
Ontology Aware Software Service Agents: Meeting

Ordinary User Needs on the Semantic Web

A Dissertation Proposal Presented to the

Department of Computer Science

Brigham Young University

In Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Muhammed Al-Muhammed

April 20, 2005

1 Introduction

In open and ever-growing environments such as the world wide web, the amount of information

is increasing at a tremendous rate. In addition, users are, or soon will be, overwhelmed with

web services that give information, manage appointment calendars, sell products, and so on.

This incredibly continuing increase in the amount of information and the number of services

makes performing tasks such as finding information and services of interest quite challenging

for web users. The semantic web along with personal software agents and web service systems

purport to offer a solution to this challenge. But exactly how this solution will play out is still

unclear.

The semantic web is an extension to the current web that makes the web not only human

understandable but also machine “understandable”. In particular, the semantic web is changing

the content of the web—both information and services—to be both machine-interpretable and

human-understandable [BLHL01]. This continuing change in the content of the web is increasing

the ability of software agents to reason about the content of the web and to do tasks on behalf

of users [SSG04, DW03, KKS+02, Hen01].

In this dissertation we offer a unique approach to turn the vision of semantic web pioneers

into reality for everyday tasks such as scheduling appointments, selling, buying, and so forth.

Our approach to this challenge centers around a task ontology. A task ontology can be thought

of as having two component ontologies: (1) a domain ontology that defines concepts in a domain

of a task along with relationships among these concepts and (2) a process ontology that defines

generic processes for doing tasks. With a task ontology in hand, we address the following

fundamental problems.

1. Task Specification. The first key issue to address is how to allow users to specify their

needs. We intend to let users assume the existence of an intelligent agent within the

1

system and specify their needs textually in any way they wish.

2. Task Recognition. After specification of the task, our approach goes through a recognition

process of the specified task. This recognition process matches task specifications against

a task ontology to identify the goals of the specified task, the processes by which these

tasks may be achieved, inputs, outputs, and requirements to be imposed on a task.

3. Task Execution. Given a specified task, the system generates a software agent that can

do the task. The software agent has the ability to gather the information it needs by

interacting with the system or the user or both in case of missing required information in

the usual case of incomplete specification. There may be a need to negotiate with users

to relax task constraints when it is apparent that it is not possible to complete the task

given the current constraints.

The chief objective of this dissertation is to build a proof-of-concept prototype system to

show that the vision of the semantic web for everyday tasks can be achieved.

2 Thesis Statement

It is possible to automate everyday tasks, such as scheduling appointments, buying and sell-

ing, and so forth, by creating systems that build on current advances in both software agents

and the semantic web. These systems use task ontologies as their foundational knowledge to

identify users’ needs and task requirements to meet these needs. Identified tasks are assigned

to generated task-specific agents that accomplish the tasks using semantic web facilities. The

system’s behavior is limited only by the richness of task ontologies, which can be independently

enriched by system specialists.

Our approach is a significant advancement over current approaches for the following reasons.

2

1. The approach does not impose any programming paradigm to specify tasks.

2. Unlike other approaches, there is no set of prespecified tasks from which users choose and

there is no notion of composing task sequences, of which the user is aware.

3. The system dynamically determines the required processes to accomplish a task and dy-

namically generates a software agent capable of performing the task.

3 Research Description

The dissertation has three major parts: (1) task specification, which allows users to textually

specify tasks, (2) task recognition, which finds the domain of a specified task and the required

processes to do it, and (3) task execution. We discuss these topics in the following three

subsections. In Section 3.4, we compare our approach to related work.

3.1 Task Specification

We explain task specification using an example, which will be our running example. A typical

usage of our approach is to schedule appointments. We use a somewhat simplified version of the

example described by Berners-Lee, et al., in their vision paper, “The Semantic Web” [BLHL01].

In our example, a user of the semantic web wants to schedule an appointment with a service

provider—a dermatologist. The user does not have any particular dermatologist in mind, but

wants one that meets some constraints regarding appointment time, date, the location of the

service provider, and the type of insurance the service provider accepts.

To use our approach to accomplish this task, the user first specifies the task by “simply”

stating what needs to be done. Suppose the user states the following.

I want to see a dermatologist next week; any day would be ok for me, at 4:00. The

dermatologist must be within 20 miles from my home and must accept my insurance.

3

Before this statement is made, our proposed system has no clue regarding the domain of

the task nor any clue regarding how it can be done. Therefore, this specification needs to go

through a task recognition step, which we discuss next.

3.2 Task Recognition

The main objective of a task recognition is to determine the domain of a specified task. Our

approach employs a task ontology for this objective. Therefore, we first introduce the two

components of a task ontology, namely a domain ontology and a process ontology, in Sections

3.2.1 and 3.2.2. In Section 3.2.3, we describe how our approach determines which task ontology

to use.

3.2.1 Domain Ontology

A domain ontology consists of concepts that can be found in the domain of a task ontology

along with relationships among these concepts and constraints over these concepts and rela-

tionships. More precisely, a domain ontology specifies named sets of objects, which we call

object sets or concepts, and named sets of relationships among object sets, which we call rela-

tionship sets. Figure 1 shows a small part of a conceptual model representation of a domain

ontology for scheduling an appointment—in practice, we need a much larger and richer ontology.

The domain ontology consists of concepts such as Date, Time, and Service Provider that can

be used to schedule appointments with service providers such as doctors and auto mechanics.

The conceptual model has three types of concepts, namely lexical concepts (enclosed in dashed

rectangles), nonlexical concepts (enclosed in solid rectangles), and single concepts (denoted as

large black dots). A concept is lexical if its instances are indistinguishable from their repre-

sentations. Time is an example of a lexical concept because its instances, such as “2:00 PM”

or “2:00 p.m.”, represent themselves. A concept is nonlexical if its instances are object identi-

4

Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrician

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"

is at

->
Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrician

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"

is at

->

Figure 1: A generic hypergraph representation of a domain ontology for appointments (partial).

fiers (not self identifying representations). Dermatologist is an example of a nonlexical concept

because its instances are identifiers such as, say, “Dermatologist100”. The single object is an

object set with a single element in it (for example, the single object “DMBA”). We designate

the main concept in a domain ontology by marking it with “–> •” in the upper right corner.1

For example, we designate the concept Appointment in Figure 1 as the main concept because

this domain ontology models appointments. Figure 1 also shows relationship sets among con-

cepts, represented by connecting lines, such as Appointment is on Date. The arrow connections

represent functional relationship sets, from domain to range, and non-arrow connections repre-
1This notation denotes that when this ontology is used to create an appointment, the object set Appointment

becomes (“–>”) an object (“•”). A large black dot denotes an object or an object set with a single object in it.

