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ABSTRACT

ONTOLOGY-BASED EXTRACTION OF RDF DATA

FROM THE WORLD WIDE WEB

Tim Chartrand

Department of Computer Science

Master of Science

The simplicity and proliferation of the World Wide Web (WWW) has taken the

availability of information to an unprecedented level. The next generation of the

Web, the Semantic Web, seeks to make information more usable by machines by

introducing a more rigorous structure based on ontologies. One hinderance to the

Semantic Web is the lack of existing semantically marked-up data. Until there is a

critical mass of Semantic Web data, few people will develop and use Semantic Web

applications. This project helps promote the Semantic Web by providing content. We

apply existing information-extraction techniques, in particular, the BYU ontology-

based data-extraction system, to extract information from the WWW based on a

Semantic Web ontology to produce Semantic Web data with respect to that ontology.

As an example of how the generated Semantic Web data can be used, we provide

an application to browse the extracted data and the source documents together. In

this sense, the extracted data is superimposed over or is an index over the source

documents. Our experiments with ontologies in four application domains show that

our approach can indeed extract Semantic Web data from the WWW with precision

and recall similar to that achieved by the underlying information extraction system

and make that data accessible to Semantic Web applications.
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Chapter 1

Introduction

The advent of the World Wide Web (WWW) has taken the availability of information

to an unprecedented level. The simplicity of the Web has been a major factor in its

proliferation [KM02]. Anyone can easily publish a document about anything or link

to anyone’s site. The document need not be structured according to any particular

format or even contain correct information, and the link need not be valid [BLHL01].

Placing such restrictions on the Web would have increased the level of expertise

necessary to create Web content and decreased the amount of useful information

available.

Although the unstructured and unregulated nature of the Web makes publishing

information easier, it also makes finding and using information much more difficult.

The typical way to find information on the Web today is to do a keyword search using

a search engine, which tries to guess the meaning of the combination of keywords in

the query and the meaning of each page it has indexed to find pages relevant to the

query. Even when we can find the desired information, it is usually very difficult

for a machine to interpret, so the user generally has to manually review and use the

information.

1.1 Semantic Web

Research is underway in universities and companies around the world to develop the

next generation of the Web, called the Semantic Web. The Semantic Web will add
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meaning, or semantics, to Web content in order to make it easier to find and use

for both humans and machines. Adding formal semantics to the Web will aid in

everything from resource discovery to the automation of all sorts of tasks [KM02].

As an example, consider the Web site for a medical practice. A typical WWW

site might contain the names and qualifications of the doctors and the business hours

and contact information of the office. The problem with such a site is that, since

there is no standard format for medical-practice Web sites, a person would have to

manually inspect the information. A Semantic Web site for the same practice might

contain the same information in a machine-understandable format and might also

specify times that are available for appointments. A person could then instruct a

Semantic Web software agent to find a doctor who specializes in pediatrics with an

available appointment time Thursday morning and report the doctor’s name, contact

information, and available appointment times [BLHL01].

The basic data model used to build the Semantic Web is called the Resource

Description Framework (RDF) [LS99][MM02]. RDF is a domain-independent model

for describing resources, where a resource is anything that can be represented by a

Uniform Resource Identifier (URI), including Web pages, parts of Web pages, or even

physical objects. RDF describes resources by making statements about resources in

the form <subject><predicate><object>. The subject is the URI of some resource,

the resource being described. The predicate, also represented by a URI, expresses

some relationship between the subject and the object. The object is either a literal

or another resource represented by a URI.

For example, if we want to say Tim Chartrand is 25 years old, we would write

the statement:

<mailto:tim@cs.byu.edu><genealogy#age>"25"1

Or to say Tim Chartrand is the father of Tyler Chartrand:

<mailto:tim@cs.byu.edu><genealogy#fatherOf><mailto:tyler@thechartrands.com>

Thus, RDF allows us to remove ambiguity: there may be more than one person

with the name Tim Chartrand, but there is exactly one person represented by the

1The property denoted genealogy#age is shorthand for the URI
http://www.thechartrands.com/genealogy#age. The full URI is omitted for readability. The
same applies for the genealogy#fatherOf property that appears later.
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URI <mailto:tim@cs.byu.edu>. So some agent, either a human or a program,

searching for information about Tim Chartrand would look for statements with

<mailto:tim@cs.byu.edu> as the subject or object.

RDF helps give structure to Web content, but what kind of resource is mailto:

tim@cs.byu.edu and how is the genealogy#fatherOf predicate related to it? Ontolo-

gies (i.e. vocabularies, schemas) that define classes of objects and their properties

answer these questions. RDF Schema (RDFS) is a simple ontology language written

in RDF that allows the creation of vocabularies with classes, properties, and sub-

class/superclass hierarchies [BG02]. DAML+OIL2(DARPA Agent Markup Language

+ Ontology Inference Layer) is an extension of RDFS that allows finer-grained control

of classes and properties with features such as cardinality constraints and inverses of

properties [CvHH+01].

As an example of how to use an ontology, suppose we have an ontology called

genealogy that defines a class Person with a property fatherOf whose value is a

Person. We would add to the RDF from the above example a specification that

mailto:tim@cs.byu.edu and mailto:tyler@thechartrands.com both represent objects

of type Person (i.e. they belong to class Person). This tells us that everything

we know about a Person directly applies to the given resources; if every Person

has a Name, then the object identified by mailto:tim@cs.byu.edu must also have

one. Further, suppose that our ontology defines a property called parentOf as a

generalization of fatherOf and a property childOf as the inverse of parentOf. Without

any extra work on our part, a fairly general Semantic Web agent would be able to

infer that Tyler Chartrand is a child of Tim Chartrand, even though we only stated

that Tim Chartrand is the father of Tyler Chartrand.

With all the advantages of the Semantic Web, what keeps it from reaching a

critical mass where it will gain widespread acceptance and use? One reason is the

newness of the area and the related tools to help people publish and use Semantic Web

content. Another reason, equally important, and the one that this research addresses,

is the lack of useful content. For years people have been publishing Web documents

on nearly every topic imaginable and building systems to continually generate new

content, so there is a vast amount of human readable information on the Web. It

is hard to imagine rewriting the current Web content to be accessible to Semantic

2Hereafter we will refer to DAML+OIL as simply DAML.
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Figure 1.1: Research Overview

Web agents. As long as newspapers, for example, continue to generate simple HTML

documents for their daily car advertisements or obituaries, Semantic Web agents will

have a hard time performing useful tasks with that information.

1.2 Research Overview

This project helps bridge the gap between the WWW and the Semantic Web. We take

advantage of information in existing Web pages to semi-automatically create Semantic

Web data. Figure 1.1 shows an overview of our RDF-extraction system. The first

input to the system, on the left in Figure 1.1, is a DAML ontology that describes

the structure and constraints of the desired Semantic Web data. The second input,

at the top of Figure 1.1, is a set of data-rich, multi-record Web pages whose data is
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in the application domain described by the ontology. As output, shown on the right

in Figure 1.1, the system produces RDF data, with respect to the input ontology,

corresponding to the data in the input Web pages.

This RDF data is accessible to Semantic Web agents that understand the input

ontology. As an example of how the extracted data can be used, we have created

an application that allows a user to browse the extracted RDF as an index into the

original document. Figure 1.1 shows that the Name Stick Death was extracted from

the beginning of the first line of the Web page.

1.3 Supporting Research Areas

The biggest task in making WWW data accessible to Semantic Web agents is extract-

ing the data from Web pages. There is an entire field of research called Information

Extraction or Data Extraction that tries to extract unstructured or semistructured

Web content so it can be stored and queried more efficiently [Eik99][LRNdST02].

The BYU Data Extraction Group (DEG) [Hom02] has developed an ontology-

based data-extraction system called Ontos [ECJ+99]. Ontos uses a data-extraction

ontology written in an extension of the OSM modeling language [Emb98][LEW95].

A data-extraction ontology describes the structure of the desired data and contains

detailed extraction rules for each item of information to be extracted. Given an

ontology for a particular domain, Ontos extracts data from Web pages containing

information in that domain and stores the data in a relational database. We extend

this extraction approach to extract information from Web pages and structure it as

RDF.

The field of superimposed information is another area of research touched by

this project. The idea of superimposed information is to make use of the connection

between a document and data extracted from it so that the extracted data forms

another layer that can be superimposed over the document [MD99][BDM02].

Since we are extracting Semantic Web data from unstructured documents, we

keep track of the original location of each extracted data item in the source docu-

ments. Thus, the extracted data is superimposed over, or is an index into, the original

data. To show how our extracted RDF can be used and to illustrate the principle of
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Figure 1.2: Example of RDF used as Superimposed Information

superimposing information, we have created an RDF browser that allows the user to

view the RDF and the original document together in a superimposed fashion. Fig-

ure 1.2 shows our RDF browser. A user browses the RDF in the left-hand frame by

navigating through the classes in the ontology. While a user navigates through the

classes, our browser shows class instances extracted from a Web page. A user selects

a property value in the left-hand frame to highlight in the right-hand frame the place

in the original document from which the value was extracted.

1.4 Overview of Thesis

Figure 1.3 presents a more detailed overview of the research embodied in this project.

The inputs and outputs of the system are as explained with Figure 1.1. We take

a DAML ontology as input and semiautomatically convert it into an OSM data-

extraction ontology. The generated data-extraction ontology becomes the input, along

with a set of multi-record Web pages, to the BYU Ontos system, which extracts

relational data as output. The center of Figure 1.3 shows the inputs and outputs of

Ontos. Next, we structure the extracted relational data as RDF. Finally, we create
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an RDF browser as an example of how the the extracted data can be used.

Figure 1.3: Detailed Research Overview

This thesis describes our implementation of the RDF-extraction system. Chapter

2 gives background on the DAML and OSM languages and presents an algorithm for

converting a DAML ontology into an OSM data-extraction ontology. It also describes

the tool we provide for a user to supply the details of an extraction ontology that are

not present in the original DAML ontology. Chapter 3 discusses how we have adapted

the BYU Ontos tool to extract data and how we convert that data to RDF. Chapter 4

describes our RDF browser for viewing RDF along with a Web document. Chapter 5

analyzes the performance of our RDF-extraction system. Chapter 6 discusses related

work, and Chapter 7 gives our conclusions and suggests possible directions for future

research.
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Chapter 2

Converting DAML Ontologies to

Data-Extraction Ontologies

To use a DAML ontology for data extraction, we first convert the ontology to an

OSM model instance. Then we extend the model instance to include data recognizers.

Finally, we allow the user to edit data recognizers and constraints of the extraction

ontology.

In this chapter, we first describe the DAML language in Section 2.1 and the

OSM language in Section 2.2. Section 2.3 describes an algorithm for converting

from DAML to OSM including properties, restrictions, and classes. Section 2.3 also

discusses limitations of the algorithm and gives some notes on our implementation.

