
PROJECT DESCRIPTION

1 Introduction

The web contains a wealth of knowledge. Unfortunately, most of the knowledge is not encoded in
a way that enables direct user query. We cannot, for example, directly google for a used car that
is a 2003 or newer selling for under 15 grand; or for the names of the parents of great-grandpa
Schnitker; or for countries whose population will likely decrease by more than 10% in 50 years.

Our particular focus in this proposal is on users who wish to gather facts, perhaps like the
facts just mentioned, organize them, and use them for decision making. Applications of this sort
include, for example, government employees wishing to gather comparative information about
degrees awarded by educational institutions, individuals interested in product comparison or their
own family history, military leaders gathering facts surrounding front-line casualties, and bio-
researchers assembling facts for a bio-medical study.

All people who use the web for research, whatever their motivation, need to be able to find,
retrieve, filter, extract, integrate, organize, and share information in a user-friendly, timely, and
high-precision manner. In all cases, facts contained in web pages are central; they must be located,
interpreted, and annotated for further study. Our approach is to annotate stated facts with
respect to ontologies.1 We populate these ontologies, turning them into a database over which
structured queries can be executed. Annotation links also provide a form of provenance and
authentication, allowing users to verify query results by checking original sources. Furthermore,
facts and ontological concepts may appear in more than one populated ontology. Linking facts and
ontological concepts across ontologies can provide navigation paths to explore additional, related
knowledge. The web with a superimposed layer of interlinked ontologies each annotating a myriad
of facts on the underlying web becomes a Web of Knowledge, a WoK.2

Our solution to the challenge of developing a WoK is to create “knowledge bundles” (KBs),
which are conceptual-model representations of organized information superimposed over source
documents. A “knowledge-bundle builder” (KBB) helps researchers develop KBs in a synergis-
tic and incremental manner and is a manifestation of learning in terms of its semi-automatic
construction of KBs.

Although this vision of a WoK and associated KBs is appealing, there are significant barriers
preventing both its creation and its use. Ontology languages exist, with OWL being the de
facto standard. RDF files can provide data for these ontologies and can also store annotation
information linking data to facts in web pages and linking equivalent information in RDF files
to one another. The SPARQL query language is a standard for querying RDF data. Thus, all
constituent components for a WoK are industry standards in common use, and they even all
work together allowing for immediate WoK development and usage. Nevertheless, the barriers of
creation and usage remain high and effectively prevent WoK deployment. The creation barrier
is high because of the cost involved in developing OWL ontologies and annotating web pages by
linking RDF-encoded facts in web pages to these OWL ontologies. The usage barrier is high
because untrained users cannot write SPARQL queries.

Extraction ontologies provide a way to solve both creation and usage problems [DEL06]. To
describe extraction ontologies and show how they resolve creation and usage problems, we for-
malize extraction ontologies (Section 2), formalize the notion of a WoK (Section 3), formalize

1We view an ontology as a formal theory captured in a model-theoretic view of data within a formalized conceptual
model based on predicate calculus.

2To many, this vision of a WoK constitutes the semantic web [W3C].

WoK construction procedures (Section 4), and formalize user-friendly, WoK query-processing pro-
cedures (Section 5). The success of the WoK vision depends on a solid theoretical foundation.
Thus, the contributions we hope to make with this project are: (1) the formalization of extraction
ontologies, knowledge bundles, and interconnected knowledge bundles as a WoK and (2) based on
the formalization, the development of WoK construction tools and WoK usage tools that largely
overcome WoK creation and usage barriers. Realizing these contributions is no small task, but
nearly a decade of prior research (Section 6) positions us to push forward (Sections 6 and 7) and
achieve our objectives (Section 8).

2 Extraction Ontologies

We represent web information via the conceptual modeling language OSM (Object-oriented Sys-
tems Model) [EKW92], which provides a graphical representation of a first-order-logic language.
We restrict OSM to be decidable, yet powerful enough to represent desired ontological concepts
and constraints. We call our restriction OSM-O, short for OSM-Ontology. We thus base our foun-
dational conceptualization directly on an appropriate restriction of first-order logic. This WoK
foundation should be no surprise since it is the basis for modern information systems and has
been the basis for formalizing information since the days of Aristotle [AriBC].

In this proposal we sketch the incremental sequence of formal models that characterize our
approach to representing the various kinds of facts, data, information, and knowledge that are
encapsulated in the web. We present these models as n-tuples comprised of specialized but closely
correlated components.

Initially, we view an OSM ontology (OSM-O) as a triple (O, R, C) where:

• O is a set of intensional object sets; each is a one-place predicate; and each predicate has
a designation as lexical (e.g., a city name like “Chicago”) or non-lexical (e.g., an object
identifier for a particular city). These are sometimes called concepts or classes, though they
may also serve as properties or attributes. (Examples: Person(x), CityName(x).)