5

sent many-many relationship sets. For example, Service Provider has Name is functional from

Service Provider to Name (i.e. a service provider has only one name), and Service Provider

provides Service is many-many (i.e. a service provider can provide many services and a service

can be provided by many service providers). A circle near the connection between an object set

O and a relationship set R represents optional, so that an instance of O need not participate

in a relationship in R. For example, the circle on the Appointment side of the relationship set

Appointment has Duration states that an instance of Appointment may or may not relate to

an instance of Duration (i.e. there need not be a specified duration for an appointment). A

triangle in Figure 1 defines a generalization/specialization with a generalization connected to

the apex of the triangle and a specialization connected to its base. For example, Dermatologist

is a specialization of Doctor.

We augment a domain ontology with data frames [Emb80]. A data frame defines the infor-

mation about a concept. We capture the information about a concept in terms of its external

and internal representation, its contextual keywords or phrases that may indicate the presence

of an instance of the concept, operations that convert between internal and external representa-

tions, and other manipulation operations that can apply to instances of the concept along with

contextual keywords or phrases that indicate the applicability of an operation. Figure 2 shows

sample (partial) data frames for the concepts Time, Date, Address, Distance, Dermatologist,

and Appointment. Time’s data frame, for example, captures instances of this concept that end

with “AM” or “PM” (e.g. “2:00 PM” and “2:00 p.m”). We use regular expressions to capture

external representations. The “...” in Time’s data frame in Figure 2 indicates that there are

other representations of Time such as military time that need to be captured. A data frame’s

context keywords/phrases are also regular expressions (often simple lists of keywords/phrases)

separated with “|”. For example, Distance’s data frame in Figure 2 includes context keywords

such as “miles” or “kilometers”. In the context of one of these keywords, if a number appears,

6

Time
…
textual representation: ([2-9]|1[012]?)\s*:\s*([0-5]\d)\s*[AaPp]\s*[.]?\s*[Mm]\s*[.]? | …
…
end

Date
 …
NextWeek(d1: Date, d2: Date)
returns (Boolean)
context keywords/phrases: next week |
 week from now | …
end

Tomorrow(s: String)
returns (Date)
context keywords/phrases: tomorrow | next day | …
end

Address
…
DistanceBetween(a1: Address, a2: Address)
returns (Distance)
…
end

Distance
internal representation: real
textual representation: (\d+(\.\d+)?)|(\.\d+)
context keywords/phrases: miles | mile | mi | kilometers | kilometer | meters | meter | …

LessThan(d1: Distance, d2: Distance)
returns (Boolean)
context keywords/phrases: less than | < | …
end

Within(d1: Distance, d2: Distance)
returns (Boolean)
context keywords/phrases: within | not more than |
 ≤ | …
end

Dermatologist
internal representation: object id
…
context keywords/phrases: [Dd]ermatologist | …
end

Appointment
internal representation: object id
…
context keywords/phrases: appointment |
 want to see a[n]? | …
end

Figure 2: A sample of data frames.

it is likely that this number is an instance of Distance. A data frame’s permissible operations

can manipulate a concept’s instances. For example, Distance’s data frame includes the opera-

tion LessThan that takes two instances of Distance and returns a Boolean (true or false). The

operations context keywords/phrases indicate an operation’s applicability, for example, context

keywords/phrases such as “less than” and “<” apply to the LessThan operation. A nonlexical

concept that has only identifiers such as Dermatologist, often only has context keywords or

phrases. Figure 2 shows the Dermatologist data frame, which includes a regular expression that

7

consists of its identifying name and its synonyms.

Some constraints in our conceptual model are too rigid. For example, service providers

usually only have one place where they work, and thus Service Provider is at Place is functional,

but a few may have an additional place or two where they work. This needs further research,

but we are currently thinking of adding a probability declaration. Thus, for Service Provider

is at Place, we would attach something like (0.99) as a probability declaration. The conceptual

model also lets us declare additional constraints known as “general constraints” because they are

declared generally, outside of the provided notation. For example, the constraint Appointment

has Place = πAppointment,P lace(Appointment is with Service provider ./ Service Provider is at

Place) declares that an appointment is at a service provider’s place. Like some other constraints,

this constraint is mostly true, but may not be always true—the appointment could be at another

place agreed upon by a Person and a Service Provider. Therefore, we also need to investigate

the possibility of loosening these constraints, most likely by also adding a probability declaration

(e.g. perhaps (0.93) for this example).

The notation we use to declare domain ontologies is based on OSM [EKW92]. Although

the web ontology language, OWL [W3C04], is currently in vogue, we use OSM because it is

more succinct and readable for presentation purposes. Furthermore, we wish to use OSM in

our implementation because we have developed tools to support our work. Indeed, OWL in

its current state is unable to satisfy our needs because it does not provide support for data

frames. In order to not altogether ignore the current W3C standard, however, we plan to

provide a transformation to OWL. Another project in our research group [Din05] has as one of

its objectives an augmentation of OWL for data frames, and we thus should be able to fully

convert OSM ontologies to augmented OWL ontologies.

