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Abstract

Generating the fewest redundancy-free scheme trees from conceptual-model hyper-

graphs is NP-hard [11]. We show, however, that the problem has a polynomial-time

solution if the conceptual-model hypergraph is acyclic. We define conceptual-model

hypergraphs, cycles, and scheme trees, and then present a polynomial-time algorithm

and show that it generates the fewest redundancy-free scheme trees. As a practical

application for the algorithm, we comment on its use for the design of “good” XML

schemas for data storage.

Keywords: Conceptual-model-based scheme-tree generation, data redundancy in scheme

trees, minimal scheme-tree forests, acyclic conceptual-model hypergraphs.

1 Introduction

Generating schemas for data storage from conceptual models has a long-standing tradition.

Its advantages are clear: (1) understandability, allowing both customer and developer to

communicate effectively about the data to be included and the constraints to be enforced

and (2) formality, allowing algorithmic derivation of schemas with good properties regarding

the space needed to store the data and the time needed to query and update the data.

Following this conceptual-model tradition, we seek for algorithms to derive good schemas

when the intended usage is for hierarchical data storage, such as in XML databases [3].

Like relational database schemas, we consider hierarchical scheme-tree storage structures
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to be “good” when they prevent redundancy and are stored in as few schemas as possible.

Preventing redundancy reduces storage and allows for simple constraint-satisfying update

checks, thus reducing both space and time. Storing data in as few schemas as possible

reduces query processing time when joins across populated schema instances are necessary.

We thus seek for algorithms that generate the fewest redundancy-free scheme trees from

a conceptual-model hypergraph (a CM hypergraph). In [11] we give algorithms that generate

redundancy-free scheme trees; but if the CM hypergraph has cycles, the algorithms cannot

guarantee that the number of generated scheme trees will be minimal. Indeed, in [11] we

prove that finding an algorithm for minimality in the general case is intractable, and we thus

settle for providing a heuristic for finding the minimal number of scheme trees. Continuing

this work, we consider placing restrictions on CM hypergraphs. We observe that if the

universal-relation-scheme assumption (URSA) [14] holds for a CM hypergraph H, if H is

Graham-reduction acyclic [10], and if each hyperedge in H is in BCNF [5], then we are

able to find the largest redundancy-free scheme-tree storage structure in polynomial time

[12]. Successively extracting the largest redundancy-free scheme tree from what remains of

the CM hypergraph is a good heuristic for generating the fewest number of scheme trees.

We continue our investigation here where we show that by using an alternate definition of

hypergraph acyclicity that is strictly stronger than Graham reduction, a polynomial-time

algorithm exists that guarantees the generation of the fewest number of redundancy-free

scheme trees. Further, the algorithm needs neither the URSA nor the BCNF assumption.

By way of comparison with the scheme-tree normalization work of others (especially

in the context of XML [1, 4, 9, 15, 16, 17, 18]), we point out that our approach differs

significantly. Not only have these other researchers defined their FDs, and thus their normal

forms, differently, the basis of our approach is also different from theirs. As opposed to

constraints specialized for XML, which are defined in these papers, we rely on standard

FD and hypergraph-generated MVD definitions—both of which can be straightforwardly

derived from conceptual-model hypergraphs. Furthermore, the basis of our approach is

conceptual models, which have not been considered at all in other XML normalization work.

We believe our approach is more common in practice and in line with the tradition followed

by information-system developers, who first create conceptual-model instances and then

generate database storage structures.

To help clarify our intentions, we present some examples.1 Example 1 gives an illustrative

acyclic CM hypergraph along with some valid instance data. Examples 2 and 3 illustrate

poor designs: respectively, a design with data redundancy and a fragmented design with

more scheme trees than necessary. Example 4 illustrates a good design.

1We rely on intuition for some undefined terms in these introductory examples. We carefully define these
terms later in the paper.

2



"A"

Professor

a
1

a
2

b
1

s
2

s
3

s
1

c
2

m
1 s

4

c
1

p
2

p
1

Student

Activity Club Mascot

Grade

Course "B"

Figure 1: An acyclic CM hypergraph and a valid population of data.
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Figure 2: An incorrect design with data redundancy.

Example 1 Figure 1 shows an acyclic CM hypergraph H and a valid population of data

for H. In the CM hypergraph, named vertices denote object sets. Edges are relationship

sets among two or more object sets. Arrowheads denote functional relationship sets, and o’s

denote optional participation of objects in relationships. The data for H states that club

b1, whose members are students s2 and s3 and whose mascot is m1, has activities a1 and a2.

The data also states that professor p1 teaches courses c1 and c2, but professor p2 does not

currently teach any course. And it states that student s1 earned an A in both courses c1 and

c2, student s2 earned a B in course c2, but students s3 and s4 are new students who have

not yet earned a grade for any course, although s3, but not s4, has already joined a club. 2

Example 2 Figure 2 shows a scheme tree for the hypergraph H in Figure 1 along with

the result of populating it with the instance data in Figure 1. However, the scheme tree

and its populated instance in Figure 2 are problematic. The FDs Course → Professor ,

Club → Mascot , Mascot → Club and the MVD Club →→ Activity are constraints implied by

the acyclic CM hypergraph in Figure 1 that must hold. As a result, the populated scheme

tree in Figure 2 has redundant data. Since course c2 appears twice and Course → Professor

holds, both appearances of c2 must relate to professor p1. Similarly, since club b1 appears
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Figure 3: An incorrect design with unnecessary fragmentation.
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Figure 4: A correct design that avoids data redundancy and unnecessary fragmentation.

twice and Club → Mascot and Club →→ Activity hold, b1’s mascot and activities must appear

twice, and since mascot m1 appears twice and Mascot → Club holds, m1’s club b1 must

appear twice. In addition, professor p2, who does not teach any course, cannot even be

included in the populated scheme tree in Figure 2, which results in a loss of data. 2

Example 3 Figure 3 shows another collection of scheme trees for the hypergraph H in

Figure 1 along with the results of populating them with the data from Figure 1. While

the scheme trees and their populated instances in Figure 3 do not have redundancy, they

unnecessarily fragment the data. This means we have to combine the data from two or more

populated scheme trees to answer some queries. For example, we have to combine the data

from the last two populated scheme trees in Figure 3 to unite all the information directly

related to students. This join turns out to be unnecessary, since they can be joined and

stored without introducing redundancy. 2
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Example 4 In Figure 4 the scheme trees organize the data without causing redundancy

and account for all the data in Figure 1. 2

Contributions of the work reported in this paper include:

• Discovery of an appropriate definition of CM hypergraph acyclicity that enables a poly-

nomial-time, algorithmic solution for generating the fewest possible redundancy-free

scheme trees.

• Proofs of theorems guaranteeing that the algorithmic solution we propose generates

a forest of redundancy free scheme trees (Theorem 1), that the generated forest of

scheme trees collectively covers the information in a given CM hypergraph with the

fewest number of scheme trees (Theorem 2), and that the algorithms in the solution

all run in polynomial time (Theorem 3).

• Loosening of constraints from previous results allowing designers the freedom to apply

CM hypergraphs in their analysis work without requiring that the URSA hold and

without requiring that each hyperedge be in BCNF. The simplicity of the acyclicity

requirement along with the results of the algorithmic solution provide designers with

excellent guidelines for creating conceptual-model instances and mapping them into

good designs for scheme-tree-based storage structures such as those found in XML.

We present the details of these contributions as follows. In Section 2 we define, illustrate,

and explain basic terms. We rely on these fundamentals for explaining our scheme-generation

algorithm (Section 3) and proving that it generates the fewest redundancy-free scheme trees

in polynomial time (Section 4). Some of the proofs are lengthy and detailed; we therefore

defer all proofs to the appendix, but do provide intuitive proof sketches for the three major

theorems. In Section 5 we mention some practicalities about applying our algorithm for the

design of XML storage structures, and we make concluding remarks in Section 6.

2 Fundamentals

2.1 CM Hypergraphs

We begin with definitions that tell us which hypergraph variant constitutes a conceptual-

model hypergraph (CM hypergraph). We note, in particular, that the CM-hypergraph

definitions provide for cardinality constraints typically found in database modeling: both

functional and multi-valued constraints and both mandatory and optional participation con-

straints. We note also that the definitions allow several edges to connect among the same
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vertices and also note that CM hypergraphs make neither the universal-relation assumption

(URA) nor the universal-relation-scheme assumption (URSA) [8, 14].