Section 2.4 describes a matching algorithm for automatically adding data recognizers

to an extraction ontology, and Section 2.5 describes the tool we provide a user to edit

the produced extraction ontology.

2.1 Overview of DAML

DAML is a language for creating ontologies, where an ontology is a set of concepts

and the relations that exist among them [dam02]. Like many conceptual-modeling

languages, DAML allows for the specification of classes of objects (i.e. entity types

or object sets) and properties (i.e. associations or relationship sets) [CvHH+01].

Figure 2.1 shows an example DAML ontology.
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1) <daml:Class rdf:ID="Program">
2) </daml:Class>
3) <daml:Class rdf:ID="Size">
4) </daml:Class>
5) <daml:Class rdf:ID="OperatingSystem">
6) </daml:Class>

. . .
7) <daml:DatatypeProperty rdf:ID="Name">
8) <rdfs:domain rdf:resource="#Program"/>
9) <rdfs:range rdf:resource="&rdfs;Literal"/>
10) <rdf:type rdf:resource="&daml;UniqueProperty"/>
11) <rdf:type rdf:resource="&daml;UnambiguousProperty"/>
12) </daml:DatatypeProperty>
13) <daml:ObjectProperty rdf:ID="hasSize">
14) <rdfs:domain rdf:resource="#Program"/>
15) <rdfs:range rdf:resource="#Size"/>
16) </daml:ObjectProperty>
17) <daml:ObjectProperty rdf:ID="supportsOperatingSystem">
18) <rdfs:domain rdf:resource="#Program"/>
19) <rdfs:range rdf:resource="#OperatingSystem"/>
20) </daml:ObjectProperty>

. . .

Figure 2.1: Example DAML Ontology

DAML is a property-centric rather than class-centric language. Whereas many

languages define a class in terms of its properties, DAML defines a property in terms

of the classes to which it applies. Specifically, DAML defines a property in terms of

its domain (daml:domain) and range (daml:range), where the domain is the set of

classes whose instances can have a value for the property, and the range is the set of

classes whose instances can be the value for the property.

For example, the DAML ontology in Figure 2.1 defines a hasSize property (Line

13) with a domain of class Program (Line 14), and a range of class Size (Line 15),

meaning that a Program has an associated Size. DAML also provides a way to specify

inverse relationships between properties with daml:inverseOf. For example, sizeOf

could be defined as the daml:inverseOf hasSize, meaning that a Size is associated

with a Program.

A DAML ontology can define a property as one of two types: an object property

(daml:ObjectProperty) or a data-type property (daml:DatatypeProperty). A data-type
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property is one whose values are lexical, and an object property is one whose values

are objects, or instances of a class. An ontology can also define a property simply

using daml:Property, meaning that the type of values of the property is not known or

not specified. A DAML ontology can also specify simple cardinality constraints on a

property. If a property is a daml:UniqueProperty, any object can have at most one

value for the property. If a property is a daml:UnambiguousProperty, any object can

be the value for at most one instance of the property.

The ontology in Figure 2.1 defines the Name property as a daml:DatatypeProperty

(Line 7), since the name of a program is lexical, and the hasSize property as a

daml:ObjectProperty (Line 13), since its values are instances of class Size. The Name

property is also a daml:UniqueProperty (Line 10), meaning that a program has at

most one name, and a daml:UnambiguousProperty (Line 11), meaning that a name

identifies at most one program.

DAML allows for arbitrary generalization/specialization hierarchies. A class

can specify its superclass(es) using daml:subClassOf or daml:intersectionOf, and can

specify subclass(es) with daml:unionOf or daml:disjointUnionOf. For example, we

can define Utility and OpenSourceProgram as daml:subClassOf Program, so that ev-

ery Utility and every OpenSourceProgram is also a Program. Further we can define

OpenSourceUtility as the daml:intersectionOf Utility and OpenSourceProgram, so

that every OpenSourceUtility is also a Utility and an OpenSourceProgram.

In addition to generalization/specialization, DAML also allows for other relation-

ships among classes and properties to be specified. To say that a class or property

is the same as or equivalent to another class or property, we use daml:equivalentTo,

daml:sameClassAs, or daml:samePropertyAs. To say that one class is the global

complement of another, we use daml:complementOf. For example, an ontology au-

thor might declare the hasFileSize property in one ontology the same property as or

equivalent to the hasSize property in another ontology.

The domain and range for a property are global constraints that apply to every

instance of the property, but we can also specify local constraints on a property

for a given class (for a subset of the property’s domain). Specifying constraints

on a property effectively constrains the class by limiting the type and number of

values an instance of that class can have for the given property. A restriction on a

property restricts the cardinality or range of the property. A property restriction is an

11



. . .
1) <daml:Class rdf:ID="WindowsProgram">
2) <daml:subClassOf rdf:resource="&software;Program"/>
3) <rdfs:subClassOf>
4) <daml:Restriction daml:minCardinality="2">
5) <daml:onProperty

rdf:resource="&software;supportsOperatingSystem"/>
6) <daml:toClass rdf:resource="#WindowsOperatingSystem"/>
7) </daml:Restriction>
8) </rdfs:subClassOf>
9) </daml:Class>
10) <daml:Class rdf:ID="WindowsOperatingSystem">
11) <daml:subClassOf rdf:resource="&software;OperatingSystem"/>
12) </daml:Class>

. . .

Figure 2.2: Example DAML Ontology Showing a Property Restriction

anonymous class (i.e. an unnamed class used only to specify constraints) that includes

any object that satisfies the constraints of the restriction for the given property. To

specify local cardinality or range constraints on a property for a class, an ontology

declares the class to be the subclass of a restriction, meaning that every member of the

class is also a member of the restriction class and therefore satisfies the constraints

of the restriction. Figure 2.2 shows a restriction on the supportsOperatingSystem

property for the WindowsProgram class (Lines 3-8).

A restriction can use daml:minCardinality or daml:maxCardinality, to specify

the minimum or maximum number of values that a particular object can have for

the property or daml:cardinality to specify both the minimum and maximum. For

example, the restriction in Figure 2.2 restricts the supportsOperatingSystem property

with a daml:minCardinality of two (Line 4) for the WindowsProgram class, meaning

that a WindowsProgram must support at least two OperatingSystems.

A property restriction restricts the range of a property using daml:toClass and

daml:hasClass. A restriction can use daml:toClass to say that every value for the

property must be an object in the specified class (a local range constraint), or it

can use daml:hasClass to say that any object satisfying the restriction has at least

one value for the property that belongs to the specified class. For example, the re-

striction in Figure 2.2 restricts the range of the supportsOperatingSystem property to

12



WindowsOperatingSystem (Line 6), so that a WindowsProgram supports only Win-

dowsOperatingSystems.

2.2 Overview of OSM Data-Extraction Ontologies

OSM (Object-oriented Systems Model) is a conceptual-modeling language based on

modeling objects [Emb98][LEW95]. OSM consists of three submodels: the Object

Relationship Model, which represents objects and relationships among objects, the

Object Behavior Model, which represents the behavior of an object, and the Object

Interaction Model, which represents interactions among objects. Since we are only

interested in describing the structure of data and not behavior or interaction, we use

only the Object-Relationship Model. A data-extraction ontology is an OSM model in-

stance augmented with data recognizers. Figure 2.3 shows a graphical representation

of an OSM model instance corresponding to the DAML ontology in Figure 2.11.

In OSM, an object is either lexical or non-lexical. A lexical object represents

itself, and a non-lexical object is represented by an arbitrary object identifier (OID).

For example, the Name object ’Stick Death’ is lexical because ’Stick Death’ is the

object, whereas the Program object Program1001 is non-lexical because the OID Pro-

gram1001 is only an identifier for the object and not the object itself. To relate objects

with each other, OSM uses relationships. For example, the relationship Program1001

has name ’Stick Death’ says that the Program represented by OID Program1001 is

named ’Stick Death’.

OSM groups similar objects into object sets, which are lexical or non-lexical de-

pending on the type of objects in the object set. Similarly, OSM groups relationships

into relationship sets. A relationship set has two or more connections to one or more

object sets. The name of a relationship set contains the name of each connected

object set along with a verb phrase describing how the object sets are related. For

example, to relate the Program and Name object sets to say a Program has an as-

sociated Name, we would create the Program has Name relationship set. Figure 2.3

1Figure 2.1 does not show the entire DAML ontology corresponding to the OSM model instance
in Figure 2.3. Because the full ontology is about 80 lines long, the figure shows only the parts
necessary for illustration.
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Figure 2.3: Example OSM Model Instance

shows the Program and Name object sets connected by the Program has Name re-

lationship set. The reading-direction arrow next to the label for the relationship set

(has) tells us how to construct the name for the relationship set — we concatenate

the name of the tail object set, the label, and the name of the head object set to form

the relationship-set name.

Object and relationship sets allow us to define participation constraints that

specify how many times an object in a given object set can participate in a relationship

set. For example, Figure 2.3 shows minimum and maximum participation constraints

of 1 on the Program side of the Program has Name relationship set to say that every

Program has exactly one name. The Name side of the relationship set has a minimum

participation constraint of 0 and a maximum of 1 to say that a Name is the name

of at most one Program. We write this textually as Program [1:1] has Name [0:1].

OSM also provides for generalization/specialization among object sets. So we

can say that Client is a specialization of NetworkUtility or Client isa NetworkUtility.

If a generalization has two or more specializations we can say that the generalization is
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the union of the specializations, for example Client, Server isa [union] NetworkUtility

says that every NetworkUtility is either a Client or a Server. If the specializations of a

generalization are mutually exclusive (non-overlapping) object sets we use the mutual-

exclusion (mutex) constraint, for example Client, Server isa [mutex] NetworkUtility

says that Client and Server are disjoint object sets. If both the union and mutex

constraints apply, we say that the specializations partition the generalization, and

we use the partition constraint as short hand for the other two, for example Client,

Server isa [partition] NetworkUtility.

OSM also allows a specialization to have multiple generalizations, for example

OpenSourceServer isa Server, OpenSourceProgram, meaning that every OpenSource-

Server is both a Server and an OpenSourceProgram. We can use the intersection

constraint to say that the specialization is exactly the intersection of its generaliza-

tions, rather than some subset of their intersection, for example OpenSourceServer

isa [intersection] Server, OpenSourceProgram says that every object that is both a

Server and an OpenSourceProgram is an OpenSourceServer.

For constraints not expressible as participation constraints or other types of OSM

constraints, OSM provides general constraints. A general constraint is an arbitrary

closed predicate-calculus formula that uses only predicates corresponding to the object

and relationship sets in the model instance. For example, suppose that we have an

object set Revision and a relationship set Revision precedes Revision. To specify that

the relationship set is transitive, we would add the following general constraint:

∀x∀y∀z(Revision(x)precedesRevision(y) ∧Revision(y)precedesRevision(z) ⇒
Revision(x)precedesRevision(z))

To use an OSM model instance as a data-extraction ontology, we need to know

how to recognize lexical objects in the text from which the data is to be extracted.

