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Abstract. The Semantic Web promises to provide timely, targeted ac-
cess to user-specified information online. Though standardized services
exist for performing this work, specifying these services is too complex
for most people. Annotating these services is also problematic. A similar
situation exists for traditional information extraction, where ontologies
are increasingly used to specify information used by various extraction
methods. The approach we introduce in this paper involves converting
such ontologies into executable Java code. These APIs act individually
or compositionally as services for Semantic Web extraction.

1 Introduction

One goal of the Semantic Web is to enable personalized, automatic, targeted
access to information that can be useful to a user. This might include finding out
the availability and price of a book, or reserving and ticketing travel itineraries.
Currently tools to provide such services are in their infancy, but much human
intervention is needed to hard-code and hand-specify their functionality.

In order to increase the use of services with the Semantic Web, we need
a more automatic way of making them machine-interpretable, and we need to
annotate them with a more systematic description of their respective semantic
domains, conceptual coverage, and executable functions. This goal is perhaps
optimally realized when a Web service is annotated by an ontology. An ontology
enables domain experts to declare standardized, sharable machine-processable
knowledge. In a traditional Web setting we have found ontologies useful for
information extraction applications. In this paper we show how ontologies can
serve two useful purposes in the creation of Semantic Web services.

First, we map an extraction ontology to a set of Java APIs, through which
we can automatically create atomic information extraction Web services. Each
of these atomic Web services instantiates a lexical ontology concept; domains
with extensive vocabularies could spawn a considerable number of derived ser-
vices. Since each atomic service directly derives from formal definitions in an
ontology, we can use this information to sidestep the traditional requirement
for hand-annotation of the service, a difficult process. Second, given these Java-
instantiated services and their corresponding ontological properties, we can au-
tomatically compose complex Web services to respond to users’ requests.
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Our goal is thus to develop a method of automatically creating Web services
based on extraction ontologies. In this paper we begin by introducing extraction
ontologies. In the next section we sketch the process of compiling these ontologies
into executable Java classes. Next we discuss web services and their creation via
composition of these classes. Finally, we mention future work and applications.

2 Extraction Ontologies

An extraction ontology is a conceptual-model instance that serves as a wrapper
for a narrow domain of interest such as car advertisements. We use OSM [3] as
the semantic data model for an extraction ontology; we also augment OSM to
allow regular expressions as descriptors for constants and context keywords. The
conceptual-model instance includes objects, relationships, constraints over these
objects and relationships, descriptions of strings for lexical objects, and key-
words denoting the presence of objects and relationships among objects. When
we apply an extraction ontology to a source document, the ontology identifies in-
stantiated objects and relationships and associates them with named object sets
and relationship sets in the ontology. This wrapping of recognized strings makes
them machine-interpretable in terms of the schema inherent in the conceptual-
model instance.

In essence, an extraction ontology is semantically equivalent to a Seman-
tic Web ontology written in OWL1. We are not using OWL directly because
our OSM extraction ontology contains formal specifications for data extraction
patterns beyond standard OWL. To be compatible with the Semantic Web stan-
dards, we have developed an OWL-OSM converter that transforms the two on-
tological representations; however, this ontology conversion research is beyond
the scope of this paper.

An extraction ontology consists of two components: (1) an object/relationship-
model instance that describes sets of objects, sets of relationships among objects,
and constraints over object and relationship sets, and (2) for each object set, a
data frame that defines the relevant extraction patterns. Figure 1 shows part of
our car-ads extraction ontology, including object/relationship model declarations
(Lines 1-8) and sample data frames (Lines 9-18).

An object set in an extraction ontology represents a set of objects which
may either be lexical or non-lexical. Data frames with declarations for constants
that can potentially populate the object set represent lexical object sets, and
data frames without constant declarations represent non-lexical object sets. Car,
for example, is a non-lexical object set. Year (Line 9) and Mileage (Line 14)
are lexical object sets whose character representations have a maximum length
of 4 characters and 8 characters respectively. We describe the constant lexical
objects and the keywords for an object set by regular expressions using Perl-like
syntax. We denote a relationship set by a name that includes its object-set names
(e.g. Car has Year in Line 2 and PhoneNr is for Car in Line 8). The min:max