Definition 1 A hypergraph is a pair (V , E), where V is a set of vertices and E is a set of

edges. Each edge Ei ∈ E is a multiset Vi (1 ≤ i ≤ |E|) of at least two (|Vi| ≥ 2) vertices in

V . (If |Vi| = 2, the edge is binary ; if |Vi| = 3, the edge is ternary, . . . ; and, in general, if |Vi|
= n, the edge is n-ary.) 2

A hypergraph edge may have multiple connections (recursive connections) to a vertex.

Thus, naming the vertex and the edge does not uniquely distinguish an edge-vertex connec-

tion. Hence, we introduce connection identifiers to distinguish them.

Definition 2 In a hypergraph (V , E), a unique edge-vertex connection Ci denotes each

edge/vertex association (1 ≤ i ≤
∑|E|

j=1 |Ej| where Ej is an edge in E). 2

Definition 3 A CM hypergraph is a hypergraph with the following additional properties:

(1) Each vertex Vi is an object set, whose elements denote objects of interest in the world

being modeled. (2) Each edge Ej is a relationship set, whose elements denote relations over

the objects in the object sets of the multiset of vertices of Ej. (3) Referential integrity holds;

thus the projection of each edge Ej (1 ≤ j ≤ |E|) on the object set S of an edge-vertex

connection of Ej is a (not necessarily proper) subset of the objects in S. (4) Every edge

Ej is undirected, uni-directed, or bi-directed. When Ej is directed, the multiset for Ej has

two non-empty multisets, one for the tail(s) of the directed edge and one for the head(s).

A uni-directed edge denotes a function from a cross-product of tail object set(s) to a cross-

product of head object set(s), and a bi-directed edge, in addition, denotes an inverse function

from head(s) to tail(s). (5) Every edge-vertex connection Ck for vertex Vi and edge Ej has

either a “mandatory” or an “optional” declaration, which dictates whether the objects in Vi

respectively must or may participate in the relationships in Ej. 2

Example 5 In Figure 1, the CM hypergraph H has seven object sets, named Activity, Club,

etc. H has four binary relationship sets and one ternary relationship set, {Student, Course,

Grade}. This ternary edge is functional from Student × Course to Grade. All edge-vertex

connections are mandatory except the three marked with the optional designator “o”. These

three optional connections allow for professors who do not teach courses, students who are

not in clubs, and students who have not yet received grades for courses. 2

2.2 Acyclic CM Hypergraphs

Since our results are for acyclic CM hypergraphs, we now present their definition. The

literature gives several, non-equivalent definitions for cycles in hypergraphs. It makes a
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difference which definition we use. Further, we show that, although CM hypergraphs require

neither the URSA nor the URA, the definition of acyclic CM hypergraphs we use nevertheless

allows us to make both the URSA and the URA. We eventually need both so that we can

use standard relational dependency theory, which enables our redundancy-free, minimal-

scheme-tree result. As we shall also see, however, designers need not concern themselves

with making CM hypergraphs conform to the URA nor to the URSA beyond just making

CM hypergraphs acyclic in the sense we define here. We sort out all these issues in the

following definitions and lemmas.

Definition 4 A path in a CM hypergraph H is a sequence of the form V1, C1, E1, C2, V2,

. . . , Vi, C2i−1, Ei, C2i, Vi+1, . . . , Vn, C2n−1, En, C2n, Vn+1, where (1) n ≥ 1, (2) V1, . . . , Vn

are vertices of H, (3) E1, . . . , En are edges of H, (4) C1, . . . , C2n are edge-vertex connections

of H, and (5) each Ci in the sequence where i is odd conjoins its preceding vertex with its

succeeding edge and where i is even conjoins its preceding edge with its succeeding vertex.

A path is simple if its vertices are all distinct. 2

Definition 5 A CM hypergraphH is connected if a path exists between every pair of distinct

vertices of H. 2

Without loss of generality, all CM hypergraphs considered in this paper are connected.

For, if not, we may achieve the results we want by simply applying the algorithms in this

paper to each individual connected component.

Definition 6 A cycle in a CM hypergraph H is a path in H with V1 = Vn+1, where V1

is the first vertex of the path and Vn+1 is the last, and with every other vertex, edge, and

edge-vertex connection unique. A CM hypergraph is acyclic if it does not have a cycle. 2

Example 6 Figure 5 shows some cycles in CM hypergraphs.2 The apparent cycle in Fig-

ure 5(a) satisfies Definition 4: Professor, Instructor, is-teaching, OfferedCourse, Course,

DeptCourse, administered-by, CourseDept, Department, DeptWithFaculty, has, FacultyMem-

ber, Professor. Observe that for forming paths the direction of directional edges is immaterial—

the cycle in Figure 5(a) proceeds “backwards” through the edge Professor → Department .

In Figure 5(b), Team, HomeTeam, plays, VisitingTeam, Team is a cycle. Observe that paths

traverse through binary parts of n-ary (n > 2) edges. In Figure 5(c), Professor, Reviewer,

reviews-for, AcademicJournal, Journal, ProfessionalJournal, published-by, Author, Professor

is one of several cycles. 2

2Note that we have supplied names for every edge and for every edge-vertex connection as well as for
every vertex. CM hypergraphs optionally allow edge and edge-vertex-connection names, which respectively
are relationship-set names and role names. Making the names unique lets us unambiguously refer to an
object set, relationship set, or role.
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Figure 5: Different forms of cycles in CM hypergraphs.

Two fundamental differences between CM hypergraphs and the hypergraphs in Beeri, et

al. [2] and Maier [10] prohibit us from taking direct advantage of their results. First, the edges

in CM hypergraphs might be multisets of vertices whereas the edges in the hypergraphs of

[2, 10] are sets instead. Second, the hypergraphs of [2, 10] make the URSA and often even the

stronger URA whereas neither need hold in CM hypergraphs. Nevertheless, in the context

of acyclic CM hypergraphs, these differences disappear. Lemma 4 and the lemmas leading

to Lemma 4 show that acyclic CM hypergraphs satisfy the URSA. Further, Lemma 5 shows

that, appropriately extended, populated CM-hypergraph instances with null placeholders

satisfy the URA as well. Satisfying these assumptions allows us to make direct use of

relational dependency theory. As a first immediate consequence, Lemma 8 shows that the

edge-in-BCNF assumption always holds for any acyclic CM hypergraph.

Lemma 1 Let H be an acyclic CM hypergraph. Every edge in H is a set, not a multiset,

of vertices.3 2

Lemma 2 Let H be an acyclic CM hypergraph. If Ei ∩ Ej is not empty for distinct edges

Ei and Ej in H, then Ei ∩ Ej contains exactly one vertex. 2

Lemma 3 Let H be a connected acyclic CM hypergraph. Let V1 and Vn be distinct vertices

of H. There exists a unique simple path p in H from V1 to Vn. 2

Definition 7 Let U be a set of attributes. U satisfies the universal-relation-scheme assump-

tion (URSA) if for any subset S of U , there is a unique relationship among the attributes in

S [14]. 2

3Proofs for lemmas and theorems are in the appendix.
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Lemma 4 Let H be a connected acyclic CM hypergraph. The set of vertices in H satisfies

the URSA. 2

Although connected acyclic CM hypergraphs satisfy the URSA, their populated instances

do not, in general, satisfy the stronger URA (the requirement that relations are all projections

of a single universal relation). The presence of optionals on edge-vertex connections (or rather

the absence of mandatory constraints) allows for dangling tuples which are lost in the join

that creates the universal relation. We now show, however, that with the addition of nulls

as placeholders for missing values, populated CM hypergraphs satisfy the URA.

Definition 8 Let H = (V,E) be a connected acyclic CM hypergraph, and let HD be a valid

population of data for H4. Let ri be the relation for edge Ei of HD (0 ≤ i ≤ |E|), and let

si be the single-attribute relation for vertex Vi of HD (0 ≤ i ≤ |V |). A universal relation u

of HD for H is obtained as follows: (1) Let r = r1 ⊗ r2 ⊗ · · · ⊗ r|E| where for 1 ≤ i < |E|,
E1E2 . . . Ei ∩ Ei+1 6= Ø. (2) Let u = r ⊗ s1 ⊗ s2 ⊗ · · · ⊗ s|V |. 2

When the schemas for r and s in r ⊗ s have no attribute in common, the outer join

produces the cross product of r and s. Thus, the constraint E1E2 . . . Ei ∩ Ei+1 6= Ø for

1 ≤ i < |E| is necessary to avoid generating connections among values not reflected in the

data instance of an underlying CM hypergraph. Since our CM hypergraphs are connected,

an ordering that satisfies this constraint always exists. Further, since we assume that nulls

are distinguished, this ordering constraint ensures that the universal relation for a populated

CM hypergraph is unique up to a renaming of nulls.