For this purpose, we associate a data frame [Emb80] with each lexical object set. A

data frame contains a recognizer with a detailed description of how a lexical object

generally appears in an HTML document. A data frame uses regular expressions to

specify how the data itself appears as well as regular expressions for the immediate

context of the data. Data frames also include keywords that may appear in the docu-

ment close to the data to be extracted. For example, a ReleaseDate data frame would

have a regular expression to recognize a date and the keyword released [ECJ+99].
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2.3 Automatic Translation of Structure and Con-

straints

The main constructs in DAML correspond closely to the main constructs in OSM.

This section describes an algorithm for translating a DAML ontology into an equiv-

alent or nearly equivalent OSM model instance. Since DAML is a property-centric

language, we start with the translation of properties and their restrictions and then

move on to the translation of classes.

It is important to note that the motivation for this algorithm is to aid in the

data-extraction process. Therefore, when faced with a tradeoff between making the

translated OSM more equivalent to the DAML and making the OSM more useful for

data extraction, we choose the latter. We list some specific limitations and notes on

our implementation at the end of this section.

2.3.1 DAML Properties

The first step in the conversion algorithm processes DAML properties. There are two

basic types of properties in DAML: object properties, whose values are non-lexical and

data-type properties, whose values are lexical. A property of either type translates

to a binary OSM relationship set.

To determine if a property is an object property or a data-type property, we

first look at the property’s type; an ontology may specify the property explicitly as

an object or data-type property. If the ontology does not specify the type of the

property, we must look at the range of the property. If the range of the property is

the special class rdfs:Literal or one of the XML Schema data types, we know that the

range has lexical values and therefore the property is a data-type property. Otherwise

the property is an object property.

In the case of an object property, whose range is not lexical, we simply create

a relationship set between the object sets corresponding to the domain and range

classes of the property. We assign the property name as the name of the relationship

set. For example, the hasSize object property in Figure 2.1, with a domain of Program

and a range of Size (Lines 13-16), becomes the Program hasSize Size relationship set
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in Figure 2.3.

If the property is a data-type property, meaning that values of the property can

be represented as strings, we create both a lexical object set and a relationship set.

We name the lexical object set with the name of the property and give the relationship

set the generic name has. For example, the Name data-type property in Figure 2.1,

with a domain of Program (Lines 7-12), becomes the Name lexical object set and the

Program has Name relationship set in Figure 2.3.

DAML provides two ways to specify cardinality constraints that apply globally

to a property. A property can either specify its type as a daml:UniqueProperty or

a daml:UnambigousProperty or both. If a property is unique, we place a one-max

participation constraint on the domain side of the generated relationship set. If a

property is unambiguous, we place a one-max participation constraint on the range

side of the relationship set. For example, the Name data-type property in Figure 2.1,

with a domain of Program (Lines 7-12), is unique and unambiguous, so we place a

one-max participation constraint on both connections of the generated Program has

Name relationship set in Figure 2.3. For properties that do not specify cardinality

constraints, participation is unconstrained, meaning that an object can participate

zero or more times in the relationship set. More complex cardinality constraints are

specified by local property restrictions, which we discuss in the next subsection.

Up to this point, we have assumed that a property specifies both a domain and

a range that we can use to construct a relationship set. If a property is missing a

domain or a range or both, we may still be able to create a relationship set if we can

infer the domain and range of the property. We can infer the domain and range of a

property three different ways. First, we can use local property restrictions (discussed

in the next subsection). Second, if the property is the daml:subPropertyOf another

property, we can use the domain and range from the superproperty. If the subproperty

specifies the range but not the domain, we use the domain from the superproperty

and the range from the subproperty. Similarly, if the subproperty specifies the domain

but not the range, we use the range from the superproperty and the domain from

the subperoperty. Third, a property can define itself as the daml:inverseOf another

property. In this case we use the same technique as for superproperties, but we

interchange the domain and range. If none of these three cases apply, we cannot

create a relationship set for the property.
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2.3.2 DAML Property Restrictions

The second step in the algorithm applies property restrictions. A restriction con-

strains the range or cardinality of a property for a class when the class is a part of the

domain for the property. A restriction can also help us infer global domain and range

constraints of a property for which a global domain or range is not given explicitly.

A restriction is applied to a property for a class (the subclass of the restric-

tion). If the domain was not explicitly specified for the property, then we can use the

class (the subclass of the restriction) as the domain. This may not yield the correct

domain for the property because a domain may have been specified outside of our

current model, but we do know that the class is a subset of the property’s domain.

Furthermore, it is reasonable to infer the domain in this way because it is likely

that the class is the part of the domain in which the ontology author is interested,

so extraction based on the inferred domain will produce the desired results. As an

example, the ontology in Figure 2.1 (Ontology A), defines a property supportsOperat-

ingSystem with a domain of Program and a range of OperatingSystem (Lines 17-20),

and the ontology in Figure 2.2 (Ontology B — the ontology we are translating) defines

a restriction to class WindowsOperatingSystem applied to the supportsOperatingSys-

tem property for the subclass WindowsProgram of Program (Line 2-9). Assuming

Ontology B does not explicitly import Ontology A, Ontology B does not know the

real domain of supportsOperatingSystem, but for translation, it is reasonable to use

WindowsProgram as the domain.

A restriction may also specify local range constraints with values for daml:toClass

or daml:hasClass. Once again, if a global range for the property is not given, we know

that the local range is a subset of the global range. By the same argument as for infer-

ring the domain, we can also infer the global range from the local range. For example,

in translating ontology B in Figure 2.2, we would use WindowsOperatingSystem as

the range for the supportsOperatingSystem property.

If a restriction gives a local range constraint and a range is already known for

the property, the constraint is translated into an OSM general constraint. We use

general constraints in several places in the translation to preserve the semantics of the

original ontology, but since they currently have no effect on the extraction process,

we will not describe each generated general constraint beyond mentioning that it is
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created.

We handle cardinality restrictions in one of two ways. We either generate par-

ticipation constraints on the relationship set generated for the restriction’s property,

or we create general constraints. In the case where the restriction provides a domain

or range for the property so we can create a relationship set, it makes sense to create

participation constraints on the relationship set. We place the generated partici-

pation constraints on the domain side of relationship set. For daml:minCardinality

we create a minimum participation constraint, for daml:maxCardinality, a maximum

participation constraint, and for daml:cardinality, both. For example, in translating

the ontology in Figure 2.2, we would create a minimum participation constraint of

two on the WindowsProgram side of the generated WindowsProgram supportsOper-

atingSystem WindowsOperatingSystem relationship set for the daml:minCardinality

value of two for the restriction (Line 4). In the other case, where a relationship set

is created before the restriction is processed, we create general constraints from the

cardinality restrictions.

2.3.3 DAML classes – Generalization and Specialization

The last step of the algorithm processes all the DAML classes to build generaliza-

tion/specialization hierarchies. At first glance, it might appear that we should also

use the classes to simply add an object set for each class. However, classes that are

not associated with any property or any generalization/specialization would translate

to isolated non-lexical object sets. Isolated non-lexical object sets are not useful in

the data-extraction process because data extraction focuses on lexical objects (those

objects that can actually be extracted from text) and the non-lexical object sets re-

lated to them, so no instances would ever be generated for isolated non-lexical object

sets. Our algorithm therefore only adds object sets for non-isolated classes.

DAML provides several attributes that a class may use to specify its relationship

to other classes. Most of these attributes correspond very closely with OSM con-

structs. If a class, subClass, is a daml:subClassOf another class, superClass, we add

an OSM generalization/specialization (GenSpec) with subClass as a specialization

and superClass as a generalization. For example, translating the daml:subClassOf

property for WindowsProgram with value Program in Figure 2.2 (Line 2) would
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produce the GenSpec WindowsProgram isa Program. If a class, subClass, is the

daml:intersectionOf a set superClasses of classes, we add a GenSpec with subClass

as a specialization and each of superClasses as a generalization and add the intersec-

tion constraint. If a class, superClass, is the daml:unionOf or daml:disjointUnionOf

a set subClasses of classes, we add a GenSpec with superClass as a generalization

and each of subClasses as a specialization and add the union constraint. In the case

of daml:disjointUnionOf we add the partition constraint rather than the union con-

straint. If a class is daml:disjointWith another class we save that information so we

can either combine GenSpecs, as described below, or make a general constraint. If a

class is the daml:complementOf another class, we add a general constraint.

Once we have saved all of the generalization/specialization, union, and mutual

exclusion (disjoint) information, we combine it to obtain a minimal set of GenSpecs.

We consolidate GenSpecs of each object set genObjSet as follows: first, we collect

specializations of GenSpecs with genObjSet as the generalization and with only one

specialization and remove the GenSpecs from our model instance. Those GenSpecs

with more than one specialization will be be unions, and therefore cannot receive

more specializations, so those GenSpecs are not affected by this algorithm. Next, we

group the collected specializations in as few large groups as possible such that the

members in each group are pairwise disjoint. Then, for each group, we add a new

GenSpec with the mutual-exclusion constraint with genObjSet as a generalization and

the members of the group as specializations. Next, we treat the rest of the ungrouped

specializations (those not disjoint with any other specializations) as another group

and add another GenSpec as before. Finally, if there are disjoint object sets without

a common generalization, we add general constraints indicating that the object sets

are disjoint.

2.3.4 Limitations

Translating DAML to OSM is generally an intuitive process. Delving into the details,

however, the complexity of the algorithm can grow out of control. Further, usually

the complex details do not yield any information useful for the extraction process.

We therefore make a few limitations to keep the algorithm manageable.

1. The DAML specification says, ”arbitrarily complex combinations of these [class]
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expressions can be formed.” Our implementation does not deal with these ar-

bitrary combinations. In particular, it does not deal with restrictions specified

by daml:(disjoint)unionOf, daml:complementOf, or daml:sameClassAs. Restric-

tions specified by daml:unionOf could be applied as a disjunction (whereas

daml:subClassOf and daml:intersectionOf specify conjunctive restrictions), for

daml:complementOf, we could apply the negation of the restriction, and for

daml:sameClassAs we could apply the inverse of the restriction that says any-

thing that satisfies the restriction belongs to the class. However, applying these

restrictions will usually result in general constraints, which do not help in the

extraction process. Therefore we leave these restrictions as possible future work.

2. Our implementation does not deal with daml:hasValue in a restriction. The

value of the daml:hasValue property is a resource (specified by a URI). Since

URIs do not help in data extraction, we ignore daml:hasValue.

3. A relationship set is created only for a property where a domain and range can

be identified either directly, through a superproperty, or through a restriction

on the property for some class.