8

@create

initialize;

ready

@task-view complete

task-view, unsatisified-constraints = satisfy-contraints(task-view, task-constraints);

constraint satisfaction checked

task-view complete

missing information

task-view = get-from-system(task-view);
if (still missing values)
 task-view = get-from-user(task-view);

no missing information

task-view != null

schedule-appointment(task-view.Person.Name,
task-view.Service Provider.Name, task-view.Date,
task-view.Time, task-view.Address, ...);
report that the appointment is scheduled;

task-view = null

report that the appointment cannot be scheduled;
ready to schedule

@negotiation required

task-view = negotiate(task-view, unsatisfied contraints);

no constraint satisfaction

negotiation required

multiple constraints satisfaction
possibilities

unique constraint satisfaction

initial task-view ready

@process ontology(domain ontology)

task-view = create-task-view(domain ontology);
task-constraints = create-task-constraints(task-view);

@create

initialize;

ready

@task-view complete

task-view, unsatisified-constraints = satisfy-contraints(task-view, task-constraints);

constraint satisfaction checked

task-view complete

missing information

task-view = get-from-system(task-view);
if (still missing values)
 task-view = get-from-user(task-view);

no missing information

task-view != null

schedule-appointment(task-view.Person.Name,
task-view.Service Provider.Name, task-view.Date,
task-view.Time, task-view.Address, ...);
report that the appointment is scheduled;

task-view = null

report that the appointment cannot be scheduled;
ready to schedule

@negotiation required

task-view = negotiate(task-view, unsatisfied contraints);

no constraint satisfaction

negotiation required

multiple constraints satisfaction
possibilities

unique constraint satisfaction

initial task-view ready

@process ontology(domain ontology)

task-view = create-task-view(domain ontology);
task-constraints = create-task-constraints(task-view);

Figure 3: A domain-specific process for scheduling appointment.

3.2.2 Process Ontology

A process ontology is a description of a process that executes tasks in a domain. Figure 3

shows the process ontology for scheduling appointments represented as a statenet [EKW92],

a representation that lets us specify standard Event-Condition-Action (ECA) rules [WC95,

PPW03]. In this section, we provide a high-level description of the process ontology, leaving the

details of the subprocesses on which the process ontology depends to be discussed in Section 3.3.

As we shall see, all of these subprocesses are domain-independent. Domain-independence makes

9

it possible to automatically generate process ontologies without having to write any code.

The input for a process ontology is a domain ontology like the domain ontology in Figure 1

except that concepts that match with the task specification are marked, and recognized values

are assigned to matching concepts. The process consists of states, such as initial task-view ready

and task-view complete, and transitions represented as divided rectangles. In the top part, we

specify triggers, which are events or Boolean conditions or both. Events are prefixed by “@”

(read “at”); examples include @process ontology(domain ontology) and @task-view complete,

where the former is a parameterized event that becomes active when the event occurs (is called

from some other process), and the latter is a non-parameterized event that becomes active when

the task-view is complete. In the bottom part of the divided rectangles, we specify actions or

subprocesses. The actions in a particular transition execute when the trigger of the transition

becomes active. Examples of subprocesses include create-task-view(domain ontology) and get-

from-system(task-view).

The general control of the process ontology flows as follows. The process ontology uses the

subprocess create-task-view(domain ontology) to create a task-view, which is the part of a do-

main ontology that matches with the task, and uses the subprocess create-task-constraint(task-

view) to enumerate the applicable constraints for the task. If all the task-view concepts have

values, the process ontology enters the task-view complete state; otherwise it obtains values for

these concepts from system repositories using the subprocess get-from-system(task-view) and

values from the user it cannot obtain from system repositories using the subprocess get-from-

user(task-view). Next, the process ontology checks the constraints using the process satisfy-

constraints(task-view, task-constraints) and enters the constraint satisfaction checked state. If

there is unique constraint satisfaction, the process enters the ready to schedule state; otherwise

if there are multiple ways the constraints can be satisfied or if there is no way to satisfy the

constraints, the process ontology enters the negotiation required state. Finally, if the task-view

10

is not null, the process ontology schedules the appointment.

Although we use an OSM statenet to represent a process ontology, we will provide a trans-

formation from an OSM statenet to OWL-S [MPM+04, W3C04, W3C01]. This will allow us to

represent our services in a standardized web service language.

3.2.3 Task Ontology Recognition

The task ontology recognition process determines the domain of a task. The recognition process

takes a set of domain ontologies and a task specification as input, and returns the domain

ontology that best matches with the task specification as output. The recognition process

works in three phases. First, for each domain ontology, the recognition process applies concept

recognizers in the data frames of every concept of the domain ontology to the task specification

and marks every concept that matches with a substring in the task-specification. Second, the

process computes the rank of a domain ontology with respect to a task specification. We

are currently thinking of computing the rank based on the number of the marked concepts.

We feel, however, that the computation of the rank may require more sophisticated technique

such as giving weight to some concepts of a domain ontology depending on their relevancy.

For example, the concepts Appointment, Date, and Time of the domain ontology (Figure 1)

should probably have higher weight than Insurance or Cost because they are more relevant

to scheduling appointments. This, however, needs more investigation. Third, the recognition

process sorts the domain ontologies according to their ranks in descending order and selects the

domain ontology with the highest rank. This process assumes nothing about the domains of

the ontologies nor about the task specification, and therefore it is domain independent.

Referring to our running example, when the recognition process is called with the domain

ontology in Figure 1, the data frames in Figure 2, and the task specification in Section 3.1 as

input, it produces the output in Figure 4. The concept recognizers in the data frame for Derma-

11

�

�

�

�

�

�

Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrician

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"

is at

->
Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrician

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"

is at

->

Figure 4: The output of recognition-process.

tologist recognize the constant value “dermatologist” in the task specification, and therefore the

concept Dermatologist is marked (
√

). Likewise, a recognizer in the NextWeek operation in the

Date data frame recognizes “next week”; in the Time data frame recognizes the constant value

“4:00”; in the Distance data frame recognizes “within”, “20”, and “miles”; in the Appointment

data frame recognizes “want to see a”; in the Place data frame recognizes “my home”; and in

the Insurance data frame recognizes “insurance”; and therefore these concepts are marked. It

is worth noting that the output in Figure 4 is exactly the domain ontology in Figure 1 except

that some of the concepts are marked.

12

3.3 Task Execution

The process ontology is responsible for executing tasks. As we mentioned in Section 3.2.2, the

process ontology depends on domain-independent subprocesses. In this section we discuss these

subprocesses, justifying why they are domain independent. We use our running example to

illustrate them.

3.3.1 Task View Creation

Task view creation takes a marked domain ontology as input and produces a task view as output.

Although not quite so simple because spurious object sets may be marked, the process basically

operates on its input as follows. It iterates over all of the concepts of a domain ontology and

keeps the main concept of the domain ontology (the concept marked with “–> •”). It also

keeps all the main concept’s mandatory concepts as well as the marked concepts, and prunes

away all other concepts (along with all their relationships). In addition, the process replaces a

generalization concept by its marked specialization and replaces a nonlexical by a lexical concept

when there is a one-to-one correspondence. The remaining concepts in the domain ontology

are called the task view. Observe that this process is domain independent because it assumes

nothing about the domain of its input.