Example 7 Figure 6 gives the universal relation for the CM hypergraph and data instance

in Figure 1. In the figure (and throughout the remainder of the paper), we let the attribute

name A stand for Activity , B for Club, M for Mascot , S for Student , G for Grade, C for

Course, and P for Professor . We compute the outer join as AB ⊗ BM ⊗ BS ⊗ SGC ⊗
CP ⊗ A ⊗ B ⊗ M ⊗ S ⊗ G ⊗ C ⊗ P . The non-empty intersection constraint holds since

AB ∩ BM = B,ABM ∩ BS = B,ABMS ∩ SGC = S, etc. This constraint ensures, for

example, that we do not compute the universal relation as CP ⊗ BS ⊗ · · · , which would

erroneously create a relationship between professor p2 and student s2.

Lemma 5 Let H = (V,E) be a connected acyclic CM hypergraph, and let HD be a valid

population of data for H. Let u be the universal relation for H constructed from HD in

which the nulls are treated as distinguished values. If E1, . . . , E|E| be the edges of H, then

u satisfies the join dependency 1(E1, . . . , E|E|). 2

4A population of data for H is valid if it satisfies all the constraints of the CM hypergraph
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Figure 6: Universal relation computed from the hypergraph- and data-instance in Figure 1.

Since the set of vertices in a connected acyclic CM hypergraph satisfies the URSA and

its populated instance, appropriately extended with distinguished-null placeholders, satisfies

the URA, we can apply standard dependency theory [10]. If H is a connected acyclic CM

hypergraph, its given functional dependencies (FDs) and multivalued dependencies (MVDs)

and its given join dependency (JD) are as follows:

• Each directed edge is a nontrivial FD.

• Each bi-directed edge yields two nontrivial FDs, one in each direction.

• The MVDs are hypergraph generated: Consider each single vertex A, one at a time.

Remove A from every edge of H in which it appears. Let H1, H2, . . . , Hn (n ≥ 1) be

the remaining disjoint connected sub-hypergraphs whose vertex sets are respectively

Y1, Y2, . . . , Yn. If n ≥ 2, then A →→ Y1 | Y2 | · · · | Yn are the nontrivial hypergraph-

generated MVDs for A. (If n = 1, the generated MVD A→→ Y1 is trivial.) Also, since

we will often wish to apply hypergraph-generated MVDs to vertex subsets, we note

in Lemma 6 that for any set of vertices V ′ ⊆ V (where V is the vertex set of H), if

A ∈ V ′, and A→→ Y is a hypergraph generated MVD, then A→→ Y ∩ V ′ holds for V ′.

• The given JD is 1(E1, . . . , En) where E1, . . . , En are the edges of the hypergraph.

For our work here, we assume that the only FDs, MVDs, and JDs for a connected acyclic CM

hypergraph are its given FDs, MVDs, and JD. Thus, all given dependences of interest are

apparent from the hypergraph itself. Further, as Lemma 7 shows, we need only be concerned

with the given FDs and MVDs since the given JD is equivalent to the given MVDs.

Lemma 6 Let H = (V,E) be a connected acyclic CM hypergraph. Let V ′ be any subset of

V . If A→→ S is a hypergraph-generated MVD from H and A ∈ V ′, then A→→ S ∩ V ′ holds

on V ′. 2
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Lemma 7 Let H = (V,E) be a connected acyclic CM hypergraph with edges E1, . . . , En.

Let M be the set of given MVDs of H. M ≡ 1(E1, . . . , En). 2

Example 8 In Figure 1, the given FDs are: B → M , M → B, SC → G, and C → P .

The given MVDs are: B →→ A | M | SCGP, S →→ BMA | CGP, and C →→ P | SGBMA.

The given JD is: 1(AB, BM , SB, SCG, CP ), which is equivalent to the given MVDs.

Also, by Lemma 6, S →→ CG | B for the subset of vertices SCGB. (SCGB is the set of

attributes in the first scheme tree T in Figure 4 and is of particular interest when we apply

the hypergraph-generated MVD S →→ BMA | CGP to T .) 2

As a first important consequence of being able to apply standard dependency theory, we

show that each edge in an acyclic CM hypergraph is in BCNF—a condition we need in order

to guarantee that our algorithm generates redundancy-free scheme trees.

Lemma 8 Each edge of an acyclic CM hypergraph is in BCNF. 2

2.3 Scheme Trees

Scheme trees are generic hierarchical structures. A scheme tree defines a nesting of a set of

attributes, which, in turn, organizes the data values as a populated scheme tree according

to the nesting.

Definition 9 A scheme tree T over a set U of attributes is a rooted tree in which every

node is a non-empty subset of U . Further, the intersection of every pair of distinct nodes in

T is empty. We denote the set of attributes in T by Aset(T ). 2

Example 9 Figure 4 shows three scheme trees, T1, T2, and T3, from left to right. Each of

the nodes is non-empty and the intersection of every pair of distinct nodes within a single

tree is empty. Intersections of nodes in different scheme trees, however, need not be empty:

the vertex Course, for example, is in the left child node of T1 and in the root node of T2.

As a textual representation of scheme trees, we use notation in which each subtree of a

scheme tree is a repeating group of attribute names. Thus, the three scheme trees in textual

notation are T1 = S(CG)*(B)*, T2 = PC, and T3 = BM(A)*, and thus Aset(T1) = SCGB,

Aset(T2) = PC, and Aset(T3) = BMA. 2

Definition 10 Let T be a scheme tree over a set U of attributes. Let dom(A) be the set of

domain values of an attribute A in U and let dom(U) =
⋃

A∈U dom(A). A populated scheme

tree over T is recursively defined as follows:
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1. If T has only the root node A1 . . . An (n ≥ 1), a populated scheme tree over T is a

(possibly empty) set of partial functions {t1, . . . , tm} from {A1, . . . , An} to dom(U)

such that for each ti, ti(Aj) ∈ dom(Aj) if ti is defined on Aj.

2. If T has more than one node, then let T1, . . . , Tn (n ≥ 1) be the n subtrees of T such

that the root node of each Ti is a child node of T ’s root node. If {t1, . . . , tm}, m ≥ 0,

is the set of partial functions of T ’s root node, then r is a populated scheme tree over

T if

(a) r =
⋃m

j=1(tj ∪ (
⋃n

i=1 sji)) where sji is the (possibly empty) populated scheme tree

over Ti for the jth partial function tj, and

(b) for any non-empty sji , there is a partial function tj such that sji is for tj and tj

is defined on some attribute in T ’s root node, and

(c) tp = tq (1 ≤ p, q ≤ m) implies spi = sqi (1 ≤ i ≤ n). (tp = tq if tp and tq are

defined on exactly the same attributes, and tp(A) = tq(A) if tp and tq are both

defined on attribute A.) 2

Example 10 As Figures 2–4 show, we can represent a populated scheme tree by embedded

bucket notation in which each subtree in a scheme tree is a bucket nested in its parent

bucket (with the outermost bucket being implicit). Every scheme tree in Figures 2–4 is

correctly populated with respect to the given data instance in Figure 1. If, however, we were

to add an activity a1 for student s1 in Figure 2, the populated scheme tree would violate

Condition 2b of Definition 10 since activity a1 would have no parent club and mascot. Or,

if we were to replace the instance s4 with s3, the populated scheme tree would violate

Condition 2c of Definition 10 since the two s3’s would have different subtrees under (Club

Mascot (Activity)*)*. 2

A forest of scheme trees for a given CM hypergraph must be able to store any valid data

instance for the hypergraph. Thus, we now define “collectively covers” to capture exactly

what it means for a forest of scheme trees to be able to include all the data and only all the

data in a valid populated instance of a CM hypergraph.

Definition 11 Let H = (V,E) be a connected acyclic CM hypergraph, and let T1, . . . ,

Tn (n ≥ 1) be scheme trees such that Aset(T1 ) ∪ · · · ∪ Aset(Tn) = V . Let r1, . . . , rn be

populated instances of T1, . . . , Tn respectively, and let nulls for r1, . . . , rn be unique within

and across all populated instances. Let τ1, . . . , τn be the respective total unnestings of r1,

. . . , rn, and let r = τ1 ⊗ τ2 ⊗ · · · ⊗ τn where for 1 < i ≤ n, (Aset(T1)∪. . .∪Aset(Ti−1)) ∩
Aset(Ti) 6= Ø, T1, . . ., Tn collectively cover H if for any valid population HD of data for H,

r = u up to renaming of nulls where u is a universal relation derived from HD for H. 2

12
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Figure 7: Outer join of the total unnestings of the populated scheme trees in Figure 4.