4. The DAML specification allows for a property to have multiple domains and

ranges. DAML interprets multiple domains or ranges as the intersection of

the domains or ranges. The RDF specification, on the other hand, says that

multiple domains should be interpreted as a union and that multiple ranges are

not allowed. Since the two specifications are in direct conflict and for simplicity,

our implementation considers only one domain and one range for a property.

2.3.5 Implementation Notes

This section discusses some issues we encountered in the implementation of the algo-

rithm.

1. When DAML refers to a property or class that is not present in the current

model (including any imported ontologies), we create a class or property to use

in the translation as a preprocessing step. This has the possibility of leading to

erroneous assumptions about these constructs, such as domains and ranges. We

can, however, infer domains and ranges that are subsets of the actual domains
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and ranges, which allows us to create object and relationship sets, so the benefits

to the data-extraction process outweigh this concern.

2. DAML provides a way to specify two classes or two properties as being equiv-

alent using daml:sameClassAs, daml:samePropertyAs, and daml:equivalentTo.

As another preprocessing step, our implementation collapses all references to

the two classes or properties into a single class or property so each equivalent

set is translated into only one corresponding OSM construct.

2.4 Automatic Addition of Data Frames

Once the structure has been translated, the next step is to turn the OSM model

instance into an extraction ontology by adding a data frame for each lexical object set

[Emb80]. A data frame contains a recognizer with a detailed description of how a piece

of information generally appears in an unstructured or semistructured document. It

uses regular expressions to specify how the data itself appears as well as regular

expressions for the immediate context of the data. Data frames also include keywords

that should appear in the document close to the data to be extracted. For example,

a ReleaseDate data frame would contain regular expressions to recognize a date and

the keyword released.

To associate a data frame with each lexical object set, we draw from a library

of common prebuilt data frames. Appendix A shows a graphical representation of

the data-frame names and generalization/specialization hierarchy of the data-frame

library we use for this project. Appendix A also shows an example data frame for

the Date object set from the data-frame library. Mapping object sets to data frames

becomes essentially a schema matching problem. Researchers have used several dif-

ferent techniques for schema matching, including instance- or schema-based, element-

or structure-level, and constraint- or linguistic-based matching [RB01] [EJX01]. Be-

cause one of our schemas, the data frame library, has neither instances nor structure,

we are limited to element-level linguistic-based matching.

To generate a mapping from object sets to data frames, we compare each lexical-

object-set name with each data-frame name and generate a similarity measure from

zero to one. Then for each object set, we simply choose the data frame with the
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highest similarity as long as the similarity is above a given match threshold. Note

that a data frame may be the best match for more than one object set; for example,

the Date data frame would match both ReleaseDate and PatentDate.

To calculate the similarity between an object set and a data frame, we use a

combination of string matching techniques on their respective names. To take advan-

tage of the semantics of names as well as their string values in calculating similarity,

we introduce an alias field in the data frame which will list possible alternate names.

We can then compare an object-set name with each alias of the data frame as well

as its name and choose the highest similarity as the similarity between the object set

and the data frame. Some name matching techniques have also used synonyms from a

thesaurus. This method, however, introduces the possibility of false positive matches

between words with multiple senses [EJX01]. For example, address might match with

speech even though the address referred to is a mailing address. Therefore, we use

only manually specified aliases rather than synonyms from a general thesaurus. We

use four character-based string matching techniques to generate similarities. First,

we apply some standard information-retrieval-style stemming to get a root for each

name [Por80]. Next, we combine variations of the Levenshtein edit distance [Lev65],

soundex [HD80], and longest common subsequence algorithms to generate a similarity

value. Finally, we apply a heuristic to detect if the object set is a specialization of

the data frame.

The Levenshtein edit-distance algorithm calculates the number of characters that

need to be added, deleted or changed to transform one string into another. To convert

edit distance to a similarity measure, we first normalize the edit distance by dividing

it by the length of the object set name and cap the result at one. Next, we subtract

from one since a smaller edit distance denotes more similar strings:

similarityLev = 1−min

(
1,

edit dist(nameos, namedf )

length(nameos)

)
(2.1)

The soundex algorithm was developed for automatically recognizing alternate

spellings of the same surname in genealogy applications. The algorithm generates a

four-character code for a string according to the following rules: 1) The first character

in the code is the first letter of the string, and 2) the remaining characters in the code

correspond to the next three letters of the string, excluding A, E, I, O, U, H, W, and

Y. The letters are divided into six groups of letters that are considered similar, and
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all the letters in a group generate the same code (i.e. M and N both generate code

5). Soundex codes are generally compared with an all-or-nothing matching approach,

but we find this to be too restrictive. For example Phone and PhoneNumber have

codes P500 and P555 respectively, so the typical matching approach yields zero

percent similarity. Instead of all-or-nothing matching, we base our similarity measure

on the length of the common prefix for the two four-character codes, so Phone and

PhoneNumber have fifty percent similarity:

similaritySoundex = common prefix length(soundex(nameos),

soundex(namedf )) ∗ 0.25 (2.2)

Since any two soundex codes have a common prefix length from zero to four, multi-

plying by 0.25 yields a similarity between zero and one.

The longest common subsequence (LCS) algorithm finds the length of the longest

(not necessarily contiguous) sequence of characters that appears in both strings. As

with edit distance, we normalize the LCS length by dividing by the length of the

object-set name to get a similarity measure between zero and one. We find LCS to be

more useful than longest common substring, which does not allow for non-contiguous

sequences; however, for strings containing common letters, it is possible to recognize

completely unrelated sequences. For example, BusinessEmail has an LCS length of

five with both Email and SizeArea. Our solution is to penalize characters skipped

by the LCS in one string or the other by subtracting from the LCS length, so when

compared with BusinessEmail, Email still has an LCS length of five, while SizeArea

has an LCS length of zero:

similarityLCS =

LCS len(nameos,namedf )−
min(skipped chars(LCS(nameos,namedf )),LCS len(nameos,namedf ))

length(nameos)
(2.3)

To calculate the combined similarity between a an object-set name and a data-

frame name or alias, we combine the similarities from the edit distance, soundex and

LCS calculations. We use a weighted average, giving each of the three components a

weight or importance in the combined similarity:

similarityComb =(similarityLev ∗ weightLev)+

(similaritySoundex ∗ weightSoundex)+

(similarityLCS ∗ weightLCS)

(2.4)
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The empirically determined component weights are given in Section 4.1.

To get the final similarity, we apply one additional heuristic. We observe that

when one object set is a specialization of another, the name of the specialization often

includes the name of the generalization. Since our goal with the data-frame library is

to provide common, general data frames, we would like to match general data frames

with specialized object sets. For example, we would like to match OriginalReleaseDate

with Date. To apply the heuristic, we check to see if the name of the object set either

starts with or ends with the name of the data frame; if it does, we set the similarity

to the maximum of the previously computed similarity and the match threshold.

Setting the similarity to the match threshold ensures that we consider the object set

as a match for the data frame, but leaves room for other more specialized data frames

to have a higher similarity. Therefore, OriginalReleaseDate matches with Date, but

matches better with ReleaseDate.

similarityFinal =

{
OS specializes DF : max(match threshold, similarityComb)

otherwise : similarityComb

(2.5)

The output of this process is a suggested mapping from lexical object sets to

data frames. This mapping may not be complete. If no data frame has a similarity

value above the match threshold, we assume that no data frame exists for the object

set, and a human must create one or provide a mapping missed by the matching

process.

2.5 User Ontology Editing

DAML ontologies may not contain cardinality constraints, and the data-frame match-

ing process may produce only a partial mapping. Therefore, the generated ontology

may not be suitable for data extraction without some user intervention.

To allow a user to edit constraints and data frames, we provide an extended

version of the Ontology Editor [Hew00]. When a user opens a DAML ontology, the

Ontology Editor translates the ontology, matches object sets to data frames, and

shows the generated extraction ontology graphically. Since a DAML ontology has
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Figure 2.4: Example Automatic Layout

no display information for its classes and the Ontology Editor displays the ontology

graphically, we use a modified version of the AGLO graph layout algorithm [Col93] to

find a suitable screen layout. Figure 2.4 shows the screen layout produced by AGLO

for an example DAML ontology opened in the Ontology Editor.

After the name matching process completes, the system presents to the user a

list of suggested mappings from lexical object sets to data frames. In the simplest

case, where the system finds a match for each object set and the match is correct,

the user can simply accept the suggested matches. If the system does not find a data

frame or finds an incorrect data frame for an object set, the user can choose from a

list of existing data frames or launch the data-frame editor to create one. Figure 2.5

shows the data-frame matcher user interface after the match algorithm has been run.

For each object set, the user interface shows the data frame chosen along with its

similarity measure, given as a percentage. For object sets matched incorrectly or not

matched, the user can choose a data frame from the data-frame list on the right-hand

side of the user interface. In many cases, a generic data frame is suitable for an

object set once keywords are added. In such a case, a user can choose the generic

data frame from the data-frame list and edit the data frame in the data-frame editor.

For example, we could use the Date data frame for the MarriageDate object set in

Figure 2.5 by adding the keyword married.
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Figure 2.5: Data-Frame Matcher User Interface

After the translation process, the user can edit the ontology like any other on-

tology but may not change the structure. Therefore, when a user opens a DAML

ontology, the Ontology Editor warns the user not to make any structural changes to

the ontology2. The user can modify participation constraints directly and further edit

and test data frames using the provided data-frame editor.

The Ontology Editor uses an XML format for its ontology serialization. The

current version of the Data Extraction Group’s extraction engine, however, uses an

older text-based format. Therefore, when the ontology-creation process completes,

we have added an option in the File menu for the user to save the ontology in the

old text-based format.

2It would be possible to disable all features of the Ontology Editor that allow a user to change
the structure of an ontology, but building such a restrictive user interfaces is not the goal of this
project.

27



28



Chapter 3

Extracting and Viewing RDF Data

Once we have obtained a suitable data-extraction ontology from the translation and

editing process, the next step is to extract RDF data from Web pages. We can

then view the extracted RDF data together with the Web pages from which it was

extracted.

Section 3.1 of this chapter describes how we use the BYU Ontos data-extraction

tool to extract RDF data from Web pages. Section 3.2 explains how we associate

extracted RDF data with the document from which it is extracted, and Section 3.3

describes the tool we have created for viewing the extracted RDF data as a superim-

posed layer over source Web pages.

3.1 Extracting RDF Data

Our first goal in this section is to extract data from data-rich multiple-record Web

documents where each record in a page represents one instance of the primary object

set in our extraction ontology. Figure 3.1 shows a sample Web page with 7 records.

Each record in the page describes a Program, which is the primary or central object

set in our software ontology from Figure 2.3. Section 3.1.1 gives the details of how

Ontos can extract data from Web pages like the one in Figure 3.1. It also explains how

we have extended Ontos for extracting RDF data and superimposing information.