Referring to our running example, the create-task-view process in Figure 3 specializes this

process by passing to it the domain ontology in Figure 4. The result is the task view in

Figure 5. Appointment is not pruned because it is the main concept. Date, Time, Name,

Service Provider, and Person are not pruned because they are mandatory concepts for the

main concept; Dermatologist, Insurance, and Place are not pruned because they are marked. In

addition, the specialization Dermatologist replaces its generalization Service Provider because

this specialization is marked and the lexical concept Address replaces the nonlexical concept

13

InsuranceDermatologist

Appointment

Address

Person

Name

Date Time
is atis on

has

is with

is for

is at

is at

has

is at

->

accepts
InsuranceDermatologist

Appointment

Address

Person

Name

Date Time
is atis on

has

is with

is for

is at

is at

has

is at

->

accepts

Figure 5: The task view for the specified task in Section 3.1.

Place with which it has a one-to-one correspondence.

We emphasize the need for reasoning to avoid including spurious marked concepts in the

task view. For example, suppose Insurance Salesperson were included as a specialization of

Service Provider in Figure 4. If so, it would likely be marked based on the appearance of “in-

surance” in the task specification in Section 3.1. To decide whether to include or exclude the

object set Insurance Salesperson in the task view, some reasoning is necessary. The Appoint-

ment has only one Service Provider because the relationship set Appointment is with Service

Provider is functional from Appointment to Service Provider. Since the service provider Der-

matologist is marked and should be included,2 the process can conclude that including the

Insurance Salesperson causes the Appointment to have two service providers, which violates

the constraint. Therefore the system prunes away the object set Insurance Salesperson. The
2Giving precedence to Dermatologist over Insurance Salesperson requires another kind of reasoning. We can

reason that because a dermatologist keyword appears next to an appointment keyword or because a dermatologist

keyword appears twice, it should have precedence over Insurance Salesperson.

14

required reasoning power needs further investigation, but we believe that the information in

a domain ontology along with the information extracted from a task specification can likely

provide enough knowledge to do adequate reasoning to resolve these problems.

3.3.2 Task Constraint Creation

Task constraint creation enumerates the constraints imposed on a task using a task view and the

operations in the data frames associated with the concepts of the matching ontology. Creating

a process to generate the right set of constraints is likely to face several challenging problems

such as generating spurious Boolean operations that are likely to match substrings in the task

specification, constraining the many degrees of freedom in loose task specification, determining

the right sources of values for input parameters of the constraints, and determining free and

bound parameters. Although finding the solutions for these problems needs further research,

we are currently thinking that the process basically operates as follows.

1. It lists all the operations in the data frames whose recognizers match substrings in the

task specification and whose return types are Boolean. In addition, when a recognizer in

the data frame of a concept in the task view matches with a value for that concept in the

task specification, the process places this value in the concept. Referring to our example,

the process lists the Boolean operations: NextWeek(d1: Date, d2: Date), Within(d: Dis-

tance, “20”), and Equal(i1: Insurance, i2: Insurance) as constraints because they match

substrings in the task specification. Since the concept recognizer in the Time data frame

matches the value “4:00” in the task specification, the process places “4:00” in the Time

concept, which constrains appointment times to 4:00 pm.

2. For each listed constraint, the process considers the type(s) of the input parameter(s).

If one or more input parameters has a type that does not match a concept in the task

15

Date(d1: Date) and NextWeek(d1: Date, d2: Date)
Person(x) is at Address(a1) and Dermatologist(y) is at Address(a2) and
 Within(DistanceBetween(a1, a2), “20”)
∃ i2 (Dermatologist(y) accepts Insurance(i2) and Equal(i1, i2))

Figure 6: Constraints added to the task view.

view, the process should find an operation in the data frames whose input parameter

types are concepts in the task view and whose return type matches the type of the input

parameter and replace the input parameter with this operation. Referring to our example,

Within(d: Distance, “20”) has the input d of type Distance. Since Distance does not

belong to the task view (see Figure 5), the process replaces the input by the operation

DistanceBetween(a1: Address, a2: Address) because this operation returns a value of type

Distance.

3. To determine the source of values for the input parameters of the constraints, the process

can make use of the relationships in the task view. For example, the operation DistanceBetween(a1:

Address, a2: Address) has two input parameters of type Address. According to the rela-

tionships between the concepts in the task view, Address is related to both Dermatologist

and Person. The process, therefore, can make use of this information to determine that

the value of one of the address parameters comes from the relationship Dermatologist is

at Address and value of the other comes from the relationship Person is at Address. The

process leaves any input parameter that it cannot determine as a free variable. Because

Insurance is related only to Dermatologist, the process determines that the source of the

value of one input parameter comes from the relationship Dermatologist accepts Insur-

ance and leaves the other as a free variable. Also, since the relationship Dermatologist

accepts Insurance is many-many, the process binds the parameter i2 with the existential

16

quantifier to declare that any one value of i2 that satisfies ∃ i2 (Dermatologist(y) accepts

Insurance(i2) and Equal(i1, i2)) is enough. Figure 6 shows the final set of constraints,

which became part of the task view.

This process is domain independent because its algorithms are the same for all domains. The

process makes use of only the information provided by the task view and the associated data

frames. Once these are available, the process can discover constraints using fixed algorithms

that work for all domains.

3.3.3 Obtaining Information from the System

This process takes a task view, augmented with discovered constraints, as input and uses the

system’s databases3 to obtain needed values it can find for concepts. Several problems arise

such as determining which concepts in the task view need values from the system databases and

which need values from outside sources, limiting the values and value combinations when many

are possible, and deciding which constraints to observe while obtaining values. Although the

solutions for these problems need further research, we are currently thinking that the process

obtains values for each concept in the task view for which it can find values, taking into con-

sideration the task-specification-imposed constraints that can be applied at this stage of task

execution. Applicable task-specification-imposed constraints are the discovered constraints for

which the process has the required values to instantiate their input parameters. The process

returns a partially filled-in task view as output.