Example 11 The scheme trees in Figure 4 collectively cover the CM hypergraph and data

instance in Figure 1, but the scheme tree in Figure 2 does not. Intuitively, it is clear that the

scheme trees in Figure 4 include every value and every relationship in Figure 1. For Figure 2

this is not the case since p2 does not appear anywhere. Formally, Figure 7 shows the outer

join of the total unnestings of the populated scheme trees in Figure 4. Observe that, up to a

renaming of nulls, the resulting relation is identical to the universal relation in Figure 6. 2

2.4 Nested Normal Form

Nested Normal Form (NNF) [13] is a necessary and sufficient condition for removing data

redundancy with respect to MVDs and FDs that hold for scheme trees. Since one of our

goals is to generate redundancy-free scheme trees, they must all be in NNF. We now proceed

to define NNF.5

Let T be a scheme tree. Let N be a node in T . Notationally, Ancestor(N ) denotes the

union of attributes in all ancestors of N , including N . Similarly, Descendant(N ) denotes

the union of attributes in all descendants of N , including N . Each edge (V,W ) in T , where

V is the parent of W , denotes an MVD Ancestor(V ) →→ Descendant(W ). Notationally, we

use MVD(T ) to denote the set of all MVDs represented by the edges in T . By construction,

each MVD in MVD(T ) is satisfied in the total unnesting of any populated instance of T .

Definition 12 Let U be a set of attributes. Let M be a set of MVDs over U and F be a

set of FDs over U . Let T be a scheme tree such that Aset(T ) ⊆ U . Let D1 be the set of

MVDs that hold for Aset(T ) with respect to M ∪F , and let D2 be the set of FDs that hold

for Aset(T ) with respect to M ∪ F . T is in NNF with respect to M ∪ F if the following

conditions are satisfied.

5NNF is based on standard dependency theory [10], which in turn is based on the URSA [14]. In general,
CM hypergraphs do not satisfy the URSA and thus we could not make use of NNF directly in [11]. However,
as Lemma 4 shows, the URSA holds in acyclic CM hypergraphs. Therefore, unlike in [11], we can use NNF
directly in this paper.
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1. MVD(T ) ∪D2 is equivalent to D1 ∪D2 on Aset(T ).

2. For each nontrivial FD X → A ∈ D2, X → Ancestor(NA) also holds with respect to

M ∪ F , where NA is the node in T that contains A. 2

When NNF’s Condition 1 is violated, there is a populated scheme tree that has redun-

dancy with respect to an MVD that holds. When NNF’s Condition 2 is violated, there is a

populated scheme tree that has redundancy with respect to an FD that holds.

Example 12 All the scheme trees in Figures 3 and 4 are in NNF. As an example, let T be the

scheme tree S(CG)*(B)* in Figure 4. Thus, Aset(T ) = SCGB and MVD(T ) = {S →→ CG

| B}. From Example 8, S →→ CGP | ABM are hypergraph-generated MVDs, which when

restricted to Aset(T ) yields the set D1 = {S →→ CG | B}. (All other hypergraph-generated

MVDs are trivial when restricted to Aset(T ).) D2 = {SC → G} is the set of nontrivial FDs

that hold on Aset(T ). Hence, since MVD(T ) ∪ D2 ≡ D1 ∪D2 on Aset(T ), Condition 1 of

NNF holds. NNF’s Condition 2 clearly holds because for the given nontrivial FD SC → G,

Ancestor(CG) is SCG and SC → SCG. Similarly, we can argue that all other scheme trees

in Figures 3 and 4 are in NNF.

On the other hand, the scheme tree in Figure 2 is not in NNF. To see the violations, let

T be the scheme tree S(BM(A)*)*(CGP )* in Figure 2. Thus, Aset(T ) = SBMACGP and

MVD(T ) = {S →→ BMA | CGP , SBM →→ A}. The nontrivial MVDs and FDs that hold

for Aset(T ) are {B →→ A | M | SCGP, S →→ BMA | CGP, C →→ P | SGBMA} ∪ {B →M ,

M → B, SC → G, C → P}. Because B →→ A does not follow from MVD(T ) and the FDs

that hold for T , NNF’s Condition 1 is violated. Consequently, there can be a populated

instance of T that has redundant data with respect to B →→ A. The populated scheme tree

in Figure 2 is an example that demonstrates the redundancy caused by B →→ A. In addition,

C → P is an FD that holds for T but C 6→ SCGP . As a result, NNF’s Condition 2 is also

violated, and therefore there can be a populated instance of T that has redundant data with

respect to C → P . The populated scheme tree in Figure 2 also demonstrates the redundancy

caused by C → P . 2

3 Scheme Tree Generation Algorithms

Given a connected acyclic CM hypergraph H, we begin by forming equivalence classes of

edges based on functional equivalence of FDs given in H. We then observe that the set of

vertices in each of the equivalence classes is in 4NF so that they are all redundancy-free with

respect to the FDs and MVDs of H. Our goal is to combine the equivalence classes of H

together into as few scheme trees as possible while retaining the redundancy-free property

of NNF and while ensuring that the generated forest of scheme trees collectively covers H.
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Algorithm 1 in this section generates the equivalence classes of H. Algorithm 2 organizes

these equivalence-classes into a partial ordering that indicates which equivalence classes can

potentially be combined in parent-child relationships to form larger redundancy-free scheme

trees. Based on the partial ordering, shared vertices in disjoint components of the partial

ordering, and the mandatory/optional constraints of H, Algorithm 3 combines equivalence

classes of H as nodes into a minimal forest F of redundancy-free scheme trees that collec-

tively cover H. Needing to know which equivalence classes can actually be child nodes of

which other equivalence classes and not violate the collectively-covers property, Algorithm 3

repeatedly calls on Algorithm 4 to assist in its decision. So as to ensure that the algorithms

run in polynomial time, Algorithms 3 and 4 are greedy in their generation of F .

3.1 Algorithm 1: Equivalence Classes

Let H be a connected acyclic CM hypergraph, and let Ei (1 ≤ i ≤ n) be the n edges of

H, each of which is a set of vertices. Let ≡E be the relation over the edges of H such that

Ei ≡E Ej if Ei → Ej and Ej → Ei. Based on Armstrong’s axioms, the relation ≡E is clearly

reflexive, symmetric, and transitive, and thus an equivalence relation. Algorithm 1 builds

the equivalence classes of a connected acyclic CM hypergraph H in a straightforward way.

Ei → Ej and Ej → Ei if and only if the closure of the attribute sets of Ei and Ej are equal

(i.e., if and only if E+
i = E+

j ).

Algorithm 1 Build equivalence classes of edges.
input: a connected acyclic CM hypergraph H
output: a set EqC of ≡E equivalence classes of edges in H

1: for each edge Ei, compute the functional closure E+
i

2: let EqC be a partition P of the edges of H such that edges Ei and Ej are in the same block of P if E+
i = E+

j

Example 13 As a running example of our algorithmic generation of redundancy-free min-

imal scheme-tree forests in polynomial time, we introduce the CM hypergraph in Figure 8.

Table 1 lists the CM-hypergraph’s equivalence classes along with their edges and vertices. 2

We let the notation [Ei] denote the set of vertices in the edges of the equivalence class

[Ei]. Lemma 9 makes the important observation that each vertex set, [Ei], constitutes the

largest possible 4NF relation scheme for flat relations, and thus also the largest possible set

of attributes for individual nodes of scheme trees.

Lemma 9 Let H be a connected acyclic CM hypergraph. Let [Ei] be an equivalence class

of H. [Ei] is a largest possible set of vertices that does not violate 4NF. 2
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Figure 8: A sample connected acyclic CM hypergraph.

