can keep LAV’s

scalability and obtain GAV’s simple query reformulation. The translation results in a logic program

that can be used to answer queries using rule unfolding. However, even though the translation

to obtain the logic program is in polynomial time, the evaluation of the logic program could

produce an exponential number of facts because of recomputing source relations over all source

data. In contrast, TIQS encapsulates views for source relations in mapping elements. Since the

view definitions are immediately available, query processing in TIQS has better query performance

than the translation approach. Furthermore, [CCGL02] does not claim the ability to semi-automate
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the specification of source descriptions.

The Clio project [MHH00, MHH+01] is a system for managing and facilitating the complex

tasks of heterogeneous data transformation and integration. The objective of Clio is to support the

generation and management of schemas, correspondences between schemas and mappings (queries)

between schemas. Clio has an extensive tool set to aid users semi-automatically generate mappings.

The system introduces an interactive mapping creation paradigm based on value correspondence

that shows how a value of a target schema element can be created from a set of values of source

elements. A DBA, however, is responsible to input most of the value correspondences. Clio and

TIQS are independently implemented. The matching techniques in TIQS and Clio are comple-

mentary. The techniques of TIQS could help Clio discover both direct and indirect matches semi-

automatically. On the other hand, TIQS could take advantage of the GUI provided by Clio such

that a DBA can easily be involved in integrating data in an open environment. Currently, Clio

claims to be useful for data warehousing. TIQS, however, provides an alternative approach for data

integration without materializing data in global schemas. The components of either Clio and TIQS

could be altered to support the alternative approach.

7 Conclusion

This paper describes TIQS, a unified, scalable approach to data integration using source-to-target

mapping based on a predefined target schema, which combines the advantages and avoids the

limitations of both GAV and LAV. Our solution has polynomial-time query reformulation and fa-

cilitates adding or modifying information sources in a data-integration system. DBAs create the

target schema and wrap source schemas independently, so that neither the target schema nor the

source schemas are contingent respectively on the source schemas or the target schema. TIQS

has an implementation of a mapping tool that either creates or helps create the needed map-
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pings, which reduces the heterogeneity between the source schemas and the target schema. Even

when DBAs modify or add new items of interest to the target schema, the mapping tool of TIQS

semi-automatically generates or adjust required source-to-target mappings between source schemas

and the new target schema. Thus, TIQS increases both scalability and usability as compared to

previously proposed approaches.
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A Examples for New Operators in the Mapping Algebra

A.1 Composition

Let r be the following relation, where attr(r) = {House, Street, City, State}.

House Street City State
h1 339 Wymount Terrace Provo Utah
h2 15 S 900 E Provo Utah
h3 1175 Tiger Eye Salt Lake City Utah

Applying the operation λ(Street,“, ”,City,“, ”,Street),Addressr yields a new relation r′, where attr(r′) =
{House, Street, City, State, Address}.

House Street City State Address
h1 339 Wymount Terrace Provo Utah 339 Wymount Terrace, Provo, Utah
h2 15 S 900 E Provo Utah 15 S 900 E, Provo, Utah
h3 1175 Tiger Eye Salt Lake City Utah 1175 Tiger Eye, Salt Lake City, Utah

A.2 Decomposition

Let r be the following relation, where attr(r) = {House, Address}.

House Address
h1 Provo, Utah
h2 339 Wymount Terrace, Provo, Utah
h3 1175 Tiger Eye, Salt Lake City, Utah

Applying the operation γR
Address,Streetr, where R is a routine that obtains values of Street from

values of Address, yields a new relation r1, where attr(r1) = {House, Address, Street}.
House Address Street
h1 Provo, Utah
h2 339 Wymount Terrace, Provo, Utah 339 Wymount Terrace
h3 1175 Tiger Eye, Salt Lake City, Utah 1175 Tiger Eye

Similarly, applying the operation γR′
Address,Cityr, where R

′ is a routine that obtains values of City
from values of Address, yields a new relation r2, where attr(r2) = {House, Address, City}.

House Address City
h1 Provo, Utah Provo
h2 339 Wymount Terrace, Provo, Utah Provo
h3 1175 Tiger Eye, Salt Lake City, Utah Salt Lake City

A.3 Boolean

Let r be the following relation, where attr(r) = {House, Water Front}.

House Water Front
h1 Yes
h2 No
h3 Yes

24



Applying the operation β“Y es”,“No”
Water Front,Lot Descriptionr yields a new relation r′, where attr(r′) = {House, Lot

Description}.

House Lot Description
h1 Water Front
h3 Water Front

A.4 DeBoolean

Let r be the following relation, where attr(r) = {House, Lot Description}.

House Lot Description
h1 Water Front
h1 Golf Course
h1 Mountain View
h2 Water Front
h3 Golf Course

Applying the operation β“Y es”,“No”
Lot Description,Water Frontr yields a new relation r′, where attr(r′) = {House,

Water Front}.

House Water Front
h1 Yes
h2 Yes
h3 No

Similarly, applying the operation β“x”,“”
Lot Description,Golf Courser yields a new relation r′′, where attr(r′′)

= {House, Golf Course}.

House Golf Course
h1 x
h2
h3 x

A.5 Skolemization

Let r be the following relation, where attr(r) = {House}.

House
h1
h2
h3

Applying the operation ϕfBasic F eatures
r yields a new relation r′, where attr(r′) = {House, Basic Features}.