Our second goal in this section is to make the extracted data accessible to Se-

mantic Web agents. Section 3.1.2 presents our algorithm for generating RDF data

29



Figure 3.1: Example Multiple-Record Web Page
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from the data extracted by Ontos.

3.1.1 Data-Extraction Process

The first step in the process of extracting data from an HTML page is to separate it

into distinct records. The record separator attempts to automatically find first, an

HTML element (the container element) containing all the records in the page, and

second, an HTML tag (the boundary tag) that separates the records such that there

is one data record between each occurrence of the tag within the container element.

It then separates the page into records based on that tag and strips out all markup

in the record, leaving only plain text. [EJN99] explains the details of this process.

Figure 3.2 shows part of the HTML source tree for the Web page in Figure 3.1.

In this case, the record separator finds that all of the records in the page are contained

as the content of a < table > element (Line 5), so that the < table > element becomes

the container element. The separator also finds that each < tr > element that is

a direct child of the container < table > element contains one record, so < tr > is

the boundary tag. The separator then removes the HTML markup, leaving only the

plain-text content. Figure 3.3 shows part of the output from the record separator for

the page in Figure 3.1. Lines 4-10 show the plain-text content of the first record.

Our RDF-extraction system needs three additional pieces of information about

each record. The first piece of information we need for each record in order to generate

RDF data from the extracted data is the URL of the input document for use in

creating URIs for extracted data instances. We obtain this by simply passing the

input document URL into the record separator which includes the URL in its output.

Line 1 of Figure 3.3 shows the input document URL for the Web page in Figure 3.1.

The second piece of information we need for each record is an address to the

HTML element containing the record. We use this address to create a pointer to

the extracted data to preserve the link between the extracted data and the source

document. We use an XPath [CD99] as the address of an element. For example, for

the HTML tree in Figure 3.2, the XPath /html[1]/body[1]/table[1]/tr[2] addresses

the second < tr > (Line 22) contained in the first < table > (Line 5) in the < body >

(Line 4) of the HTML document.
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1) <html>
2) <head>

. . .
3) </head>
4) <body>
5) <table>
6) <tr>
7) <td>
8) <a href="..."><b>Stick Death 1.0</b></a><br />
9) Advance in levels, grab weapons, and unlock new levels
10) and characters.<br />
11) <b>OS:</b> Windows 3.x/95/98/Me/NT/2000/XP<br />
12) <b>File Size:</b>2.66MB<br />
13) <b>License:</b>Free<br />
14) </td>
15) <td>05/14/2002<br />
16) <i><b>new</b></i>
17) </td>
18) <td></td>
19) <td>2,235</td>
20) <td><a href="...">Download now</a><br /><br /></td>
21) </tr>
22) <tr>

. . .
23) </tr>

. . .
24) </table>
25) </body>
26) </html>

Figure 3.2: Partial HTML Source Tree for Figure 3.1
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1) <records IputDocumentURL="http://www.deg.byu.edu/software.html">
2) <record XPath="/html[1]/body[1]/table[1]/tr[1]"
3) charOffsetInParent="0">
4) <![CDATA[Stick Death 1.0
5) Advance in levels, grab weapons, and unlock new levels and characters.
6) OS: Windows 3.x/95/98/Me/NT/2000/XP
7) File Size:2.66MB
8) License:Free
9) 05/14/2002
10) new 2,235 Download now]]>
11) </record>
12) <record ...>
13) . . .
14) </record>
15) . . .
16) </records>

Figure 3.3: Example Record-Separator Output

The type of boundary tag that the record separator finds dictates how we de-

termine the parent element for each record. There are two cases. In each case, we

consider only instances of the boundary tag that are direct children in the HTML

tree of the container element (the element containing all the records). The first case

is a tag that allows element content such as < tr >. For this case, we consider each

instance of the element to be a record. We use the content of the element as the text

of the record, and we generate an XPath for the element as the address of the parent

of the record. The second case is a tag that does not allow element content, such as

< hr > (horizontal rule). For this case, we use the text between each instance of the

tag as the record text, and we save an XPath to the container element (the element

containing all the records) as the parent element of each record.

For the HTML in Figure 3.2, the first case applies. Since the record separator

finds < tr > as the boundary tag, and the < tr > element allows content, each record’s

parent element is the < tr > element in which it is contained. The first record in the

page has an XPath of /html[1]/body[1]/table[1]/tr[1], which we save along with

the text of the record (Line 2 in Figure 3.3).

The third piece of additional information we need from the record separator is

the character offset of each record within its parent element (the element to which
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we saved an XPath). In the first case above, where a separator finds a boundary

tag that allows content, we save boundary tag instances as the parent elements for

their records. When the entire content of a boundary tag instance is the content

for a record, the character offset of the record is always zero. Line 3 in Figure 3.3

shows that the character offset for the first record in Figure 3.1 is zero. In the second

case, for boundary tags that do not allow content, all the records in the page have a

common parent element (the container element). Hence, for each record we save the

character offset from the beginning of the parent element’s content to the beginning

of the record text1.

The second step of the extraction process, the matcher, takes as input the out-

put of the record separator along with matching rules from the data frames in an

extraction ontology. The matcher produces several outputs. Figure 3.4 shows sample

output from the matcher, based on the input in Figure 3.3. First, the matcher gener-

ates an object identifier (OID) for each record. The record in Figure 3.4 has an OID

of 1001 (Line 1). We note also that, for each record, the matcher passes the input

document URL (Line 2) and the XPath of the parent element (Line 3) to its output.

Finally, the matcher applies the matching rules from the extraction ontology to each

record found by the record separator. Based on these rules, the matcher produces a

set of matches for each record, where each match includes the matched data and the

character offsets within the record text to the beginning and end of the match 2 . To

get character offsets within the record’s parent element, we add the character offset

of the record to the start and end character offsets within the record. For example,

Stick Death is a possible instance for the Name object set (Lines 4-6). Adding the

character offset zero of the record from Line 3 of Figure 3.3 to the start and end

character offsets of the data (zero and nine respectively), we get zero and nine for the

start and end offsets of the data within the parent element of the record (Line 4).

1All character offsets discussed are zero-based. They also ignore whitespace to facilitate the
correct interpretation of offsets within a Web browser, because a browser may insert whitespace for
some HTML tags, which we have already stripped out at this point.

2Zero-based, non-whitespace counting makes the ’S’ in Stick Death character 0 and the ’h’
character 9.
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1) <record data object id="1001"
2) URL="http://www.deg.byu.edu/software.html"
3) XPath="/html[1]/body[1]/table[1]/tr[1]">
4) <constant object set="Name" start pos="0" end pos="9">
5) <![CDATA[Stick Death]]>
6) </constant>
7) <constant object set="Version" start pos="10" end pos="12">
8) <![CDATA[1.0]]>
9) </constant>
10) <constant object set="Name" start pos="13" end pos="72">
11) <![CDATA[Advance in levels, grab weapons, and unlock new levels and characters.]]>
12) </constant>
13) <constant object set="Name" start pos="73" end pos="82">
14) <![CDATA[OS: Windows]]>
15) </constant>
16) <constant object set="OSName" start pos="76" end pos="82">
17) <![CDATA[Windows]]>
18) </constant>
19) <constant object set="OSVersion" start pos="83" end pos="105">
20) <![CDATA[3.x/95/98/Me/NT/2000/XP]]>
21) </constant>

. . .
22) </record data>

Figure 3.4: Partial set of Matches for the First Record in Figure 3.1

Figure 3.5: Extracted Relational Data

The final step of the extraction process takes the matches generated in the second

step and applies a set of heuristics to determine which matches correspond to actual

object instances. [ECJ+99] explains the details of this process. Ontos then creates
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SQL insert statements to populate a relational database with the object instances.

Figure 3.5 shows the relational data output by Ontos for the first two records in

Figure 3.1. For example, Figure 3.4 shows that 1.0 (Lines 7-9) is a possible instance

for the Version object set. Ontos, therefore, inserts 1.0 in the database as the value

for Version field (corresponding to the Version lexical object set) in the record (row)

with the OID 1001 as the value for the Program field (corresponding to the Program

non-lexical object set). Similarly, Ontos inserts Windows (Lines 16-18) as the value

for the OSName field and 3.x/95/98/Me/NT/2000/XP (Lines 19-21) as the value for

the OSVersion field. Figure 3.4 shows that Stick Death (Lines 4-6) and OS: Windows

(Lines 10-12) are both possible instances for the Name object set. The heuristics

explained in [ECJ+99] select Stick Death as the actual name of the program in the

record with OID 1001, so Ontos inserts Stick Death as the value for the Name field.

3.1.2 Generating RDF Data

Once the system finishes extracting the data, converting the data to RDF is straight-

forward. Figure 3.6 shows the RDF data generated from the relational data in Fig-

ure 3.5. Appendix B contains pseudocode for our algorithm for generating RDF data

from a populated relational database corresponding to a schema generated by Ontos

according to the given original DAML ontology.

The database generated by Ontos has a main table, where each row represents

an object in the primary object set. Each row in all other tables in the database is

related to a row in the main table by object identifiers. Thus, each row in the main

table along with rows in related tables contain the extracted values for an object. For

example, the first table in Figure 3.5 is the main table; its first row, along with the

first row of the second table, related by OID 1001, contain the data for the Program

with OID 1001.

Each row in the main table becomes an instance of the DAML class corre-

sponding to the primary object set, and the values in that row and its associated

rows become the property values for the generated instance. We generate URIs for

class instances by concatenating the URL of the input HTML page, the name of

the DAML class, and the OID from the database. Line 1 of Figure 3.6 shows the

instance of software:Program generated for the first row of the main table with URI
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1) <software:Program
rdf:about=’http://www.deg.byu.edu/software.html#Program1001’

2) software:Version=’1.0’
3) software:Name=’Stick Death’>
4) <software:hasSize>
5) <software:hasSize

rdf:about=’http://www.deg.byu.edu/software.html#Size5001’/>
6) </software:hasSize>
7) <software:supportsOperatingSystem>

<software:OperatingSystem rdf:about=
’http://www.deg.byu.edu/software.html#OperatingSystem7001’/>

8) </software:supportsOperatingSystem>
9) </software:Program>
10) <software:Size rdf:about=’http://www.deg.byu.edu/software.html#Size5001’
11) software:SizeUnit=’MB’
12) software:SizeVal=’2.66’>
13) </software:Size>
14) <software:OperatingSystem

rdf:about=’http://www.deg.byu.edu/software.html#OperatingSystem7001’
15) software:OSVersion=’3.x/95/98/Me/NT/2000/XP’
16) software:OSName=’Windows’>
17) </software:OperatingSystem>

Figure 3.6: Extracted RDF Data

http://www.deg.byu.edu/software.html#Program1001.