Ei [Ei] [Ei]

V5V7 → V6V8 {V5V7 → V6V8} V5V6V7V8

V2 → V1 {V2 → V1} V1V2

V3 → V4 {V3 → V4} V3V4

V12V14 {V12V14} V12V14

V11V12 → V13 {V11V12 → V13} V11V12V13

V9 ↔ V10 {V9 → V8, V9 → V2, V9 ↔ V10, V10 → V3, V10 → V11} V2V3V8V9V10V11

V16 → V9 {V16 → V9} V9V16

V15V16 {V15V16} V15V16

V16V17 {V16V17} V16V17

V18 → V16 {V18 → V16} V16V18

V19 ↔ V13 {V19 ↔ V13, V13 ↔ V20, V13 → V22} V13V19V20V22

V21 → V19 {V21 → V19} V19V21

V22 → V24 {V22 → V24} V22V24

V23 → V20 {V23 → V20} V20V23

V23V25 {V23V25} V23V25

Table 1: The ≡E equivalence classes of the CM hypergraph in Figure 8.

3.2 Algorithm 2: Partial Ordering

In this section we begin showing how to combine equivalence classes by producing a partial

ordering over the ≡E equivalence classes. We then show that the Hasse diagram for the

partial ordering yields the potential parent-child relationships of ≡E equivalence classes in

non-degenerate scheme trees.

Let H be a connected acyclic CM hypergraph, and let [Ei] (1 ≤ i ≤ n) be the n ≡E

equivalence classes of H. Let ≺EqC be the relation [Ei] ≺EqC [Ej] if [Ei] → [Ej]. Then,

≺EqC induces a partial ordering over the equivalence classes of H. By Armstrong’s axioms,

the relation ≺EqC is clearly reflexive and transitive. It is also antisymmetric for if not then

there are distinct equivalence classes [Ei] and [Ej] such that [Ei] → [Ej] and [Ej] → [Ei];

but then there must be edges Ep ∈ [Ei] and Eq ∈ [Ej] such that Ep → Eq and Eq → Ep—
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Figure 9: The Hasse diagram for the ≺EqC partial ordering.

a contradiction, since then [Ei] and [Ej] are not distinct. Algorithm 2 generates a Hasse

diagram for the partial ordering over the set of ≡E equivalence classes EqC produced by

Algorithm 1 in a straightforward way. If the vertex sets of any two equivalence classes Ci

and Cj intersect, then Ci and Cj are unrelated if there is no FD between Ci and Cj or, if

there is an FD between them, the equivalence class of the right-hand side of the FD is the

direct parent of the equivalence class of the left-hand side.

Algorithm 2 Build Hasse diagram for the equivalence classes of edges.
input: a set EqC of ≡E equivalence classes of edges in H
output: a Hasse diagram D for the partial ordering ≺EqC

1: let D initially be EqC
2: for i = 1 to |D| do
3: for j = i + 1 to |D| do
4: if Ci ∩ Cj 6= Ø then

5: if Ci → Cj then
6: make Cj an immediate parent of Ci

7: else if Cj → Ci then
8: make Ci an immediate parent of Cj

Example 14 Figure 9 shows the Hasse diagram for the partial ordering induced over the

equivalence classes in Table 1, which are derived from Figure 8. Note that the partial

ordering has five maximal equivalence classes: [V5V7 → V6V8], [V2 → V1], [V3 → V4], [V12V14],

and [V22 → V24]. 2

An ≺EqC Hasse diagram has some interesting properties, which serve us well in building

scheme trees. First, a connected acyclic CM hypergraph has a unique ≺EqC Hasse diagram.

Second, each node in an ≺EqC Hasse diagram has a key, and parent-child relationships in

a Hasse diagram connect through keys. These properties let us conclude that any parent-

child relationship can form a redundancy-free parent-child connection in a scheme tree. The

definitions and lemmas in the remainder of this subsection establish these properties of ≺EqC

Hasse diagrams.
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Lemma 10 The Hasse diagram D produced by Algorithms 1 and 2 is unique for a connected

acyclic CM hypergraph H. 2

Definition 13 Let H be a connected acyclic CM hypergraph. Let [Ei] be an ≡E equivalence

class of edges of H. A set of vertices K ⊆ [Ei] is a key of [Ei] if K → [Ei]. A key K is

minimal if no proper subset of K is a key. 2

Definition 14 Let H be a connected acyclic CM hypergraph. Let [Ei] be an ≡E equivalence

class of edges of H. A vertex V of an edge in [Ei] is a key vertex of [Ei] if V is a key of [Ei].

2

Definition 15 Let H be a connected acyclic CM hypergraph. Let [Ei] be an ≡E equivalence

class of edges of H. A vertex V of an edge in [Ei] is a connecting vertex of [Ei] if there is

another equivalence class [Ej] distinct from [Ei] such that [Ei] ∩ [Ej] = V . 2

Example 15 Table 2 lists the minimal keys, and the key, non-key, and connecting vertices

of the equivalence classes of Table 1. Note that although V5V7 → V6V8 is a directed edge, its

left-hand side is not a single vertex. Therefore, [V5V7 → V6V8] does not have a key vertex.

The same is true for [V11V12 → V13]. A non-directed edge, such as V12V14, cannot have a key

vertex, since its minimal key has more than one vertex. 2

[Ei] minimal keys key vertices non-key vertices connecting vertices

[V5V7 → V6V8] V5V7 V5, V6, V7, V8 V8

[V2 → V1] V2 V2 V1 V2

[V3 → V4] V3 V3 V4 V3

[V12V14] V12V14 V12, V14 V12

[V11V12 → V13] V11V12 V11, V12, V13 V11, V12, V13

[V9 ↔ V10] V9, V10 V9, V10 V2, V3, V8, V11 V2, V3, V8, V9, V11

[V16 → V9] V16 V16 V9 V9, V16

[V15V16] V15V16 V15, V16 V16

[V16V17] V16V17 V16, V17 V16

[V18 → V16] V18 V18 V16 V16

[V22 → V24] V22 V22 V24 V22

[V19 ↔ V13] V13, V19, V20 V13, V19, V20 V22 V13, V19, V20, V22

[V21 → V19] V21 V21 V19 V19

[V23 → V20] V23 V23 V20 V20, V23

[V23V25] V23V25 V23, V25 V23

Table 2: Key, non-key, and connecting vertices of the equivalence classes of Table 1.

In Lemma 11, we observe something significant about the connection between parent and

child nodes in Hasse diagrams over ≡E equivalences classes. They connect through a single

vertex that is a key vertex in the parent and a non-key vertex in the child.
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Lemma 11 Let H be a connected acyclic CM hypergraph, and let D be the Hasse diagram

for the partial ordering ≺EqC of ≡E equivalence classes of H. [Ep] is a parent of child [Ec] in

D if and only if [Ep] ∩ [Ec] is a single vertex V , and V is a key vertex of [Ep] and a non-key

vertex of [Ec]. 2

Example 16 Consider the CM hypergraph H in Figure 8, the Hasse diagram D in Figure 9,

and the connecting vertices between parent and child in Table 2. The single connecting vertex

between the parent [V2 → V1] and child [V9 ↔ V10] in D is V2, and V2 is a key for the parent

[V2 → V1], but not for the child [V9 ↔ V10]. Similarly, V3, V9, and V16 are all single connecting

vertices between parent and child and are also keys in their respective parent equivalence

classes, but not in their respective child equivalence classes. 2

Lemma 12 Let H be a connected acyclic CM hypergraph, and let D be the Hasse diagram

for the partial ordering ≺EqC of ≡E equivalence classes of H. For any FD X → A derived

from the directed edges of H that applies to a vertex set [Ei] of an ≡E equivalence class [Ei]

in D, X → Ancestor([Ei]), where, here, Ancestor([Ei]) denotes the union of [Ei] with the

sets of vertices of all upper-bound nodes of [Ei] up to and including all maximal upper-bound

nodes of [Ei]. 2

Example 17 In Figure 9, V9 → V8 is a given FD that applies to the vertex set of the equiva-

lence class [V9 ↔ V10]. Ancestor([V9 ↔ V10]) is [V9 ↔ V10] ∪ [V2 → V1] ∪ [V3 → V4] and since

V9 → [V9 ↔ V10], V9 → [V2 → V1], and V9 → [V3 → V4] all hold, V9 → Ancestor([V9 ↔ V10])

holds. The FD V16 → V9 is a given FD in node [V16 → V9] and V16 → Ancestor([V16 → V9])

holds; and for V18 → V16, V18 → Ancestor([V18 → V16] holds. For the node [V5V7 → V6V8],

V5V7 → V6 is an FD derived from the given FD V5V7 → V6V8, Ancestor([V5V7 → V6V8]) is

[V5V7 → V6V8], and V5V7 → Ancestor([V5V7 → V6V8]) holds. 2

Lemma 13 Let H be a connected acyclic CM hypergraph, and let D be the Hasse diagram

for the partial ordering ≺EqC of ≡E equivalence classes of H. Let [E] be an equivalence class

in D, and let A be a key vertex of [E]. Let Y be the union of [E] with the sets of vertices

of all upper-bound nodes of [E] excluding A. Let [E ′] be a child equivalence class of [E] in

D, and let Z be the union of [E ′] with the sets of vertices of all lower-bound nodes of [E ′].