Referring to our running example, the get-from-system process in Figure 3 takes the task

view in Figure 5 combined with the constraints in Figure 6 as input and produces a partially

populated task view, such as the one in Figure 7 as output. Since this task view is part of the
3We assume that the system’s databases store up-to-date, real-world instances of concepts of all domain

ontologies known to the system.

17

Task−imposed constraints:
 Date(d1: Date) and NextWeek(d1: Date, d2: Date)
 Person(x) is at Address(a1) and Dermatologist(y) is at Address(a2) and
 Within(DistanceBetween(a1, a2), “20”)
 ∃ i2 (Dermatologist(y) accepts Insurance(i2) and Equal(i1, i2))

Appointment
->

Dermatologist
 Dermatologist0

 Dermatologist1

Insurance
 “IHC”
 “DMBA”

 Time
 “4:00”

Date
 “5 Jan 05”
 “6 Jan 05”

Person

Address
 “Orem 600 State St.”
 “Lindon 12 Main St.”

Name
 “Dr. Carter”
 “Dr. Larry”

Figure 7: A partially filled in task view after obtaining information from the system.

scheduling domain ontology, the process uses the database that stores values for this ontology to

obtain values for the concepts in the task view. The process populates concepts in the task view

with values that satisfy the constraints that can be applied at this stage. Because Dermatologist0

is available at “4:00” on “5 Jan 05”, which respectively satisfy the Time constraint and Date

constraint for NextWeek(“28 Dec 04”, “5 Jan 05”) assuming today’s date is December 28, 2004,

the process places them in the task view. Similarly, the process places Dermatologist1 in the

task view because this dermatologist has an opening for an appointment on January 6, 2005

at 4:00 pm. The process obtains and places all Name, Address, and Insurance information

for these two dermatologists into the task view. It cannot yet limit these values because the

Distance and Insurance constraints cannot yet be applied since the process lacks the person’s

address and type of insurance.

18

The process is domain independent. Deciding which concepts need values depends solely

on the mandatory participation constraints declared in the domain ontology. Obtaining values

for concepts is a matter of interaction with the system databases. Further, since the types

of input parameters of constraints are concepts in the task view, deciding which constraint

to observe depends solely on whether the process can obtain values for all input parameters

of the constraint, which can be done independently from the domain by matching the input

parameters with the these concepts. Thus, we can code the get-from-system routine as a fixed

routine, parameterized by the task view augmented by the set of constraints whose only free

variables can be supplied by the database.

3.3.4 Obtaining Information from a User

At this point in the process, the system has a task view that is partially filled in with zero or more

value sets that satisfy the constraints that can be satisfied by obtaining values from the system.

In the next part of the process the system requests any remaining, missing information from

the user. Determining what information to request is straightforward in the typical case of one

or more value sets whose values cover all the same concepts and free variables. For non-typical

cases where there are no value sets or where the value sets cover different concepts and free

variables, more research is needed to resolve the problem of determining what information to

request. In the typical case, the process should interact with a user and obtain a value (possibly

values, in the case of a non-functional dependency) for each mandatory lexical concept in the

task view that does not yet have a value and for each free variable in the constraints that does

not yet have a value. The result is a task view with complete value sets—complete in the sense

that there are values for all mandatory concepts and all free variables.

Referring to our running example, when the process is called with the partially filled in

task view in Figure 7, it produces the output in Figure 8. Since the nonlexical concept Person,

19

Task−imposed constraints:
 Date(d1: Date) and NextWeek(d1: Date, d2: Date)
 Person(x) is at Address(a1) and Dermatologist(y) is at Address(a2) and
 Within(DistanceBetween(a1, a2), “20”)
 ∃ i2 (Dermatologist(y) accepts Insurance(i2) and Equal(“IHC”, i2))

Appointment
->

Dermatologist
 Dermatologist0

 Dermatologist1

Insurance
 “IHC”
 “DMBA”

 Time
 “4:00”

Date
 “5 Jan 05”
 “6 Jan 05”

Person
 Person100

Address
 “Orem 600 State St.”
 “Lindon 12 Main St.”
 “Provo 300 State St.”

Name
 “Dr. Carter”
 “Dr. Larry”
 “Lynn Jones”

Figure 8: A completed task view after obtaining information from a user.

which is mandatory, does not have value (note, no dot inside the object set Person), the process

creates a concept instance Person100. Because the concept Name is mandatory for Person and

it is a lexical concept, the process initiates an interaction with the user to obtain value for it; we

assume that the user enters the value “Lynn Jones” for the concept Name. Although Address

is optional for Person, the process should obtain a value for it from the user because it is a free

variable in a task-imposed constraints; we assume that the user enters the value “Provo 300

State St.” for the concept Address. Insurance is not explicitly related to Person, but it is a

free variable that does not yet have value in the task-imposed constraints, and therefore should

have value; we assume that the user enters the value “IHC” for this constraint. The process

does not, of course, ask a user for values for the other concepts such as Dermatologist because

they already have values.

20

When the system can recognize which concepts and which free variables need values, the

process of obtaining values from the user is domain independent. It only makes use of (1)

concepts related immediately or transitively to the primary object of interest and whether

these concepts are mandatory or optional whether these concepts are lexical or nonlexical, and

(2) free variables in constraints. In situations where it may not be so clear which variables the

user must enter, it will be important for us not to make the process domain dependent by, for

example, listing the object sets that a user typically supplies in an interaction.

3.3.5 Constraint Satisfaction

The constraint satisfaction process determines which sets of values, if any, satisfy the constraints.

We call sets of values that could potentially form a solution potential solutions because they

are not solutions unless they satisfy the constraints. In our example, Dermatologist0 with

the name “Dr Carter” who accepts “IHC” and “DMBA” insurance, is at “Orem 600 State

St.”, and is available at “4:00” on “5 Jan 05” is a potential solution. The process basically

works as follows. It instantiates the constraints with the values from each potential solution.

If a potential solution satisfies all the constraints, the process ranks it with zero, meaning it

violates no constraint. If, however, a potential solution violates one or more constraints, the

process ranks it according to number of violated constraints and makes a note of the unsatisfied

constraints. The process repeats for each potential solution. If a potential solution violates

several more constraints than the best solution so far, the process discards it.