1 Web Ontology Language (OWL), http://www.w3.org/2004/OWL/
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1. Car [-> object];
2. Car [0:1] has Year [1:*];
3. Car [0:1] has Make [1:*];
4. Car [0:1] has Model|Trim [1:*];
5. Car [0:1] has Mileage [1:*];
6. Car [0:*] has Feature [1:*];
7. Car [0:1] has Price [1:*];
8. PhoneNr [1:*] is for Car [0:1];
9. Year matches [4]
10. constant {extract "\d{2}";
11. context "\b’[4-9]\d\b";
12. substitute "ˆ" -> "19"; },
13. ...
14. Mileage matches [8]
15. ...
16. keyword "\bmiles\b", "\bmi\.", "\bmi\b",
17. "\bmileage\b", "\bodometer\b";
18. ...

Fig. 1. Car-Ads Extraction Ontology
(Partial)
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Fig. 2. The Graphical View of
the Car Ontology

pairs, such has 1:*, 0:*, or 0:1, in the relationship-set name are participation
constraints. Min designates the minimum number of times an object in the object
set can participate in the relationship set and max designates the maximum
number of times an object can participate, with * designating an unspecified
maximum number of times.

Figure 2 shows the equivalent graphical view of the ontology in Figure 1. A
dashed box represents a lexical object set and a solid box represent a non-lexical
object set. Lines between object sets represent the relationship sets among them
and the digit pairs on both ends of the lines represent participation constraints.
A black triangle represents an aggregation which constitutes a part/subpart
relationship. In Figure 2, for the Model|Trim aggregation, we implicitly have
the binary relationship sets Model is part of Model|Trim and Trim is part of
Model|Trim. OSM uses a clear triangle to denote a generalization/specialization
and connects a generalization at an apex of the triangle and to a specialization at
the opposite base. In Figure 2, Feature is the generalization of Engine, BodyType,
Accessory, and Transmission. In this research, we convert the knowledge repre-
sented in OSM to the Java programming language. The next section discusses
this translation process.

3 From Extraction Ontologies to Java

We have developed an ontology compiler that translates from an ontology lan-
guage (in this paper, we use OSM-L, which is a language for the OSM model)
to Java. This compiler takes an extraction ontology as input, and outputs Java
APIs automatically. It also helps ontology writers to find syntax errors which
are usually hard to find by visual inspection. Other research such as [7] and [2]
have also tried to automatically translate an ontology such as OWL or RDF to
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Java APIs. These approaches, however, only focus on mapping—not compiling—
certain desirable properties from the ontologies to corresponding executable Java
code. In addition, they do not provide translating ontologies to Web services.

In the rest of this section we discuss how we use Java classes and methods
to describe the knowledge represented in an ontology. In particular, we present
our use of Java to describe the five major components of an extraction on-
tology: object sets, data frames, relationship sets, aggregation, and generaliza-
tion/specialization. The first two map to atomic Web services (Section 4.1), and
the rest to complex Web services (Section 4.2).

Object Set An object set describes information about a concept in a source
ontology. In our system, an interface is generated automatically for each concept
in the source ontology. We choose to use interfaces because Java only supports
multiple inheritance through interfaces. An interface, however, can only provide
static variables and abstract methods. We also design the compiler to generate
an implemented class for each interface. For the car ontology in Figure 2, for
example, there are 15 concepts. The ontology compiler generates 15 interfaces
as well as 15 implemented classes. All of these interfaces use the same tem-
plate as Figure 3 (a) shows2. Each interface declares five static data fields. The
name variable stores the concept’s name. The type variable specifies whether the
concept is a primary concept. The length variable corresponds to the matching
length in the ontology. The dataFrame vector stores all the extraction rules de-
fined by the ontology and the relationSet stores all the relationships between this
concept and any other concepts. There are also three static methods: recognize,
listRelation, and checkSuperClass. The first is to recognize this concept from a
source document depending on the extraction rules defined in the data frame,
which we will discuss in Data Frame section. The second method is to store
all the relationships that this concept participates in. All such relationships are
stored in a vector called relationSet, which we will discuss in the Relationship
Set section. The third one is to check all the generalization concepts of a concept,
which we will discuss in the Generalization/Specialization section.