Finally, let S be AY Z. The FD A → Y and the MVD A →→ Z hold for S with respect to

the hypergraph-generated MVDs of H. 2

Example 18 In Figure 9, consider the child equivalence class [V9 ↔ V10] and its parent

[V2 → V1]. Then, A in Lemma 13 is V2, Y is V1, Z is V3V8V9V10V11V15V16V17V18, and S is

AY Z. V2 → V1 is a given FD and thus A → Y clearly holds. In Figure 8, the removal of

V2 (= A) yields the hypergraph-generated MVD V2 →→ V3 . . . V25. Intersecting V3 . . . V25 with

S yields V3V8V9V10V11V15V16V17V18, and thus A→→ Z holds. 2
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Lemmas 12 and 13 indicate that when building scheme trees using parent-child links

from an ≺EqC Hasse diagram, the scheme trees will be redundancy free. This follows because

Lemma 13 indicates that Condition 1 of NNF (Definition 12) will be satisfied, and Lemma 12

indicates that Condition 2 will be satisfied. Although not necessarily trees, each connected

component of an ≺EqC Hasse diagram exhibits properties that satisfy the definition of NNF.

After giving Algorithms 3 and 4, which produce scheme trees based on ≺EqC Hasse diagrams,

we use Lemmas 12 and 13 as part of the proof to enable us to conclude that generated scheme

trees are in NNF and are thus redundancy free.

3.3 Algorithms 3 and 4: Scheme-Tree Generation

Algorithm 3 generates the fewest redundancy-free scheme trees that collectively cover a given

connected acyclic CM hypergraph. Its major while loop (Lines 4–34) generates so-called

transitional trees, and its final for loop (Lines 35–38) transforms each transitional tree into a

scheme tree. In essence, the first part of the major while loop (Lines 5–17) establishes roots

for transitional trees, while the second part (Lines 18–33) grows trees as large as possible.

As guided by the ≺EqC Hasse diagram and the mandatory and optional constraints of the

given CM hypergraph, the algorithm puts every ≡E equivalence class as a node in some

growing transitional tree. Following the parent-child relationships in the Hasse diagram

ensures that the generated scheme trees are redundancy free, while maximally adding nodes

to a growing tree depends on joinability and data-coverage properties as dictated by optional

and mandatory constraints checked in Algorithm 4.

Example 19 As an example, consider applying Algorithms 3 and 4 to the CM hypergraph

H in Figure 8. Initially, the set F of transitional trees is empty, and G is the set of maximal

equivalences classes of the working copy of a Hasse diagram D in Figure 9.

To find roots of new transitional trees, Algorithm 3 looks for maximal equivalence classes

in G that have no non-key connecting vertices or exactly one in the remaining edges of the

working copy of H (initially, H itself). A cross-check of Table 2 and G reveals that [V2 → V1],

[V3 → V4], and [V22 → V24] are maximal equivalence classes that have no non-key connecting

vertices. They thus, in Line 8, become roots of transitional trees (and they appear as roots

in the eventual full set of transitional trees in Figure 10). Line 8 also marks every vertex in

these roots coveredHere, meaning that all data values for these vertices in the populated CM

hypergraph can be stored in the scheme tree. By Definition 10, root nodes of a populated

scheme tree can always store all values for all vertices (even when they have no relationship

to other values in vertices of the node such as professor p2 in the second populated scheme

tree in Figure 4).

The maximal equivalence classes that have exactly one non-key connecting vertex, [V5V7 →
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Algorithm 3 Generate the fewest redundancy-free scheme trees that collectively cover a
given connected acyclic CM hypergraph.
input: the input CM hypergraph to Algorithm 1 and the output Hasse diagram of Algorithm 2
output: the fewest redundancy-free scheme trees that collectively cover the input CM hypergraph

1: let H be a copy of the input CM hypergraph to Algorithm 1
2: let D be a copy of the output Hasse diagram of Algorithm 2
3: let F initially be an empty set of transitional trees
4: while D is not empty do
5: let G be the set of current maximal equivalence classes in D
6: for each [Ec] ∈ G do
7: if [Ec] has no non-key connecting vertex with respect to the remaining edges of H then
8: add [Ec] to F and mark every vertex of [Ec] “coveredHere” in [Ec]
9: remove [Ec] from D
10: if [Ec] has exactly one non-key connecting vertex V with respect to the remaining edges of H then
11: call Algorithm 4 with [Ec] and V (or proceed with a previous result for [Ec] and V )
12: if the answer is “yes” then
13: add V to F and mark V “coveredHere”
14: if the answer is “no” then
15: add [Ec] to F and mark every vertex of [Ec] “coveredHere” in [Ec]
16: remove [Ec] from D
17: remove every edge in [Ec] from H for each [Ec] ∈ G that has been removed from D
18: while some remaining maximal equivalence classes in D are not marked do
19: let [Ec] be an unmarked maximal equivalence class in D and mark it
20: if (1) [Ec] has a parent [Ep] that is a node in a tree T of F where V is their connecting vertex, or (2) [Ec] has a

non-key connecting vertex V that is a root node of a tree T of F then
21: call Algorithm 4 with [Ec] and V (or proceed with a previous result for [Ec] and V )
22: if the answer is “yes” and V is marked “coveredHere” then
23: mark each vertex of the returned set coveredInThisEqClass “coveredHere” in [Ec]
24: if Condition (1) above holds then
25: make [Ec] a child node of [Ep] in T
26: else
27: make [Ec] a child node of V in T
28: remove [Ec] from D (which may expose new unmarked maximal equivalence classes)
29: remove every edge in [Ec] from H
30: if the answer is “yes” and V is not marked “coveredHere” then
31: remove the subtree rooted at [Ep] and make it a new transitional tree in F (whose root node is [Ep])
32: mark every vertex of [Ep] “coveredHere” in [Ep]
33: remove from F any single-vertex degenerate transitional tree (caused by Line 31)
34: unmark every marked maximal equivalence class in D
35: for each transitional tree T ∈ F do
36: replace each equivalence class [Ei] in T by [Ei]

37: for each child node [Ec] in T do

38: replace [Ec] by [Ec]− V where V is [Ec]’s non-key connecting vertex to its parent in T

V6V8] and [V12V14], are passed in Line 11 to Algorithm 4 along with their non-key connecting

vertices. The purpose of the check in Algorithm 4 is to ensure that the generated set of

scheme trees will collectively cover all the data values in any valid populated CM hyper-

graph. Algorithm 4 determines whether a node can be attached as a child: it can if all the

values can be coveredInThisEquivalenceClass (i.e., covered when the node is a child node

in a transitional tree) or can be coveredElsewhere (i.e., covered when the constraints of the

CM hypergraph ensure that values that may not be covered in the child node itself will

assuredly be covered in some other node). Algorithm 4 returns “no” for [V5V7 → V6V8] and

V8—“no” because at least one of the vertices, V5, V6, and V7, is optional (indeed, all three are

optional) and thus not coveredInThisEqClass nor coveredElsewhere. As a result, since the

node cannot be a child node and at the same time maintain the collectively covers property,
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Algorithm 4 Determine if an equivalence class [Ec] can become a child node of a node that
contains one of [Ec]’s non-key connecting vertices.
input: an equivalence class [Ec] and a non-key connecting vertex V of [Ec]
output: “yes” or “no”

1: let C be a copy of [Ec]
2: let coveredInThisEqClass initially be an empty set of vertices
3: let coveredElsewhere initially be an empty set of vertices
4: in C designate the input connecting vertex V “joinable”
5: while C has an unmarked edge Ei that contains a “joinable” vertex Vj do
6: mark Ei in C
7: for each vertex Vk ∈ Ei such that Vk 6= Vj do
8: if the Vk connection in Ei is mandatory then
9: add Vk to coveredInThisEqClass
10: designate Vk “joinable”
11: else
12: if in a transitional tree in F , Vk is a root node or a vertex of an equivalence-class root node then
13: add Vk to coveredElsewhere
14: if Vk has a mandatory participation in an edge that is not in C then
15: add Vk to coveredElsewhere
16: if C has an unmarked edge then
17: return “no”
18: if C has a vertex that is not the input connecting vertex V and not in (coveredInThisEqClass ∪ coveredElsewhere) then
19: return “no”

20: return “yes” and the set coveredInThisEqClass

the algorithm makes [V5V7 → V6V8] a root node in Line 15, which ensures that every data

value for all of its vertices is covered. On the other hand, Algorithm 4 returns “yes” for

[V12V14] and V12 because the connection to V14 is mandatory. Therefore, [V12V14] can be a

child node, but only a child node of the vertex V12 since [V12V14] is a maximal equivalence

class in the working copy of D. Thus, the statement in Line 13 adds V12 to F , which makes

it a root of a transitional tree, and thus also coveredHere.