Referring to our running example, the process takes as input the value sets in the task-view

in Figure 8. Figure 9(a) shows the constraints after the process instantiates them with the

values from the first potential solution (Dermatologist0), and Figure 9(b) shows the constraints

after the process instantiates them with the values from the second potential solution (Derma-

tologist1). The unsatisfied constraints are in bold in Figure 9. As shown, Dermalogist0 satisfies

21

Person(Person100) is at Address(“Provo
300 State St.”) and
Dermatologist(Dermatologist0) is at
Address(“Orem 600 State St.”) and
Within(DistanceBetween(“Provo 300
State St.”, “Orem 600 State St.”), “20”)

(Dermatologist(Dermatologist0) accepts
Insurance(“IHC”) and
Equal(“IHC”,“IHC”) or
Dermatologist(Dermatologist0) accepts
Insurance(“DMBA”) and
Equal(“IHC”,“DMBA”))

(a)

Person(Person100) is at Address(“Provo
300 State St.”) and
Dermatologist(Dermatologist1) is at
Address(“Linden 12 Main St.”) and
Within(DistanceBetween(“Provo 300
State St.”, “Lindon 12 Main St.”), “20”)

(Dermatologist(Dermatologist1) accepts
Insurance(“DMBA”) and
Equal(“IHC”,“DMBA”))

(b)

Figure 9: The instantiated constraints.

all of the constraints except the Distance constraint because the computed distance by the

operation DistanceBetween(...) is “22” which is not ≤ “20” and thus receives a rank of 1, and

Dermatologist1 satisfies all of the constraints except the Insurance and Distance constraints

and thus receives a rank of 2.

The process is domain independent. Instantiating input parameters of constraints is a matter

of finding the concepts of the completely populated task view that match with the types of the

input parameters and instantiating them with values from these concepts. Moreover, since all

constraints are predicates, or Boolean operations, observing whether a constraint is satisfied

only requires a simple check of the returned value.

3.3.6 Negotiation

The negotiation process attempts to reach an agreement with a user when multiple solutions

satisfy the constraints or when no solutions satisfy the constraints. The process takes a (possibly

empty) set of solutions as input and returns either a single, agreed upon solution or an empty

set if the user either refuses all solutions or refuses to relax any constraints when there are no

solutions.

22

The process has two states. It is in the state of negotiating with a user to relax the constraints

if the set of unsatisfied constraints is not empty. In this state, we are thinking that the system

would display the unsatisfied constraints (with liberal syntactic sugar) and prompt the user

to relax a constraint in order to continue executing the task. If the relaxation still results in

no solution, the system again prompts the user to relax a constraint or further relax the same

constraint. If the relaxation results in a unique solution, this solution is returned and sent to the

finalization process. If the relaxation results in several solutions, the negotiation process enters

the state of negotiating with a user to select a solution from among the multiple solutions. In

this state, the process displays the solutions (or some of the solutions, if there are many) and

prompts the user to select a unique solution.

For our running example, there are no solutions, but there is one unsatisfied constraint

Within(DistanceBetween(“Provo 300 State St.”, “Orem 600 State St.”), “20”). Since there is

an unsatisfied constraint, the negotiation process enters the state of negotiating with a user

to relax constraints. If the user chooses to relax this constraint by allowing the distance to be

within “22 miles” rather than “20 miles”, the system has a solution for the task. For the purpose

of completing the running example, we assume the user chooses to so loosen the constraint.

The negotiation process works the same for all domains. The set of unsatisfied constraints,

if any, are all true/false statements, and each solution in the list of solutions is a set of attribute-

value pairs. The system can manipulate both of these sets, as described, independent of the

domain.

Several challenges arise that need further research. How does the system negotiate when

there are a large number of solutions? Is there some way we can intelligently display just the

top k? Exactly how does the system negotiate when there are no solutions? Which constraints

should it display as candidates to relax? How can it allow a user to gradually relax constraints

(e.g. in our example, relax the distance constraint to be just a little further as opposed to

23

 Appointment7

 Dermatologist0

 “4:00” “5 Jan 05”

 Person100

 “Orem 600 State St.”
 “Provo 300 State St.”

 “Dr. Carter”
 “Lynn Jones”

 “IHC”
 “DMBA”

Task−imposed constraints:
 Date(“28 Dec 04”) and NextWeek(“28 Dec 04”, “5 Jan 05”)
 Person(Person100) is at Address((“Provo 300 State St.”) and
 Dermatologist(Dermatologist0) is at Address(“Orem 600 State St.”) and
 Within(DistanceBetween(“Provo 300 State St.”, “Orem 600 State St.”), “22”)
 ∃ i2 (Dermatologist(Dermatologist0) accepts Insurance(i2) and Equal(“IHC”, i2))

Figure 10: The scheduled appointment.

discarding the constraint altogether)?

3.3.7 Process Finalization

Finally, the process ontology enters the ready to schedule state. In our running example, since

the negotiation process returns a solution, the condition task-view != null is true and the process

ontology schedules the appointment using the action schedule-appointment(”Lynn Jones”, ...).

Figure 10 shows the scheduled appointment. As shown, Appointment7 is scheduled for Per-

son100 whose name is “Lynn Jones”, with Dermatologist0 whose name is “Dr. Carter” on

date “5 Jan 05” at time “4:00” at address “Orem 600 State St.”. The process ontology notifies

the user that the appointment is successfully scheduled.

The process schedule-appointment(...) is domain dependent because it needs knowledge

about what object sets should be filled in with objects to schedule an appointment. However,

since the required knowledge to do scheduling is already in the defined domain ontology, we can

use this knowledge to automatically generate code for this process. Observe that this is true

24

for any domain so long as the objective is to insert an object into a single object set of interest

and then satisfy all applicable constraints. Thus, since this is exactly the kind of service our

system provides, it is always possible for the system to generate the finalization step for any

domain ontology.

Moreover, we argued in the previous subsections (3.3.1 through 3.3.6) that all of the other

processes in the process ontology are domain independent. As a result, we can make our general

conclusion that the process ontology in Figure 3 is general and can be specialized automatically

to any domain we wish by instantiating it with domain knowledge supplied as a domain ontology

(as we did for our example for our appointment scheduling domain). The domain ontologies

with which the systems works, however, must have a single primary object set (e.g. Appointment

in our example), and the objective of the task ontology must be the insertion of an object into

this primary object set.