The method we use to generate property values for generated instances depends

on the type of the property. In the case of a data-type property, where the range of

the property is lexical, we simply add the value from the corresponding field in the

database as the value of the property. For example, the value 1.0 in the Version field

in Figure 3.5 becomes the value of the software:Version data-type property in Line 2

of Figure 3.6.

In the case of an object property, where the range is a class, we generate an

instance of the range class as the value of the property. We generate the URI for

the instance of the range class as well as its property values as described above. For

example, we use the value 5001 of the Size field in Figure 3.5 to generate an instance

of the software:Size class as the value of the software:hasSize object property with

URI http://www.deg.byu.edu/software.html#Size5001 in Lines 4-6 of Figure 3.6. The

values of the SizeUnit and SizeVal fields in Figure 3.5 (MB and 2.66) become property
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values for the generated instance of software:Size in Lines 11-14 of Figure 3.6.

Once we have the extracted data formatted as RDF, it is accessible to various

kinds of Semantic Web agents. An agent that understands the ontology referred to

by the RDF data could, for example, search for instances of a class with a specific

property value. An agent that understands our sample software ontology could find

the names of all programs that support a Windows operating system. Even an agent

that does not understand the ontology can make use of the extracted RDF data

without understanding the semantics of the data. We provide such an application,

which we describe in Section 3.3.

3.2 Associating RDF Data with HTML

In order to superimpose our extracted information, we need to associate the extracted

RDF data with the HTML. This section describes two different levels of association

that we use. First, we associate each extracted property value to the place in the

original document where it was extracted. Second, we associate our generated RDF

data with the document from which it was generated.

For each extracted lexical property value, we keep a link to the place in the

source document from which it was extracted. For each value, we create an XPointer

[DDG+02] based on the XPath to the parent element of the current record saved by

the record separator and the character offsets saved by the matcher. For example, for

the extracted value 1.0 of the software:Version in Line 2 of Figure 3.6, we combine

the XPath of its record, from Line 3 of Figure 3.4, and its start character position and

the number of non-whitespace characters computed from its start and end character

positions, from Line 7 of Figure 3.4, to form the XPointer xpointer(string-range(

/html[1]/body[1]/table[1]/tr[1], ’’, 10, 3)), which yields the tenth, eleventh

and twelfth non-blank characters in the first row of the table in the HTML document

in Figures 3.1 and 3.2.

To associate XPointers with property values, we have created a DAML class

called deg:XPointer 3 and two properties: deg:XPTValue and deg:XPTPointer (whose

domain is deg:XPointer). For each data-type property value in the extracted RDF

3The deg prefix used here refers to http://www.deg.byu.edu/ontologies/deg.daml, the default
namespace for the BYU Data Extraction Group.
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1) <software:Program
rdf:about=’http://www.deg.byu.edu/software.html#Program1001’

2) software:Version=’1.0’ ...>
3) <software:VersionXPT rdf:resource=’#XPT1’/>

. . .
4) </software:Program>
5) <deg:XPointer rdf:about=’#XPT1’
6) deg:XPTValue=’1.0’
7) deg:XPTPointer=

’xpointer(string-range(/html[1]/body[1]/table[1]/tr[1],’’,10,3))’>
8) <deg:XPointer>

Figure 3.7: Extracted RDF Data with an Associated XPointer

data, we append XPT to the property name to create a new property. As the

value of the new property, we create an instance of deg:XPointer 4 and assign the

extracted data value as the value of the deg:XPTValue property for the deg:XPointer

instance and the XPointer to the extracted value as the value of the deg:XPTPointer

property. Figure 3.7 shows part of the RDF data in Figure 3.6 with an associated

XPointer. Along with the value 1.0 of the software:Version property (Line 2), the

software:Program instance shown has a value of #XPT1 for the software:VersionXPT

property (Line 3). #XPT1 is an instance of the deg:XPointer class (Line 5) with 1.0 as

the value for deg:XPTValue (Line 6) and xpointer(string-range(/html[1]/body[1]/

table[1]/tr[1],’’,10,3)) as the value for deg:XPTPointer (Line 7).

Once we have extracted RDF data and generated the RDF data containing

XPointers for the extracted data, we need to associate all the RDF data with the

source document. [Pal02] presents several methods for associating RDF data and

HTML documents; we choose to store the RDF data inside the HTML document.

Figure 3.8 shows part of the HTML source tree from Figure 3.2 augmented with the

RDF data inserted as the content of an HTML script element (Line 3) at the end of

the head section of the HTML page. Inserting the RDF data into a script element

keeps the RDF data from being rendered by a Web browser as suggested by [Pal02].

4The obvious way to associate a property value and an XPointer is to make the XPointer the
value of the newly created property. The problem with this approach is that some properties may
have more than one value, so there would be no way to know which XPointer associates with which
value. We thus introduce a deg:XPointer for every property value.
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1) <html>
2) <head>

. . .
3) <script type="application/rdf+xml">
4) <rdfRDF ...>
5) <software:Program

rdf:about=’http://www.deg.byu.edu/software.html#Program1001’
6) software:Version=’1.0’
7) software:Name=’Stick Death’>
8) <software:VersionXPT rdf:resource=’#XPT1’/>
9) </software:Program>

. . .
10) <deg:XPointer rdf:about=’#XPT1’
11) deg:XPTValue=’1.0’
12) deg:XPTPointer=

’xpointer(string-range(/html[1]/body[1]/table[1]/tr[1],’’,10,3))’>
13) <deg:XPointer>

. . .
14) </rdfRDF>
15) <script type="application/rdf+xml>
16) </head>
17) <body>
18) <table>
19) <tr>
20) <td>
21) <a href="..."><b>Stick Death 1.0</b></a><br />

. . .
22) </td>

. . .
23) </tr>

. . .
24) </table>
25) </body>
26)</html>

Figure 3.8: Partial HTML Source Tree for the Web Page in Figure 3.1 with Extracted
RDF Data and XPointers
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Figure 3.9: Example of RDF Data used as Superimposed Information with our RDF
Browser (connecting line added for emphasis)

3.3 Viewing RDF Data

To verify that a Semantic Web agent can use our extracted RDF data and to illustrate

the principle of superimposed information, we provide a sample application — a

simple Semantic Web agent — that allows the user to browse the RDF data by DAML

class. Expanding a class in the browse tree shows its subclasses and instances, and

expanding an instance shows its property values. When the user selects a property

value for an instance (i.e. an extracted data item), the application uses the XPointer

associated with that value to highlight the data item in the original document.

Figure 3.9 shows our RDF browser with the RDF data from Figure 3.6 in the

left-hand frame and part of the HTML page from Figure 3.1 (from which the data was

extracted) in the right-hand pane. The record shown in the HTML page corresponds

to the instance Program1001 of class software:Program. Expanding the tree node for

Program1001 shows the property values for that instance. Selecting a property value

highlights the corresponding value in the HTML page on the right. For example,

selecting the value of the Name property for Program1001 highlights Stick Death in
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the Web page. Therefore, a user can browse both layers of information, the structured

(RDF) layer and the unstructured (HTML) layer, together in a superimposed fashion.
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Chapter 4

Analysis and Results

This chapter describes the experiments we performed to test our system and their

results. Section 4.1 gives the precision and recall for our data-frame matcher. Sec-

tion 4.2 discusses the challenges and successes we had in creating data-extraction

ontologies from DAML ontologies. Section 4.3 describes an experiment we used to

test the tools we provide to build data-extraction ontologies, and Section 4.4 discusses

our results for RDF extraction using the extraction ontologies that we created.

4.1 Data-Frame Matching

To evaluate the accuracy of the data-frame matcher, we used 24 DAML ontologies

from the DAML repository [dam02]. We arbitrarily chose eight ontologies as “train-

ing” documents and used the rest as test documents. We used the training documents

to tune the relative weights of the three string comparison algorithms and to deter-

mine the best match threshold value. Table 4.1 summarizes the results of tuning the

matching process. We also used the training documents to adjust the data-frame

library to make sure the names and aliases of the data frames were appropriate, re-

moving, for example, very general aliases like ‘x’ for PhoneExtension that produced

too many false-positive matches.

After we tuned the matcher and the data-frame library, we evaluated the match-

ing process on the 16 test documents, using precision and recall [BYRN99] as per-

formance metrics. For precision we use the number of correct matches divided by
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Levenshtein Weight 40%
Soundex Weight 20%

LCS Weight 40%

Match Threshold 60%

Table 4.1: Matcher Tuning Parameters

the total number of matches generated, and for recall, we use the number of correct

matches divided by the number of object sets that should have been matched. The

test ontologies contained a total of 128 lexical object sets, 45 of which should match

to data frames in our library. Our matcher generated a total of 52 matches, 40 cor-

rect and 12 incorrect, yielding a precision of 77%. Dividing the number of correct

matches, 40, by the total number of object sets that should have been matched, 45,

yields a recall of 89%.

Of the possible matches the matcher missed, it missed most of them not because

the correct data frame did not yield a similarity above the match threshold, but

because it considered another data frame more similar. For example, ZoneNumber

matched with PhoneNumber rather than Integer. The matcher did not simply miss

the actual match Integer, but we penalized the recall because the object-set name

was more similar to PhoneNumber, a different data frame.

We attribute the excellent recall of the matching process mainly to two factors.

First, the manually specified data-frame aliases allow us to match the data-frame

Integer to an object set like Number with a completely different name, and since

the data-frame library is so small (31 data frames), adding aliases did not impose a

significant work load. (We added aliases for all of the data frames in less than one

hour.) We note also that using manually specified aliases rather than an automated

thesaurus minimizes the impact on precision, as explained in Section 2.4. Second,

the specialization heuristic, described in Section 2.4, boosts recall by catching many

of the matches that we miss using only string matching algorithms.

The specialization heuristic, however, does lower the precision of the matching

process. For example, the Age data frame matches incorrectly with object-set names

like Language and Coverage since both end in ’age’. Our justification for favoring

recall over precision is that the user has to manually inspect the matches generated,

and we provide a very simple way in the user interface to remove incorrect matches
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(simply click the X button next to the data frame), so the penalty for low precision

is small. We also provide a way for the user to declare missed matches by browsing

the data-frame library, but it is more difficult to browse the library to find a missed

match than it is to remove an incorrect match.

4.2 Data-Extraction Ontology Creation

To test our system, we built four data-extraction ontologies. We built three extrac-

tion ontologies — one each for describing software, car advertisements, and apartment

rental listings — by first creating DAML ontologies specifically for the purpose of data

extraction and then converting the DAML ontologies to OSM data-extraction ontolo-

gies. We built the fourth extraction ontology, which describes university courses, by

converting an existing DAML ontology from the DAML repository [dam02] to an

extraction ontology.