F is now the set of root nodes {[V5V7 → V6V8], [V2 → V1], [V3 → V4], V12, [V22 → V24]},
the first four root nodes and the last root node in the eventual set of transitional trees in

Figure 10. Further, in Lines 9 and 16, [V5V7 → V6V8] [V2 → V1], [V3 → V4], and [V22 → V24]

will have been removed from the working Hasse diagram D along with their edges, in Line 17,

from the working CM hypergraph H. Hence, [V9 ↔ V10] and [V19 ↔ V13] will have become

the maximal equivalence classes along with [V12V14], which remains, having not been removed

even though one of its vertices has become a root node.

The while loop beginning at Line 18 adds child nodes to the root nodes in F so long as

the nodes pass the check in Algorithm 4 and thus maintain the collectively covers property.

Selecting [V12V14] at Line 19 makes [V12V14] a child node of V12 in Line 27 because Algorithm 4

has already been called for [V12V14] and V12 and has returned “yes” and because V12 was

marked coveredHere when it was added to F in Line 13. Similarly, albeit with Condition (1)

rather than (2), selecting [V9 ↔ V10] in the next iteration of the while loop at Line 18

makes [V9 ↔ V10] a child of [V2 → V1]. Note that [V9 ↔ V10] cannot be a child of [V3 → V4]

since V9 values might not be covered because of the optional constraint on V9 in Figure 8.

If the optional constraint were mandatory instead, [V9 ↔ V10] could be a child of either
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[V3 → V4] or [V2 → V1], and either choice would maintain the minimality of the generated

scheme-tree forest. Continuing to build on [V9 ↔ V10], the algorithm adds [V16 → V9] to the

growing transitional tree and then subsequently [V15V16] and [V16V17]. It does not, however,

add [V18 → V16] because the optional constraint on V18 can disallow valid instances of V18

from being stored and thus violate collectively covers.

At this point [V19 ↔ V13] is yet another maximal equivalence class in D to consider, so the

while loop at Line 18 continues. For the vertex V22, which appears in the equivalence class

[V19 ↔ V13] and is a connecting vertex to the root node [V22 → V24] in F , Algorithm 4 returns

“yes.” Thus, since V22 has been marked coveredHere in Line 8 and since it is Condition (1)

that holds, [V19 ↔ V13] becomes a child node of [V22 → V24]—which is particularly interesting

since, as will be seen, [V19 ↔ V13] does not end up as a child of [V22 → V24] as Figure 10

shows. Nevertheless, for the current state in the algorithm, [V19 ↔ V13] is a child node of

[V22 → V24] and removal of [V19 ↔ V13] from D exposes three more maximal equivalence

classes—[V11V12 → V13], [V21 → V19], and [V23 → V20]. Selecting [V11V12 → V13] makes it a

child of [V19 ↔ V13]. However, it could also be a child of V12 in F and only is not because of

the arbitrary choice of considering Condition (1) before Condition (2) when both hold as they

do for [V11V12 → V13]. Selecting either [V21 → V19] or [V23 → V20] next leads to an interesting

situation. Neither can become a child of [V19 ↔ V13], but only because the coveredHere test

for both V19 and V20 in [V19 ↔ V13] fails to hold. Hence, the if statement in Line 30 (rather

than in Line 22) executes, which makes the subtree rooted at [V19 ↔ V13] a new transitional

tree. Now since V19 and V20 are in a root node, their optional constraints no longer prohibit

them from holding any and all values and the algorithm marks them coveredHere. This

allows both [V21 → V19] and [V23 → V20] to become children of [V19 ↔ V13]. Subsequently,

[V23V25] becomes a child of [V23 → V20] resulting in the transitional tree rooted at [V19 ↔ V13]

in Figure 10. Note that the alternative choice of not generating a new transitional tree

rooted at [V19 ↔ V13] would make both [V21 → V19] and [V23 → V20] root nodes for two new

transitional trees, which would unnecessarily increase the number of transitional trees in F

(two additional instead of one additional).

Finally, the while loop at Line 18 terminates, and in Line 34 the algorithm unmarks

[V18 → V16], having considered it but having not been able to add it to any tree in the

growing forest F of transitional trees. In the example, it now becomes the only remaining

equivalence class for the next iteration of the while loop at Line 4. The set G of maximal

equivalence classes at Line 5, thus, now consists of just the single remaining equivalence

class [V18 → V16]. Since [V18 → V16] is the only equivalence class left in D and its edges are

the only ones left in H, [V18 → V16] has no connecting vertex with respect to the remaining

edges of the working copy of H. Hence, [V18 → V16] becomes a root node in the final set of

transitional trees F in Figure 10.
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Figure 11: Generated scheme trees.

Lines 35–38 transform transitional trees into scheme trees, one for one. The statements

simply replace each node in a transitional tree by the set of vertices in the transitional-tree

node minus the vertex in each child node that connects it to its parent node. The result is

the forest of scheme trees in Figure 11. 2

4 Correctness and Tractability

For correctness, we must guarantee that Algorithms 1–4 generate scheme trees with two

properties: (1) They disallow redundancy when storing any valid data instance of a given

connected acyclic CM hypergraph (Section 4.1). (2) They collectively cover the data of the

given hypergraph with as few scheme trees as possible (Section 4.2). For tractability, we

must show that Algorithms 1–4 have polynomial-time complexity (Section 4.3).
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4.1 Redundancy-Free Scheme Trees

In [13], we proved that a scheme tree is redundancy-free if and only if it is in NNF with respect

to a given set of applicable FDs and MVDs. Hence, it suffices to show that Algorithms 1–4

generate NNF scheme trees with respect to the specified FD edges and the hypergraph-

generated MVDs of a connected acyclic CM hypergraph.

Theorem 1 Let H be a connected acyclic CM hypergraph. Algorithms 1–4 generate NNF

scheme trees from H.

Proof. (sketch) For a scheme tree T generated from H by Algorithms 1–4, let D1 and D2

respectively be the set of MVDs and the set of FDs that hold for Aset(T ) with respect to

the hypergraph-generated MVDs and FDs of H. For Condition 1 of NNF, we must show the

equivalence of MVD(T ) ∪D2 and D1 ∪D2: D1 ∪D2 implies MVD(T ) because each MVD

in MVD(T ) is implied by an MVD in D1 by augmentation. For an MVD A →→ Y ∈ D1

where A → Y ∈ D2, D2 implies A →→ Y immediately. For an MVD A →→ Y ∈ D1 where

A→ Y 6∈ D2, A must be a key vertex of the node that contains A, and thus MVD(T ) ∪D2

implies A →→ Y . For Condition 2 of NNF we must show that X → Ancestor(NA) for any

nontrivial FD X → A ∈ D2: When X → A applies to scheme tree T , X is completely

contained within some node N of T . If Algorithm 3 generates N as the child of a non-key

connecting vertex V , then V is the root of T , X is a key for N , and V is a vertex in the

equivalence class of N . Thus, X → V . Further, A must either be V or be in N ; in either

case, X → Ancestor(NA) holds. Otherwise, Algorithm 3 generates N as the child of a node

N ′ in T , where N ′ comes from an ≡E equivalence class of H. In this case, the equivalence

class for N ′ is the parent of the equivalence class for N in the Hasse diagram produced by

Algorithm 2. Hence, N → Ancestor(N). Thus, since X ⊆ N and is a key for N and since

A is either in N or in an ancestor of N , X → Ancestor(NA) holds. 2

4.2 Minimal NNF Scheme-Tree Forests

Minimal NNF scheme-tree forests have the fewest possible number of scheme trees, but not

fewer than enough to hold all the data in any valid population of a given CM hypergraph

H. Thus, we first provide Lemma 14, which shows that Algorithms 1–4 generate scheme

trees from H that collectively cover H. We then proceed with Theorem 2, which, along with

Lemma 15 shows that the number of scheme trees generated is the fewest possible.