3.4 Related Work

We know of no related work like the work we propose here. Researchers have, however, proposed

systems similar to some aspects of the work we are proposing. We are not the first to have

suggested the idea of a task ontology, nor the first to have proposed ways to let end users derive

web services, nor the first to have thought of letting personal agents serve end-user needs.

Task Ontologies. Researchers have suggested the notion of a task ontology to define generic

processes that can be assembled to do tasks. [MTI95] describes a task assembly system, called

MULTS. In this approach, domain experts synthesize problem solving engines for their tasks

from generic processes and building blocks defined in a “task ontology.” Although our approach

also includes a task ontology, it differs significantly from this approach in that it does not have

domain experts nor does it require users to compose components to do their tasks. [KG03]

describes a system that uses a task ontology to represent web services. Users can compose a

25

set of services to do a task and use this system to check whether the composition is valid. Our

approach significantly differs from this approach because it does not require users to compose

services. Both [KA04] and [MA02] describe approach for using a process ontology to index

web services. Users can browse the process ontology or create queries using the defined process

query language (PQL) to find services of interest. Our approach significantly differs from these

two approaches because it does not require users to look for services and also it goes further by

supporting specified tasks from beginning to end without requiring users to find or use services.

Web Service Derivation. Researchers have proposed systems for the web that either make

available web services from which users can choose or allow users to find, select, and compose

their own tasks. [AHS03] describes a system that lets users browse web services and choose a

web service to do a task or choose and compose several web services to do a task. [MDCG03]

describes a system with pre-specified tasks that lets users choose from a set of available pre-

specified tasks. [SHP03] describes a system that lets users select services from a list of known

services to the system and assists them to semi-automatically compose them to do some task.

[SPW+04] describes a system that lets people select from a list of available services, and the

system will execute the service and possibly decomposing this service into atomic executable

services. Our approach differs significantly from these approaches in that our system does not

require users to find or compose services from among a set of available services, which is difficult,

even as acknowledged by the authors of the cited papers themselves, nor does it have the notion

of pre-specified tasks. In fact, in our approach the only requirements are that users specify their

tasks, provide information in a typical case of incomplete task specification, and negotiate when

no solution because of strong imposed constraints or when many possible solutions due to the

existence of many ways to satisfy the imposed constraints.

Personal Software Agents. Researchers have described implementations of personal agents

that operate on behalf of their owners to do useful tasks. [CPC+04] describes an implementation

26

of personal agents for assisting people in preparing the physical facilities of a meeting room.

For each person attending a meeting, there is a personal agent that takes the person’s model

of preferences, such as adjustments of the speakers’ sound and the level of lights, and attempts

to prepare the meeting room in an optimal fashion. [PSS02] describes an implementation for

conference personal assistant agents that, given a URL, they bring scheduling information within

conference schedules to its user’s calendar. [PKC+01] describes an implementation of ITTalk,

integrated applications using agent mediated services to disseminate event announcement. Users

can provide their profiles, encoded in DAML, about presentations they are interested in and

about which they like to be notified. The profiles can be provided either by filling in a web form

or by providing URLs that link to such profiles. Our approach differs from these two approaches

in that while these agents in these two approaches are preprogrammed to do pre-specified tasks,

our system is more general in a sense that the tasks are defined in terms of knowledge rather

than preprogrammed.

4 Research Plan

We plan to create a prototype system, test this prototype, and publish the results. Specifically,

we plan to use the prototype to show that the techniques described in Section 3 can enable users

to accomplish everyday tasks. We will conduct both black box testing and white box testing.

4.1 Black Box Testing

We will conduct several experiments on our prototype. The prototype will include task on-

tologies pertaining to different domains such as scheduling appointments, scheduling meetings,

buying, selling, hiring, and so forth. The tests will be run by independent users who will specify

tasks by writing them textually using the prototype interface. The performance of the prototype

27

will be measured based on the following.

For task recognition, we will measure the performance based on the accuracy of concept

and constraint recognition and on recognition of the proper domain for the task. In all cases,

we can measure based on recall and precision. Let N be the total number of task concepts (or

constraints) that should have been recognized given a set of task specifications S. Then for

concept recognition (constraint recognition),

recall = NC
N and precision = NC

NC+NI

where NC is the number of correctly recognized and NI is the number of incorrectly recognized.

Further, for domain recognition

recall = |SC |
|S| and precision = |SC |

|SC |+|SI |

where SC is the set of task specifications for which the prototype system correctly identified

the domain and SI is the set of task specifications for which the prototype system incorrectly

identified the domain.

For task execution, we are interested in measuring the performance of the prototype based

on the number of tasks that the prototype executes to completion. Let T be the number of

tasks and Ta be the number of the completely accomplished tasks. We define prototype utility

as

utility = Ta
T .

4.2 White Box Testing

We plan to develop white-box test cases designed in such a way that they force the system to

go through all control paths and features in which we are interested. For example, there will

be test cases that trigger negotiations with users to relax one constraint or several constraints.

28

Also, we will have test cases that force the system to negotiate with users to choose one solution

from among several or many by gradually loosening constraints. We will observe user behavior

and determine whether they can successfully use the system.

4.3 Delimitations

The following are beyond the scope of this dissertation.

1. Recognition and execution of a sequence of tasks.

2. Recognition and execution alternative tasks.

3. Recognition and execution of conditional tasks.

4. Vocal specification of tasks.

5 Research Papers

1. Ontology-Based Task Specification and Recognition

2. Ontology-Based Task Execution

3. Domain-Ontology Constraints Loosening to Meet Real-World Application Needs

4. Ontology-Based Automatic Code Generation for Domain-Specific Processes

5. OSM-OWL Domain Ontology Transformation

6. OSM-OWL Process Ontology Transformation

6 Contribution to Computer Science

As the number of services on the web continues to increase, users will increasingly suffer from

issues such as finding and using appropriate services. Our approach uniquely addresses these

29

issues by turning their essence from finding and using to only assuming the existence of an

intelligent agent and textually specifying tasks. Moreover, our approach depends only on both

domain-independent processes that can be automatically specialized to a domain and a domain

dependent process that can be automatically generated for a domain. This makes our approach

work across domains without need for manual configuration. Finally, since our approach centers

around task ontologies, the behavior of the prototype is only limited by the richness of the task

ontologies, which can be independently enriched by the system specialist.

7 Dissertation Schedule

The tentative schedule of the dissertation will be as follows.