Data Frame There are two kinds of object sets: lexical objects and non-lexical
ones. A non-lexical object set describes an abstract concept that does not have
any value to extract, just like an interface cannot be instantiated. For a non-
lexical object, its dataFrame is null, and its recognize method only has an empty
body in the implemented class. For lexical objects, on the other hand, we want
to save the information from their data frames and implement the recognize
methods.
2 The interface/class for each concept has its own name (the concept name for the

interface name and the concept name concatenating an “impl” for the class name).
We use Concept here to illustrate the template. We decided not to generate an
overall concept class with each individual concept as an instance of this overall
class. Because we want to provide an individual Web service for each concept, it
is more convenient to make each concept an interface, which allows packing each
concept separately. The basic Web service can use one concept interface and the
implemented class without touching any other interface/class.
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Fig. 3. The UML Diagrams for the Generated Java Classes

A data frame contains a set of extraction rules. Each extraction rule is an
instance of the BaseDFRule class. Figure 3(b) shows the UML diagram of the
BaseDFRule class. We use four data fields to store the four parts of an ex-
traction rule: extraction pattern, context pattern, substituteFrom pattern, and
substitueTo pattern. This class also contains methods that extract information
according to the extraction rule. The method retrieve takes a string as input,
finds all the substrings that match the extraction rule, and then returns the
extracted results in an array. There is a set of private methods that help this
process. How to extract the information via an extraction rule is beyond the
scope of this paper; please refer to [3] for detailed information. In each con-
cept implementation class, the vector dataFrame stores all the extraction rule
instances contained in the data frame of this concept. The recognize method
processes one extraction rule a time by calling its retrieve method, and recog-
nizes all the strings that match the concept.

Relationship Set The ontology compiler generates a Relationship class to
represent relationship sets in a source ontology. Figure 3(c) shows the UML di-
agram of the Relationship class. Each relationship set among two concepts is an
instance of the Relationship class. The Relationship class has three data fields:
the two concepts involved and the participation constraint among these two con-
cepts. One method, checkConstraint, is implemented to check the participation
constraints. This method takes the extraction results of the two concepts, and
checks whether the constraints hold. For non-lexical object sets, we assume that
the participation constraints hold automatically. Consider the relationship set
Car[0:1] has Year[1:*] as an example. Since Car is a non-lexical object set, the
code does not need to check the constraint [1:*]. The Year concept, on the other
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hand, is a lexical object set, so we need to check if the constraint [0:1] holds. If
the system retrieves more than one Year value from a source record, then the
method will return false and the system will return a failure condition.

A concept might be involved in many relationship sets. The listRelation
method in its corresponding concept implementation class stores all the Re-
lationship instances that this concept directly involved in the relationSet vector.
Aggregation An aggregation has one or more is-subpart-of relationship sets.
We use an Aggregation class to represent aggregation relationship sets. Each ag-
gregation in an ontology is an instance of the Aggregation class. Figure 3(d) shows
the UML diagram of the Aggregation class. The relationshipSets vector stores all
the binary relationship sets (as in instances of the Relationship class). The rela-
tionshipSets Vector for the Model|Trim aggregation, for example, stores two Re-
lationship instances: Model [1:*] is-subpart-of Model|Trim [0:1] and Trim [1:*]
is-subpart-of Model|Trim [0:1]. The method checkContainment checks whether
the aggregation condition holds by checking whether each extracted value of the
sub-concept is a substring of the super-concept. If not, the system will throw an
error to the user.
Generalization/Specialization A generalization/specialization specifies an
is-a relationship, identical to inheritance in Java. A specialization concept should
inherit all the relationship sets its generalization concepts have. The interface
of each specialization concept extends all its generalization concepts. Since Java
supports multiple inheritance over interfaces, one child interface can extend more
than one parent interface. In our car ontology, for example, the interfaces En-
gine, BodyType, Accessory, and Transmission extend the interface Feature. In
an implementation class, the listRelation method also calls the parent class’s
listRelation, so that the parent’s relation sets can be added to the child rela-
tionSet vector. The checkSuperClass is implemented to find all the super classes
(generalization concepts) of a class (concept). The parent class list can be ob-
tained though the getInterface method in the Class class in the Java standard
class library.