House Basic Features
h1 fBasic Features(h1)
h2 fBasic Features(h2)
h3 fBasic Features(h3)
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B Theorem for Query Reformulation

Theorem. Let I = (T, {Si}, {Mi}) be a data-integration system. Let D = {DSi |Si ∈ {Si} ∈ I}
be the set of valid interpretations of source schemas in I. Let qI be the query answers obtains by
evaluating q over sem(I) and let qExt

D be the query answers obtained by evaluating qExt over D.
Given a user query q in terms of target relations, a tuple a = < a1, a2, . . . , aM > where M is the
number of variables and constants in the head predicate of q, is in qI if and only if a is a tuple in
qExt
D .

Proof. Assume that we define two logic programs PExt
D and PI based on the semantics of qExt

D and
qI respectively as we discussed in Section 5.

If. Assume that a tuple a = < a1, a2, . . . , aM > is in qExt
D but not in qI . Since a is in qExt

D ,
there exists a substitution ϑ, which binds variables in PExt

D with constants such that the evaluation
of PExt

D ϑ yields the tuple a for the head predicate of q. By using a subset of substitution ϑ′ of ϑ
for variables in q while evaluating PI , since a is not in qI , there must exist at least one subgoal of
q that is not satisfied in PIϑ

′. Based on the evaluation theory in [SC90], the subgoal could be a
target predicate or an arithmetic comparison. We make an analysis for each possibility as follows.

• Arithmetic comparison. Assume that we have an arithmetic comparison, which is a subgoal
of q, satisfied in PExt

D ϑ but not in PIϑ
′. Since we use the same bindings for variables of q in

ϑ and ϑ′, if the arithmetic comparison is satisfied in PExt
D ϑ, it must also be satisfied in PIϑ

′.
Thus, the unsatisfied subgoal is not an arithmetic comparison.

• Target predicate. Assume that we have a target predicate r, which is a subgoal of q, satisfied
in PExt

D ϑ but not in PIϑ
′. Based on the substitution ϑ, the subgoal r is satisfied in PExt

D

because r(c) holds, where c is a vector of constants using the bindings in ϑ. Since r(c) holds,
there must exist a rule r(c) : − Sj .sk(c) and a fact Sj .sk(c), where Sj ∈ {Si} ∈ I and
sk ∈ VSj , in P

Ext
D ϑ such that r(c) is derived from the rule and the fact. Since we define the

rule, r(c) : − Sj.sk(c), based on an inclusion dependency (Sj .sk ⊆ r), there must exist a
mapping element (r ∼ Sj.sk ⇐ θsk

(ΣSj )) between Sj and T . Since sk matches with r and c
is a tuple of sk in Sj , based on the semantics of DSjT in sem(I), c is a tuple of r in DSjT .
Then, based on the definition of PI , there must exist a ground fact r(c) in PI . Since r(c) is
a ground fact in PI , the subgoal r(c) is satisfied in PIϑ

′. This is contrary to the assumption.
Thus, the unsatisfied subgoal in PI must not be a target predicate.

By analyzing the two possibilities, we conclude that all of the subgoals in q are satisfied while
evaluating PIϑ

′ to obtain the tuple a as a fact for the head predicate of q. Thus, based on the
semantics of PI , a is a tuple in qI . This is contrary to our assumption.

Only if. Assume that we have a tuple a = < a1, a2, . . . , aM > in qI but not in qExt
D . Since a is

a tuple in qI , there must exist a substitution ϑ for variables in q such that the evaluation of PIϑ
outputs the tuple a as a fact for the head predicate of q. By using the same substitution ϑ for
variables in q while evaluating PExt

D , since a is not in qExt
D , there must exist at least one subgoal in

q that cannot be satisfied in PExt
D ϑ. Based on the evaluation theory in [SC90], the subgoal could

be a target predicate or an arithmetic comparison. We make an analysis for each possibility as
follows.

• Arithmetic comparison. Assume that we have an arithmetic comparison, which is a subgoal
of q, satisfied in PIϑ but not in PExt

D ϑ. Since we use the same bindings for variables of q in
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ϑ, if the arithmetic comparison is satisfied in PIϑ, it must also be satisfied in PExt
D ϑ. Thus,

the unsatisfied subgoal is not an arithmetic comparison.

• Target predicate. Assume that we have a target predicate r, which is a subgoal of q, satisfied
in PIϑ but not in PExt

D ϑ. Since the subgoal r is satisfied in PIϑ, r(c) holds, where c is a
vector of constants by using bindings in ϑ. Since r(c) holds, based on the definition of PI ,
c is a tuple of r in a target interpretation DSjT of sem(I), where Sj ∈ {Sj} ∈ I. Based on
the semantics of DSjT , since c is a tuple of r in DSjT , there must exist a mapping element
(r ∼ Sj.sk ⇐ θsk

(ΣSj)) between Sj and T where c is a tuple of the source relation Sj.sk.
By applying the mapping element that matches Sj.sk with r, we can derive an inclusion
dependency (Sj .sk ⊆ r). Hence, since we have the inclusion dependency (Sj.sk ⊆ r) and
the fact that c is a tuple of the source relation Sj.sk, based on the definition of PExt

D , there
must exist a rule r(X) : − Sj.sk(X) and a fact Sj .sk(c) in PExt

D ϑ, where Sj ∈ {Sj} ∈ I,
sk ∈ VSj , and X is a vector of variables corresponding attributes of r. Based on the rule
and the fact, r(c) holds in PExt

D ϑ. This is contrary to the assumption. Thus, the unsatisfied
subgoal in PExt

D ϑ must not be a target predicate.

By analyzing the two possibilities, we conclude that all of the subgoals in q are satisfied while
evaluating PExt

D ϑ to obtain the tuple a as a fact for the head predicate of q. Thus, based on the
semantics of PExt

D , a is a tuple in qExt
D . This is contrary to our assumption. 2
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