• R is a set of n-ary relationship sets (n ≥ 2); each is an n-place predicate. (Examples:
Person(x) is citizen of Country(y), Car(x) has Feature(y).)

• C is a set of constraints that assure (i) referential integrity; (ii) appropriate participation of
objects in relationship sets in terms of min:max cardinality; (iii) generalization/specialization
properties; (iv) aggregation (holonymy/meronymy) properties. (Examples: ∀x(Student(x)
⇒Person(x)), ∀x(Car(x) ⇒ ∃1y(Car(x) has Year(y)))

Figure 1 shows an OSM-O model instance. Rectangular boxes are object sets—dashed if
lexical and solid if non-lexical. Lines between object sets denote relationship sets. Participation
constraints are next to relationship-set/object-set connections in a min:max format. (We use 1 as
shorthand for 1:1.) A white triangle denotes generalization/specialization with the generalization
connected to the apex of the triangle and the specializations connected to the base. A black
triangle denotes aggregation with the super-part connected to the apex of the triangle and the
sub-parts connected to the base. Although graphical in appearance, an OSM-O diagram is merely
a two-dimensional rendition of predicates and closed, well-formed formulas.

The quadruple (O, R, C, I) characterizes information and is an information system or
database. Given M , an OSM-O model instance, we can relate it to the domain under consid-
eration by declaring truth values for each of the predicates that are instantiated (whether lexical
or non-lexical). All instantiated predicates represent True facts. When all constraints C hold, we

0:1

1:*

0:1

1:*

1:*

0:1

1:*

0:1
1:* 0:1

1:*

0:1

1:*

0:1

1:*

0:*

1:*0:*

TrimModel

ModelTrim
Year

Make

Price

Mileage

Color

Transmission

AccessoryBodyType

Engine

FeatureCar

Figure 1: OSM-O Model Instance.

have a model for M which we refer to as a valid interpretation to avoid making “model” ambigu-
ous in the context of creating conceptual models for domain ontologies. A valid interpretation
of the OSM-O model instance in Figure 1 contains facts about cars. A possible valid interpre-
tation might include the facts Car(Car3), Year(2003), Car -Year(Car3, 2003), Model(“Accord”),
Trim(“LX”), ModelTrim(ModelTrim17), Trim-isPartOf -ModelTrim (“LX”, ModelTrim17), and
Car -ModelTrim(Car3 , ModelTrim17). Note that the object sets Car and ModelTrim, being non-
lexical, have identifiers for their domain-value substitutions. Constraints, such as ∀x(Car(x) ⇒
∃≤1y(Car -Year(x, y))), all hold.

In our implementation, we use OWL to represent ontologies and RDF for storing instances
with respect to OWL ontologies. A detailed technical discussion of the OSM-O formalism, its
mapping to standard description logics, and its decidability appears elsewhere [EZ10].

Similar in approach to LexInfo [BCHS09] and OpenDMAP [HLF+08], we are able to linguisti-
cally ground OSM-O. The L component of the quintuple (O, R, C, I, L) adds linguistic ground-
ing to an OSM-O information system and turns OSM-O model instances into OSM-Extraction-
Ontology (OSM-EO) model instances. To do this we define an abstract data type for each object
set and then add linguistic recognizers for instance values, operators, operator parameters, and
relationships. We call these linguistically augmented abstract data types data frames [Emb80].
Like a frame in AI [Min75], which describes a “chunk of knowledge” in some domain, a data frame
describes a “chunk of data”—its value set including lexical instance recognizers and its operation
set including lexical recognizers for operators and their parameters.

Figure 2 shows two partial data frames for object sets in the OSM-O model instance in Figure 1,
one for Price and one for Make. The Price data frame uses regular expressions for its recognizers,
whereas the Make data frame uses a lexicon. In our implementation, we can use either or both
together. The Price data frame also shows a recognizer for an operator. The p2 within curly
braces indicates the expected appearance of a Price parameter p2. Thus a phrase like “under
15 grand” is recognized as indicating that the price of a car—parameter p1—should be less than
$15,000. A data frame for a non-lexical object set is typically degenerate: its value set is a set
of object identifiers. Its operation set consists only of operators that add and remove object
identifiers. Its name and synonyms for its name that identify the presence of one of its non-lexical
object instances, however, can be quite rich. For relationship sets, the definition of a data frame
does not change, but a typical view of the definition shifts as we allow value sets to be n-tuples

Price
internal representation: Integer
external representation: \$[1-9]\d{0,2},?\d{3} | \d?\d [Gg]rand | ...
context keywords: price|asking|obo|neg(\.|otiable)| ...
...
LessThan(p1: Price, p2: Price) returns (Boolean)
context keywords: (less than | < | under | ...)\s*{p2} | ...
...