4 Web Service Creation

Ontologies enable machine communication, and the Semantic Web is a typi-
cal environment that requires machine communication. Web services, on the
other hand, are typical ways of performing machine communication. In the en-
vironment of the Semantic Web, Web services describe conventions for mapping
knowledge easily and conveniently into and out of Web application programs.
Hence we deem it desirable not only to generate Java APIs based on declar-
ative domain knowledge in extraction ontologies, but also to directly generate
machine-interpretable Web services using these generated Java APIs.

4.1 Atomic Web Services for Data Recognition

A Web service is a remote service that can not only satisfy a request from
a client but can also be accessed via a standard specification interface. There
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<definitions name=‘edu.byu.deg.examples.PriceService’
...
xmlns:cps=‘http://www.deg.byu.edu/wsdl/edu.byu.deg.examples.PriceService/’
... >
<message name=‘PriceRecognizer0SoapIn’>

<part name=‘inputDoc’ type=‘xsd:string’ />
</message>
<message name=‘PriceRecognizer0SoapOut’>

<part name=‘inputDoc’ type=‘xsd:string’ />
</message>
<portType name=‘edu.byu.deg.examples.PriceService’>

<operation name=‘PriceRecognizer’ parameterOrder=‘inputDoc’>
<input name=‘PriceRecognizer0SoapIn’ message=‘cps:PriceRecognizer0SoapIn’/>
<output name=‘PriceRecognizer0SoapOut’ message=‘cps:PriceRecognizer0SoapOut’/>

</operation>
</portType>
...

</definitions>

Fig. 4. Part of PriceService.wsdl.

is no need for a service requester to know the details about internal service
implementation. Instead, a service requester only needs to know the input and
output of an operation, and the location provided by the service provider, both
of which are described in the Web service description language (WSDL)3. The
central problem of creating Web services is, therefore, to create a WSDL file that
specifies a desired Web service.

In general, we can create an atomic data recognition Web service for each
concept in an ontology. As described above, there is a recognize method in the
generated Java interface/class of each concept. We therefore build a Web service
based on this method for each concept. These generated services are atomic
because each of them recognizes data instances with respect to one and only
one ontology concept. In essence, none of them should be further decomposable.
Moreover, users can compose these atomic Web services to be more complex
Web services.

Figure 4 shows an example of an atomic Web service. This service is auto-
matically generated from a Java program that is built through the ontology com-
pilation process presented in the last section. The WSDL file is created for the
Price recognition Java class. The service describes a remotely executable method
named “PriceRecognizer” that takes an argument named “inputDoc.” Both the
return datatype and the datatype of the input argument are “xsd:string”. With
this information, users can directly invoke the service to retrieve price values
within the “inputDoc”. When invoking the service, users do not need to know
either the implementation details or even the specific programming language
used for the implementation.

Several available tools can accomplish such transformations by directly gen-
erating WSDL files from Java classes. For instance, our example in Figure 4
is generated by the java2wsdl command-line tool contained in the GLUE plat-

3 Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl/
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form4. GLUE also provides facilities that allow users to publish generated Web
services that may be useful to other people.

4.2 Complex Web Services Through Composition

Complex services are composed with multiple simple atomic services. Web ser-
vices represent loosely coupled interactions which are well suited to integrate
disparate software domains and bridge incompatible technologies. It is therefore
favorable to compose atomic Web services to accomplish complex operations,
which is known as the process of Web service composition.

An essential requirement of automated service composition is that machine
agents can interpret both the functionalities and the meanings of the operands
in a basic Web service. Through a WSDL file, machines can execute a service
correctly. The same WSDL descriptions, however, do not provide any explanation
of the intent of a service or what the meanings of inputs and outputs are. Hence
machines do not know what a Web service targets. This problem of lack of
semantic explanation for Web service functionality has already been identified
as a major problem for Web service research [1].

To solve this problem, we usually require Web services to be annotated be-
fore machines can automatically compose them. We use ontologies to denote the
inputs, outputs, and parameters of a service. This solution is known as Web ser-
vice annotation (such as [1], [5], [6], [8], and etc.). This type of service annotation
operations, however, requires additional processing after services are generated.
Not surprisingly, service annotation is not trivial.

Our method of automatically generating atomic Web services from extraction
ontologies provides a resolution to this service interpretation problem. Because
our generated services are based on ontologies from the onset, each of its gener-
ated features has its original formal definition in the starting extraction ontology.
For this reason, the after-generation Web service annotation is no longer needed.