The three DAML ontologies that we created converted very easily into data-

extraction ontologies, just as we expected they would. Converting from existing

DAML ontologies, however, was much more difficult. Translation into OSM model

instances worked fine, but we had a difficult time finding DAML ontologies suitable for

data extraction. We found several reasons for our difficulty in using DAML ontologies.

First, and probably most importantly, many DAML ontologies relate only abstract

(non-lexical) concepts, so the conversion produces only non-lexical object sets. Non-

lexical object sets are useful for data extraction only if they have related lexical object

sets. Second, we found that most DAML ontologies have a scope that is either too

large or too detailed; most generate forty or more object sets when we convert them to

OSM. The final reason, and one that encompasses the other two, is that most DAML

ontologies are simply not created with data extraction in mind. Our extraction process

assumes that we have multiple-record Web documents where each record represents

an object. This assumption limits us to ontologies that have one or a few non-lexical

object sets, each with a few associated lexical object sets that correspond to the data

fields commonly found in the records of Web pages. The DAML ontology that we did

use is the one DAML ontology we could find that exhibits the properties of a good

data-extraction ontology. In fact, it was written to model records in Web pages from

a particular site.
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Object Set Precision Recall Time (min.)

PhoneNumber 100% 100% 6
100% 100% 1
100% 100% 7
100% 88% 1
100% 85% 1
100% 100% 1

Average 100% 95% 2.8

Bedrooms 95% 85% 8
98% 96% 10
98% 98% 7
100% 92% 15
100% 85% 50
100% 86% 15

Average 99% 90% 17.5

MonthlyRate 94% 88% 20
96% 91% 20
92% 83% 12
98% 93% 5
98% 91% 2
84% 86% 40

Average 94% 88% 16.5

Table 4.2: Ontology Creation Experiment Results

4.3 Data-Extraction Ontology Creation Tools

In order to evaluate the effectiveness of our tools for creating data-extraction ontolo-

gies from DAML ontologies, we asked six students from the BYU data extraction

group (who have experience creating data-extraction ontologies) to convert a DAML

ontology to an OSM ontology and add extraction rules. We supplied the students

with a small DAML ontology describing apartment rental listings and Web pages from

three different sites, each listing apartments for rent. Our ontology had one class,

Apartment, and three data-type properties, PhoneNumber, Bedrooms, and Month-

lyRate, which converted to non-lexical object sets. We gave a 45 minute tutorial to

the students on how to use our conversion tool, data-frame matcher, and ontology

editor and asked them to report the time it took them to create each data frame (a

data frame for each lexical object set) along with the precision and recall each data

frame achieved over the three Web pages.
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Table 4.2 shows the results reported by the students. The results correspond

with what we expected. First, the data frame for PhoneNumber took an average of

less than three minutes to build and achieved very high precision and recall. This

is because a phone number is a common concept, so our data-frame library contains

a data frame for phone numbers. The students simply had to accept the match

suggested by the matcher and test the provided data frame. In most cases, though,

the data frame library does not contain a data frame that matches so closely with an

object set. The MonthlyRate object set is an example of this. The data-frame library

contains a data frame for prices, which most of the students used (even though it was

not suggested by the matcher). The data frame for prices gave the students a good

starting point, but it was much more general than prices for apartments, so they had

modify and remove expressions to specialize the data frame. They also had to account

for ranges of prices that appeared in some of the records in the Web pages. We believe

the data-frame library along with the graphical Ontology Editor contributed to the

excellent time of 16.5 minutes for the somewhat complex data frame for MonthlyRate.

The last object set, Bedrooms was probably the simplest of the three to recognize,

since in most cases in the Web pages, the number of bedrooms was clearly labeled

with something like bd or bdrm. Because there was no good data frame from which to

start, though, the data frame for Bedrooms took the longest time on average to build.

We believe that this result shows the advantage of using our data-frame library to

help build extraction ontologies.

We note that our experiment has some limitations. First, the time we reported

is the time to build and test each data frame, not the time to build an ontology from

start to finish. We do not claim (or believe) that an ontology builder, even using our

tools, can generally build an ontology in less than forty minutes. Second, in order to

simplify the students’ task, we provided them with Web pages for testing. Normally,

finding Web pages is part of building an ontology and finding representative Web

pages can be time consuming. Also, we asked the students to extract data from only

three Web pages. To make a robust data-extraction ontology, a student would need

to gather and test more than three Web pages. Finally, although we tried to choose

data frames that are representative of most data frames in terms of complexity and

time to build, we note that there may be other data frames that take more time to

build. For example, some data frames use lexicons, or lists, such as a list of makes of

cars. These lexicons can either take almost no time to build because an appropriate
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lexicon is readily available or take a long time to build. Since building a lexicon

would not show anything about our tools, we did not include such a data frame in

our experiment.

4.4 RDF Extraction

We are encouraged by our extraction results. For each of the four application domains

for which we created ontologies, we successfully extracted data from Web pages from

two or three Web sites. We were able to use our RDF browser to verify the correct-

ness of the extraction. Since this project does not attempt to make any enhancements

to the data-extraction process, we do not report numeric results for the extraction

process. We note that since we produce the same kind of extraction ontologies as

are normally used by Ontos, our extraction process does not have any advantages

or disadvantages in terms of precision and recall. We refer the interested reader

to [ECJ+99], which gives detailed results and analysis of data extraction using On-

tos. Generally, Ontos can attain recall of 90% or better and precision around 98%

[ECJ+99].
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Chapter 5

Related Work

This chapter discusses research areas and projects related to this project. Aside from

the Semantic Web, which we discussed in Chapter 1, this project builds on research

in two different areas of computer science. This chapter gives an overview of the

fields of information extraction and superimposed information in Sections 5.1 and

5.2 respectively. Section 5.3 describes three research projects, RDF Web Scraper,

On2Broker, and S-CREAM, whose aims are very similar to the goals of this project.

5.1 Information Extraction

Much like the Semantic Web, information extraction tries to improve usability of

information on the Web by making it more structured. Unlike the Semantic Web,

however, information extraction tries to take advantage of the huge amount of in-

formation already available on the Web. The idea of information extraction is to

extract data from unstructured or semistructured documents and structure it for

easy querying.

The most common approach to extracting information from the Web is wrapper-

based extraction. A wrapper for a Web site is essentially a grammar for its pages1.

This wrapper uses extraction rules to describe where each data field is in the page so

that a program can extract data from any number of pages as long as they follow the

1We note that there are other more general definitions of a wrapper. Indeed, even an OSM
data-extraction ontology is sometimes considered a wrapper, but for purposes of characterizing
information extraction techniques, we use the definition given here.
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format prescribed by the wrapper. Extraction rules in a wrapper are generally based

on some kind of delimiter for a data field. Some common delimiters are characters,

HTML tags, and parts of speech.

The main drawback of wrapper-based information extraction is the work required

to build and maintain wrappers. Extraction wrappers work very well for sites with a

large number of very similar pages, but whenever a site changes or a user needs to ex-

tract information from pages in another site, a new wrapper is necessary. [Eik99] and

[LRNdST02] survey several approaches to the representation and the semiautomatic

and automatic generation of wrappers for information extraction.

The BYU Data Extraction Group (DEG) has taken a different approach to

Information Extraction. Instead of describing the page of interest with a wrapper,

they describe the application domain of interest with an ontology. The effect of this

difference is that, given an ontology for a particular domain, the BYU Ontos system

can extract from Web pages containing data in that domain even if the pages are

from different Web sites or if the format of a site changes [ECJ+99].

This ontology-based approach is ideal for this project because of the prevalence

of ontologies in the Semantic Web. The biggest problem with the ontology-based ap-

proach is the difficulty in manually building data-extraction ontologies. This project

helps alleviate the problem of building extraction ontologies by semi-automatically

converting the structure from a DAML ontology and by facilitating the addition of

data frames.

5.2 Superimposed Information

The idea of superimposed information is very simple: given a set of information, cre-

ate another layer of information that shows a different organization or view of the

original information. Indexes, commentaries, concordances, and Web search engines

are examples of superimposed information. Information extraction generally consid-

ers the extracted data as the only result of the extraction process and ignores the

relationship between the extracted data and the source documents. However, if the

extraction system preserves the relationship between the extracted data and an orig-

inal document, it achieves another important result; the structured data becomes an
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index into or becomes superimposed over the source documents [MD99][BDM02].

[MD99] and [BDM02] suggest a conceptual-model-based approach for superim-

posing information where the superimposed layer is a set of instances of the concepts

in the model instance. The conceptual-model-based (or ontology-based) information

extraction technique that we use in this project is a perfect fit with this type of su-

perimposed information. Since the data is extracted as instances of object sets in an

OSM ontology, all that is needed is to keep track of the location of each extracted

data item in the original document. Our RDF browser shows how this connection

between the superimposed layer and the original layer can be used.

5.3 Related Projects

This section discusses three projects closely related to ours: RDF Web Scraper,

On2Broker, and S-CREAM.

5.3.1 RDF Web Scraper

The RDF Web Scraper is a tool for building and using wrappers to extract data from

HTML pages and converting the data to RDF [GGP+02]. To construct a wrapper

for a Web site, a user manually analyzes the structure of a page and specifies the

location of each field relative to an HTML tag. Next, the user maps each field to a

class or property in a DAML ontology. Once the wrapper and mapping are complete,

a user can use the tool to extract RDF data from any number of HTML pages from

the site for which the wrapper was constructed.

The Web Scraper approach has two advantages compared with our approach.

First, since the wrapper is based on HTML tags, information from inside HTML tags

(i.e. attributes) as well as tag content can be extracted. This allows a user to extract

things like URLs and email addresses which are usually the value of an HTML href

attribute. Second, the tool allows a user to use extracted content as the URI for an

object; for example, a user might use a home page URL for a person as the URI for

a Person object.

The RDF Web scraper also has two disadvantages compared with our approach.
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The first is the effort required to manually create a wrapper for each site and maintain

the wrapper when the site changes. We note that there is still a significant manual

component to building ontologies, but this manual effort is not repeated for every site

or every version of a site. The second disadvantage is the manual mapping from fields

to ontology concepts. This mapping is automatic in our approach because during the

conversion from DAML ontologies to data-extraction ontologies, we save the reverse

mapping from OSM ontology concepts to DAML ontology concepts.

5.3.2 OntoBroker and On2Broker

OntoBroker provides semantic-based access to heterogenous, distributed, and semi-

structured information sources [FAD+00]. OntoBroker uses a Frame-Logic [KLW95]

ontology to annotate Web pages and gathers annotations into a central knowledge

base to provide a query and inference interface to annotations. It is important to

note that while OntoBroker has goals very similar to those of the Semantic Web, it

is not a Semantic Web application because it does not use Semantic Web standards

(i.e. RDF, RDFS, DAML, etc.).