Lemma 14 Let H be a connected acyclic CM hypergraph. Algorithms 1–4 generate scheme

trees T1, . . . , Tn from H that collectively cover H. 2

Given that the Hasse diagram D for a given connected acyclic CM hypergraph H is

unique (Lemma 10), and further that the ≡E equivalence class nodes of D are as large as
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possible (Lemma 9), we seek for a way to maximally combine the nodes of D in order to

reduce the total number of generated scheme trees. In Lemma 15 we first observe that there

are only two ways to combine nodes without violating either NNF or collectively covers.

Then, Theorem 2 shows that Algorithm 3 does indeed maximally combine the nodes in

these two ways yielding the fewest number of scheme trees.

Lemma 15 Let D be the ≺EqC Hasse diagram for the ≡E equivalence classes of a connected

acyclic CM hypergraph H. Without violating NNF and while satisfying collectively covers,

we can combine nodes N1 and N2 in D in a transitional tree T with the following two

combining operations and only with these two combining operations: (1) if N1 is the parent

of N2 in D, N1 can be the parent of N2 in T if for all valid populations of H, the edges of

N2 join completely with N1 and every vertex of N2 has mandatory participation in an edge

of H or is in the root node of a transitional tree, and (2) if N1 and N2 have a connecting

vertex V such that V is a key of neither N1 nor N2, and if for all valid populations of H, the

edges of both N1 and N2 join completely with V and every vertex of both N1 and N2 has

mandatory participation in an edge of H or is in the root node of a transitional tree, then

N1 and N2 can be combined in T by making V a root node and making both N1 and N2

children of V . 2

Theorem 2 Let H be a connected acyclic CM hypergraph, and let D be the ≺EqC Hasse

diagram for the ≡E equivalence classes of H. Algorithm 3 maximally combines the nodes

of D into a forest F of the fewest number of transitional trees whose corresponding scheme

trees are in NNF and collectively cover H.

Proof. (sketch) The if statements in Lines 7, 10, and 30 determine when to initialize

new trees needed to collectively cover H. These conditions guarantee that no unnecessary

trees are initialized. Then, the while loop beginning at Line 18 maximally adds children

to established trees in the only two ways possible (Lemma 15). It adds every node of the

Hasse diagram that satisfies the conditions of Combining Operation (1) in Line 25, and it

adds every node that satisfies the conditions of Combining Operation (2) in Line 27. The

additions are maximal because further additions would violate either NNF or collectively

covers. As a result, a minimum number of trees are generated. 2

4.3 Polynomial-Time Complexity

Before showing that Algorithms 1–4 run in polynomial time, we first guarantee that they

halt. That Algorithms 1, 2, and 4 halt is clear, but Algorithm 3 only halts if it removes all

the equivalence classes in the Hasse Diagram. We can guarantee, however, that the outer

loop of Algorithm 3 removes at least one equivalence class in each iteration. Although the
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average case should be much better, we are able to fairly easily show an O(n3) bound on

all the algorithms running together. In deriving this O(n3) bound, we make the simplifying

assumption that the arity of the largest-degree edge of H is bounded by a constant b. In

practice, b is usually small—typically three or four—and in any case constant for H.

Lemma 16 Algorithm 3 halts. 2

Lemma 17 Let H be a connected acyclic CM hypergraph, and let H have n edges. Algo-

rithm 1 has O(n2) complexity. 2

Lemma 18 Let H be a connected acyclic CM hypergraph, and let H have n edges. Algo-

rithm 2 has O(n2) complexity. 2

Lemma 19 Let H be a connected acyclic CM hypergraph, and let H have n edges. Algo-

rithm 4 has O(n2) complexity. 2

Lemma 20 Let H be a connected acyclic CM hypergraph, and let H have n edges. Algo-

rithm 3 has O(n3) complexity. 2

Theorem 3 Let H be a connected acyclic CM hypergraph, and let H have n edges. Exe-

cuting Algorithms 1–4 together has O(n3) complexity.

Proof. (sketch) Since each iteration the Line-4 while loop of Algorithm 3 removes at least

one equivalence class and since inner loops consider at most all remaining maximal equiv-

alence classes, the loops of Algorithm 3 have, at most, O(m2) complexity where m is the

number of equivalence classes of H. Within the loops, however, since H is acyclic, there are

at most 2(m−1) equivalences-class/vertex pairs to check in Algorithm 4. Thus, over the en-

tire execution of a maximum of m iterations of the Line-4 while loop, since Algorithm 3 calls

Algorithm 4 at most once for each equivalence-class/vertex pair, instead of a multiplicative

combination when adding in the O(n2) of Algorithm 4, the Line-4 while loop is bounded by

O(mn2). Since m ≤ n, the complexity of Algorithm 3 is bounded by O(n3). 2

Showing that Algorithms 1–4 run in polynomial time is sufficient for our objective. We

point out that more efficient renditions of these algorithms, such as combining Algorithms 1

and 2, are possible. However, for ease of presentation and of understanding the salient

points of our algorithms we avoid inter-tangling algorithms and adding data structures to

more efficiently find and select among alternatives.

5 Discussion

Besides being theoretically interesting, Algorithms 1–4 also provide practical guidelines for

design of XML storage structures: (1) create a conceptual-model (CM) hypergraph, (2)
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make the hypergraph acyclic, (3) use Algorithms 1–4 to generate a good design, and (4)

map scheme trees to XML schema specifications [7]. Designers, however, must use some care

in creating the CM hypergraph and, possibly also, in guiding the scheme-generation process.

Creating the CM hypergraph. Designers must ensure that the input CM hypergraph

is canonical. A CM hypergraph H is canonical if H is acyclic, has no redundant edges

or edge components, and has no losslessly decomposable n-ary edges. Details about how

to identify and remove redundant edges and edge components and about how to identify

and decompose losslessly decomposable n-ary edges are in [6]. After removing redundant

edges and edge components and losslessly decomposing n-ary edges, designers can break any

remaining cycles by adding roles for one of the connections in a cycle. An alternative for

cycles connecting two edges both with the same composite key (e.g., edge E1 = AB → C

and edge E2 = AB → D), is to replace the vertices in the composite key with a single

vertex V , and let the composite key attributes be in a bijective relationship with V (e.g.,

E1 = V → C, E2 = V → D, and new edge V ↔ AB). One nice feature about the approach

is that once a CM hypergraph is canonical, designers need not be concerned about either the

universal relation-scheme assumption (URSA) or the universal relation assumption (URA)

since they are guaranteed to hold (Lemmas 4 and 5 respectively).

Guiding the scheme-generation process. Although our algorithm yields a scheme-tree

forest with the fewest, redundancy-free scheme trees, the generated scheme-tree forest is

not necessarily unique. Some alternatives are mere rearrangements of one of the generated

scheme trees. By default Algorithms 1–4 push attributes toward the root, but alternative

non-redundant arrangements may be better. For example, although the algorithms generate

the second scheme tree, PC, in Figure 4, a rearrangement instead as the first scheme tree,

P (C)*, in Figure 3 may be preferable. Other alternatives allow for rearrangements yielding a

different minimal set of scheme trees. For example, as mentioned in Example 19, the subtree

rooted at [V9 ↔ V10] in Figure 10 could instead have been a subtree of [V3 → V4] if the

optional constraint on V9 were mandatory. With a backtracking algorithm that considers all

possibilities, it may be reasonable to run Algorithms 1–4 to generate all scheme-tree forests

and then subjectively choose the best. Lastly, in some designs for XML storage structures,

it is important that certain vertices be in root nodes. Fixing root nodes and then maximally

combining nodes in accord with Lemma 15 can lead to good designs with constrained roots.

We point out also that the scheme-generation algorithms allow for maximum flexibility by

not requiring a standard primary key in root nodes that disallows nulls. If designers wish to

ensure that root nodes have standard primary keys, they can adjust the optional/mandatory

constraints in the input CM hypergraph.
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6 Concluding Remarks

We have achieved our objective of showing how to generate the fewest redundancy-free

scheme trees that collectively cover a given acyclic conceptual-model hypergraphs in poly-

nomial time. Theorem 1 guarantees that Algorithms 1–4 generate NNF scheme trees, which

are redundancy free; Theorem 2 guarantees that the number of scheme trees generated is

minimal; and Theorem 3 guarantees that the algorithms run together in polynomial time.

As a practical application, Algorithms 1–4 can provide a firm basis for a good design of

desirable XML storage structures. Designers, however, still have ultimate control and can

use the algorithms intelligently to arrive at the best possible designs.
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