The simplest composition of atomic data recognition services involves re-
trieving a binary relation between two concepts. In an extraction ontology, we
do not define relationship recognizer methods. Hence our relationship identifica-
tion is based on a necessary but incomplete checking of a discovered relation. Our
method determines a discovered binary relationship to be a defined relationship
in an ontology when the following three conditions are satisfied simultaneously:
(1) domain checking: the application domain matches a defined ontology; (2)
concept-pair checking: the two concepts in the discovered binary relationship
matches two concepts in the defined ontology; and (3) participation-constraint
checking: the participation constraint of the discovered relation matches the par-
ticipation constraint of the target relationship in the defined ontology. Although
in theory this relationship-checking method is not complete enough to determine
a relationship set, we find that it works very well in practice, especially when
the scope of an application domain is narrow [3]. Because our research focuses

4 The GLUE platform, http://www.themindelectric.com
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on service composition involving the generated atomic ones, this narrow-domain
assumption always holds.

We defer the domain-checking aspect to future discussions. In essence, we can
view the domain checking problem as a standard ontology matching problem.
Our previous experience in solving the ontology matching problem [4] allows us
to simply assume prior knowledge about the ontology the user seeks.

With these discussions, we can reduce our generation problem for complex
services to automatic composition of a service that captures two concepts and
their participation constraints based on a known ontology. For example, assume
we want to produce a complex service “car has price” as the ontology in Figure
2 shows. According to our relation-checking method, the dynamically created
car-price complex service is composed of three basic services: the car recognition
service, the price recognition service, and a check constraint service as Figure 3(c)
shows.

More complex would be a recognition service for the relation “price for make.”
In the original ontology as Figure 2 shows, there are no explicitly declared links
between the two concepts Price and Make. So the service composition method
needs to perform a relation discovery process to retrieve an implicit relation
between the two concepts that can be derived by declarative specifications of
ontology relationships. In our example, we know both “car has price” and “car
has make.” Through a standard ontology inference process, we can derive a rela-
tion of “price for make” as well as its participation constraints. After the implicit
relation is generated, our system can process it through the same complex service
composition procedure as before.

As we discussed earlier, two typical relationships in extraction ontologies are
aggregation and generalization/specialization. For an aggregation complex ser-
vice request, in addition to the normal service composition procedure, we add a
checkConstraint service as Figure 3(d) shows. For generalization/specialization,
we add a checkSuperClass service as Figure 3(a) shows.

Although these examples are simple, we can perform the same composition
process recursively. That is, each constructed service can be an unit, and we can
perform a binary composition of any two constructed units. Therefore, this re-
cursive service composition process can eventually produce very complex services
based on users’ requests. Even better, since in each iteration the new composed
service has itself mapped to machine-interpretable formal semantics, the new
composed service will be inherently machine-interpretable no matter how com-
plicated it is. There is no need for additional service annotation processes in
these automatically generated Web services.

5 Conclusion and Future Work

In this paper we have sketched a two-step process for creating Semantic Web
services. The first, which is fully implemented, involves compiling extraction
ontologies to Java code that represents atomic executable Web services. The
second stage involves composing these Web services together recursively with
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information derivable from the original ontologies. This additionally provides
an automatic means for annotating these services in a standardized and formal
manner.

Several directions remain to be pursued. First, we have yet to fully explore
the second-stage composition process, particularly with respect to exploitation
of the full range of ontological relationships possible and the resulting complexity
and consistency of the derived services. The relative benefits and challenges to
this approach versus less automated approaches is also unclear at this point.

Second, we have yet to develop a rigorous testing methodology for assessing
how well the system can assure appropriate coverage of services, accuracy of
results given user queries, and quantifiable reduction in annotation efforts over
more traditional efforts. This would involve comparing the results with those
obtained via other proposed ontology-based service frameworks.

Third, we intend to explore development of a comprehensive Semantic Web
services environment that allows users to specify a query of interest, match it
with pre-existing extraction ontologies of appropriate domain and coverage and
thereby select which pre-existing services are the most appropriate. In the ab-
sence of pre-existing services, the tool would allow the user to select the ontolo-
gies that are the most relevant, supervise (if desired) their mapping to atomic
services, and direct (again, if desired) their composition into more complex ser-
vices which can then be executed to satisfy the user’s request.
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