OntoBroker relies on a simple, proprietary extension of HTML that allows a

user to annotate existing Web documents. Since an annotation attaches directly

to the data it describes, the annotation does not duplicate the data elsewhere, and

therefore does not introduce redundancy. The Web crawler component gathers facts

from annotated Web pages into a central knowledge base, which provides a query and

inference interface.

Three approaches have been used to annotate Web documents with semantic in-

formation [EMSS00]. First, a user can manually attach annotations to data elements

in a document either with a text editor or with the provided graphical user interface.

Second, a user can write a wrapper for a Web site in a general-purpose programming

language such as Java or Perl to extract semantic information from Web documents.

This wrapper approach does not actually insert annotations into the document; in-

stead it inserts the extracted data directly into the knowledge base. Third, a user

can use the SMES [NBJBB97] shallow text processor for German to automatically

suggest possible annotations to the user that must still be created manually.

The OntoBroker project and our project have a very similar goal — make existing
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WWW information semantically accessible. There are two main differences — the

methods and the format of the results. Semantic annotation with OntoBroker is a

manual process. The authors of OntoBroker have tried to address this problem by

allowing a user to write a wrapper, however, writing and maintaining wrappers in a

general-purpose language is even more difficult than for wrapper-based information

extraction systems. Their best attempt at automation is with the text processor, but

a user must still manually create the annotations suggested by the text processor. Our

project on the other hand uses one of the latest information extraction systems, so

the extraction is fully automatic. We do note, however, that the creation of ontologies

is still mostly manual and can be time consuming.

The second difference between our approaches is that our project structures the

information in a very standard way (RDF), whereas OntoBroker relies on a propri-

etary extension to HTML. Their data format decreases redundancy, but limits access

to the semantic data, so a general Semantic Web agent cannot understand it. How-

ever, OntoBroker does collect semantic data in a central knowledge base with query

and inference capabilities, so a program can access the information if it understands

OntoBroker’s interface.

The second version of OntoBroker, On2Broker, recognizes the need for interop-

erating with Semantic Web standards. The On2Broker crawler component has been

updated to store facts from RDF and XML as well as annotations from Web pages,

but no attempt has been made to annotate Web documents with RDF.

5.3.3 CREAM and S-CREAM

CREAM (CREAtion of Metadata) is a framework for manually creating relational

metadata in RDF by annotating existing Web pages [HS02]. A user creates anno-

tations in a drag-and-drop user interface by dragging text from a Web page onto a

concept in an RDFS ontology. A meta-ontology specifies each property as either a

quote or a reference. In the case of a quote, content from the Web page is copied

as the value of the property, and in the case of a reference, an XPointer [DDG+02]

is saved as the property value. Our approach is an extension of this idea that saves

both the content and location of the extracted data. Annotations are stored as RDF

inserted into the document. Like OntoBroker, CREAM provides a crawler component
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that collects the annotations from multiple documents into a knowledge base on a

server from which queries can be made.

A recent extension of CREAM, called S-CREAM (Semi-automatic CREAM),

automates annotation using Amilcare [Cir01], a wrapper-induction and information-

extraction system [HSC02]. Amilcare uses a set of manually annotated documents

and a learning algorithm to induce a wrapper that annotates documents by inserting

XML tags around items to be annotated. A user maps Amilcare XML tags to ontology

concepts, and the system automatically converts the XML annotations into RDF

annotations. The framework also provides a tool to manually verify and adjust the

annotations produced; this tool is similar to our RDF browser.

The S-CREAM project is the most similar to ours. The main difference is in

the information extraction method used — wrapper based versus ontology based.

The wrapper is generated automatically, but the user must provide manually marked

up examples and must manually map XML tags to ontology concepts. Our approach

eliminates the manual mapping; since we obtain an extraction ontology by translating

from a DAML ontology, we simply save the reverse mapping during the translation

process. However, a user still has to do some work in adding and editing data frames.

One advantage an extraction ontology has over a wrapper is that it can be used for

multiple sites. The authors do not report results for S-CREAM, so it is difficult to

compare precision, recall, or man-hours involved in extraction with our approach.
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Chapter 6

Conclusions and Future Work

6.1 Summary

In this project, we designed and implemented a system for extracting data from the

World Wide Web to build Semantic Web data based on DAML ontologies. We used

BYU Ontos, an ontology-based data-extraction system, to extract data from Web

pages. We developed an algorithm for converting DAML ontologies into OSM model

instances. We obtained data-extraction ontologies by adding data recognizers to OSM

model instances converted from DAML ontologies. We added data recognizers based

on name matching between the lexical-object sets in an OSM model instance and

data frames in our library of common prebuilt data frames, which we created for

this purpose. Our matching algorithm performed well, with a precision of 77% and a

recall of 89%.

We also provide an extended version of the Ontology Editor to allow a user to

add and edit data frames and participation constraints in the extraction ontology. We

applied a graph layout algorithm to the converted ontology to find a suitable screen

layout for the ontology in the graphical editor.

We used our system to build four data-extraction ontologies. Three of the ex-

traction ontologies that we built — software descriptions, car advertisements, and

apartment rentals — are based on DAML ontologies that we created specifically for

data extraction. The other extraction ontology — describing university courses —

was based on an existing DAML ontology from the DAML repository [dam02]. We
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conclude that DAML ontologies created for data extraction work better in our appli-

cation than most existing DAML ontologies. We note, however, that we see nothing

that prevents people from creating DAML ontologies, just as we have done, whose

purpose is to describe data found in multiple-record Web documents.

Given a converted data-extraction ontology, we applied Ontos to Web pages to

extract relational data. Next, we converted the extracted relational data to RDF

data, making it accessible to Semantic Web agents. In addition to structuring the

data, we also saved an XPointer to each item of extracted data, so that the extracted

data could be superimposed over the original documents from which it was extracted.

We created an RDF browser that allows a user to browse the extracted RDF data

together with the original Web pages, so that a user can see the context of the

extracted data.

Finally, we created a Web demo that integrates all the components of our RDF-

extraction system. As a test of our system, we asked six students familiar with the

BYU Ontos system to build part of a data-extraction ontology based on a DAML

ontology, which we provided. The results of the experiment indicate that our data-

frame library and our graphical ontology editor simplify the task of building extraction

ontologies.

6.2 Future Work

As we have completed this project, we have identified four areas that we believe merit

future work. The first two areas contribute to the data-extraction process, and the

remaining two address the quality of the generated RDF data. 1) We believe it is

possible to enhance our name matcher with value-based schema matching techniques

based on sample values for the data frames in our library and sample values provided

by the user for properties in the user’s DAML ontology. 2) DAML properties always

translate to binary relationship sets, but the BYU Ontos system can take advantage

of n-ary relationship sets for data extraction. A possible future enhancement to our

system is to recognize automatically or let the user specify DAML properties that

can be combined to form ternary relationship sets in the data-extraction ontology. 3)

Our system generates a unique URI for each instance, as required, but if an instance

appears in more than one Web page, we generate more than one URI for it. It would
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be useful if we could recognize previously extracted instances of an object in order

to give them the same URI or relate the two URIs in some way. 4) We observed

that most existing DAML ontologies do not work well for data extraction. A possible

solution is to build DAML ontologies specifically for data extraction and then relate

the elements of those ontologies with elements of more standard existing ontologies

so that more Semantic Web agents could understand the semantics of the extracted

data.

6.3 Conclusion

We conclude that this thesis has in large part achieved its aims of promoting the

Semantic Web and illustrating the use of superimposed information. We believe that

this and other similar projects will help provide the basis for the next generation of

the Web.

57



58



Appendix A

Data-Frame Library
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Figure A.1: This figure shows the names of the object sets in our version of the
data-frame library as well as the generalization/specialization relationships among
them.
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<ObjectSet Lexical="Y" Name="Date"
Aliases="day,year">
<DataFrame SQLFieldLen="20">

<ValuePhrase Label="date 1"
ValueExpression="\b(January|February|March|April|May|June|

July|August|September|October|November|December|Jan|Feb|
Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec|Febr|Sept|Octob)
\s+[0-3]?\d,?\s+[1-9]\d\d\d"

RContextExpression="(\s|\.)" />
<ValuePhrase Label="date 2"

ValueExpression="\b(January|February|March|April|May|June|
July|August|September|October|November|December|Jan|Feb|
Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec|Febr|Sept|Octob)
\s+[0-3]?\d(st|nd|rd|th|d),?\s+[1-9]\d\d\d"

RContextExpression="(\s|\.)"
SubFromExpression="(st|nd|rd|th|d)" />

<ValuePhrase Label="date 3"
ValueExpression="\b[0-1]?\d\s+[0-3]?\d(\s|,)\s*[1-9]\d\d\d"
RContextExpression="(\s|\.)" />

<ValuePhrase Label="date 4"
ValueExpression="\b[0-1]?\d/[0-3]?\d/\d\d(\d\d)?\b"/>

<ValuePhrase Label="date 5"
ValueExpression="Month\.?\s*(1\d|2\d|30|31|\d),?\s*(\d\d\d\d)"
ExceptionExpression="" />

<ValuePhrase Label="date 6"
ValueExpression="(1\d|2\d|30|31|\d)\s*Month\.?\s*(\d\d\d\d)" />

<ValuePhrase Label="date 7"
ValueExpression="\b\d\d?\d\d?\d\d\b" />

<ValuePhrase Label="date 8"
ValueExpression="\b\d\d?\d\d?\d\d\d\d\b" />

<ValuePhrase Label="date 9-DayMonth"
ValueExpression="(1\d|2\d|30|31|\d)\s*Month\.?" />
<ValuePhrase Label="date 10-MonthDay"
ValueExpression="(January|February|March|April|May|June|July|August|

September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|
Aug|Sep|Oct|Nov|Dec|Febr|Sept|Octob)\s+[0-3]?\d"

RContextExpression="(\s|\.)" />
</DataFrame>

</ObjectSet>

Figure A.2: As an example, we give the data frame for the Date object set.
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Appendix B

RDF Data Generation Algorithm
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1) generateRDFInstances()
2) FOR EACH non-lexical object set domain os DO
3) FOR EACH relSet DO
4) IF domain os on domain side of relSet THEN
5) property := URI for the DAML property corresponding to relSet
6) range os := range object set of relSet
7) table := table containing both domain os and range os
8) field1 := field in table for domain os
9) field2 := field in table for range os
10) domain := URI for domain os
11) range := URI for range os
12) FOR EACH row in table
13) value1 := URI for field1 in row
14) value2 := URI or lexical value of field2 in row
15) IF value1 and value2 are not null THEN
16) add statement: ’< value1 >< rdf : type >< domain >’
17) add statement: ’< value1 >< property >< value2 >’
18) IF range os is non-lexical
19) add statement: ’< value2 >< rdf : type >< range >’

Figure B.1: This figure illustrates our algorithm for generating RDF data from an
OSM model instance and a set of tables populated with relational data.
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