1. Task-Specification and Recognition (by August 2005)

(a) Domain Ontologies Creation

(b) Domain Ontologies Constraint Loosening

(c) Task Ontology Recognition

2. Process Ontologies (by March 2006)

(a) Domain-Independent Processes

i. Task View Creation process

ii. Task Constraints Creation process

iii. Obtaining Information from the System Process

iv. Obtaining Information from a User Process

v. Constraint Satisfaction Process

vi. Negotiation Process

30

(b) Ontology-Based Automatic Code Generation for Domain-Dependent Processes

3. Prototype System Experiments (by September 2006)

References

[AHS03] S. Agarwal, S. Handschuh, and S. Staab. Surfing the Service Web. In Proceedings

of the Second International Semantic Web Conference (ISWC2003), pages 211–226,

Sanibel Island, Florida, October 2003.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,

284(5):34–43, May 2001.

[CPC+04] H. Chen, F. Perich, D. Chakraborty, T. Finin, and A. Josh. Intelligent Agents Meet

Semantic Web in a Smart Meeting Room. In Proceedings of the Third International

Joint Conference on Autonomous Agents and Multi Agent Systems, volume 2, pages

854–861, New York, July 2004.

[Din05] Y. Ding. Web Semantic Annotation: Ontology Based Approach. PhD thesis,

Brigham Young University, 2005. to appear.

[DW03] I. Dickinson and M. Wooldridge. Practical Reasoning Agents for the Semantic Web.

In Proceedings of the Second International Conference on Autonomous Agents and

Multiagent Systems (AAMAS-03), pages 306–318, Melbourne, Australia, July 2003.

[EKW92] D. W. Embley, B. K. Kurtiz, and S. N. Woodfield. Object-Oriented Systems Analy-

sis: A Model Driven Approach. Yourdon Press, Englewood Cliffs, New Jersey, 1992.

31

[Emb80] D. W. Embley. Programming with Data Frames for everyday Items. In D. Medley

and E. Marie, editors, Proceedings of AFIPS Conference, pages 301–305, Anheim,

California, May 1980.

[Hen01] J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30–37,

2001.

[KA04] M. Klein and B. Abraham. Towards High-Precision Service Retrieval. IEEE Internet

Computing, 8(1):30–36, January 2004.

[KG03] J. Kim and Y. Gil. Toward interactive composition of semantic web services. In

Proceedings of the Second International Semantic Web Conference (ISWC 2003),

Sanibel Island, Florida, 2003.

[KKS+02] S. Kumar, A. Kunjithapatham, M. Sheshagiri, T. Finin, A. Joshi, Y. Peng, and

R. Scott Cost. A Personal Agent Application for the Semantic Web. In Preceed-

ings of AAAI 2002 Fall Symposium Series, pages 43–58, North Falmouth, MA,

November 2002.

[MA02] K. Mark and B. Abraham. Searching for Services on the Semantic Web using

Process Ontologies. In Isabel Cruz, Stefan Decker, Jerome Euzenat, and Deborah

McGuinness, editors, The Emerging Semantic Web-Selected papers from the first

Semantic Web Working Symposium, pages 159–172. IOS press, Amsterdam, 2002.

[MDCG03] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework and

Infrastructure for Semantic Web Services. In Proceedings of the Second International

Semantic Web Conference (ISWC 2003), pages 306–318, Sanibel Island, Florida,

2003.

32

[MPM+04] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,

B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing

Semantics to Web Services: The OWL-S Approach. In Proceedings of the First

International Workshop on Semantic Web Services and Web Process Composition

(SWSWPC 2004), San Diego, California, July 2004.

[MTI95] R. Mizoguchi, Y. Tijerino, and M. Ikeda. Task Analysis Interview Based on Task

Ontology. Expert Systems with Applications, 9(1):15–25, 1995.

[PKC+01] F. Perich, L. Kagal, H. Chen, S. Tolia, Y. Zou, T. Finin, A. Joshi, Y. Peng, R. Scott,

and C. Nicholas. Ittalks: An Application of Agents in the Semantic Web. In

Proceedings of the Second International Workshop on Engineering Societies in the

Agents World, pages 175–194, Prague, Czech Republic, 2001.

[PPW03] G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event-Condition-Action Rule

Languages for the Semantic Web. In Isabel F. Cruz, Vipul Kashyap, Stefan Decker,

and Rainer Eckstein, editors, Proceedings of the first International Workshop on

Semantic Web and Databases (SWDB 2003), pages 309–327, Humboldt-Universität,

Berlin, Germany, September 2003.

[PSS02] T. R. Payne, R. Singh, and K. Sycara. Calendar Agents on the Semantic Web.

IEEE Intelligent Systems, 17(3):84–86, May/June 2002.

[SHP03] E. Sirin, J. Hendler, and B. Parsia. Semi-Automatic Composition of Web Services

using Semantic Descriptions. In Proceedings of the first Workshop on Web Ser-

vices: Modeling, Architecture and Infrastructure (WSMAI-2003), In conjunction

with ICEIS 2003, pages 17–24, Angers, France, April 2003.

33

[SPW+04] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN Planning for Web Service

Composition using SHOP2. Journal of Web Semantics, 4(1):377–396, 2004.

[SSG04] M. Sheshagiri, N. M. Sadeh, and F. Gandon. Using Semantic Web Services for

Context-Aware Mobile Applications. In Proceedings of the Second International

Conference on Mobile System, Applications, and Services, Boston, Massachusetts,

June 2004.

[W3C01] W3C. The DARPA Agent Markup Language (DAML). Website, 2001. http:

//www.daml.org/.

[W3C04] W3C. Web Ontology Language (OWL). Website, 2004. http://www.w3.org/2004/

OWL.

[WC95] J. Widon and S. Ceri. Active Database Systems. Morgan–Kaufmann, San Mateo,

California, 1995.

34

Brigham Young University

Graduate Committee Approval

of a dissertation proposal submitted by

Muhammed Al-Muhammed

This dissertation proposal has been read by each member of the following graduate committee

and by majority vote has been found to be satisfactory.

Date David W. Embley

Date Charles D. Knutson

Date Michael A. Goodrich

Date Mark J. Clement

Date Bryan S. Morse

Date David W. Embley, Graduate Coordinator

35