Make
...
external representation: CarMake.lexicon
...

Figure 2: Data Frames.

of values rather than scalar values. Further, like recognizers for operators, they rely on instance
recognizers from the data frames of their connected object sets. For example, suppose the Car
object set in Figure 1 has a relationship set to a Person object set representing a person selling
a car. Then, the relationship-set data frame would have a recognizer such as {Person} (is selling
| places ad for | ...) {Car}, where the object sets in curly braces specify the object-set instance
recognizers on which the relationship-set instance recognizer depends.

When we have an OSM-O model instance M with a data frame associated with each object
set and relationship set, M is an OSM-EO model instance. An OSM-EO model instance is
linguistically grounded in the sense that it can both “read” and “write” in some natural language.
To “read” means to be able to recognize facts in natural language text and to extract fact instances
with respect to the ontology in the OSM-EO model instance. To “write” means to display fact
instances so that they are human-readable.

How well a particular OSM-EO model instance can “read” and “write” makes a difference
in how well it performs. Our experience is that OSM-EO model instances can “read” some
documents well (over 95% precision and recall [ECJ+99]), but it is clear that opportunities abound
for further research and development. Writing human-understandable descriptions is less difficult
to achieve—the system just selects any one of the phrases for each object set and relationship set
(e.g., Person(Person17) is selling Car(Car734), Car(Car734) has Make(Honda)). Making the
written description pleasing is more difficult, of course.

3 Web of Knowledge

Ontology is the study of “the nature of existence.” Epistemology is the study of “the origin,
nature, methods, and limits of human knowledge.” In the previous section we have sketched our
computational view of ontology—a view that lets us work with ontologies in information systems.
We similarly give a computational view of epistemology. The computational view of epistemology
we give here constitutes a formal foundation for a web of knowledge, a WoK.

The collection of facts in an OSM-O model instance constitutes the extensional knowledge of
the OSM-O model instance. The collection of implied facts derived from the extensional knowl-
edge by inference rules constitutes the intentional knowledge. The extensional and intentional
knowledge together constitute the knowledge of the OSM-O model instance.

Although this view of knowledge is common in computing, Plato and those who follow his line
of thought also demand of knowledge that it be a “justified true belief” [PlaBC]. “Knowledge”
without some sort of truth authentication can be confusing and misleading. But how can we

attain truth authentication? We see three possibilities: (1) truth as community agreement—
e.g., Wikipedia style; (2) probabilistic truth; and (3) truth derived from proper reasoning chains
grounded in original sources. All three, unfortunately, are problematic: community agreement
depends on the willingness of individuals to participate and to agree; probabilistic truth depends
on establishing probabilities and on being able to derive probabilities for answers to queries—hard
problems that do not scale well [DRS09]; and reasoning with rules and fact sources depends on
acceptance of the rules and fact sources as genuine and authoritative.

For our vision of a WoK, we attempt to establish truth via provenance and authentication. We
provide for reasoning with rules and for ground facts in sources. We cannot, however, guarantee
that rules and facts in sources are genuine. We thus compensate by simply exposing them. When
an extraction ontology extracts a fact from a source document, it retains a link to the fact; and
when a query answer requires reasoning over rules, the system records the reasoning chain. Users
can ask to see fact sources and reasoning chains, and in this way they can authenticate facts and
reasoning the way we usually do—by checking sources and fact-derivation rules.

The sextuple (O, R, C, I, L D) characterizes a computational view of knowledge. This includes
D, a deductive rule set where rules are safe, positive, horn clauses formulated as datalog rules,
which are decidable [Ros05]. Adding the D component allows us to reason deductively over the
base facts in the information system. In our implementation, we use SWRL rules and the Pellet
reasoner.

The septuple (O, R, C, I, L, D, A) characterizes a Platonic view of knowledge. Adding the A
component provides a form of authentication since users can trace knowledge back to its source,
which Plato insists is part of the definition of knowledge [PlaBC]. It provides for extensional links
from domain concepts to source information.

We define a knowledge bundle (KB) as the septuple (O, R, C, I, L, D, A). Finally, we define a
Web of Knowledge (WoK) as a collection of knowledge bundles interconnected with binary links,
<x, y>, of two types: (1) object identity: non-lexical object identifier x in knowledge bundle B1

refers to the same real-world object as non-lexical object identifier y in knowledge bundle B2. (2)
Object-set identity: object set x in knowledge bundle B1 designates the same set of real-world
objects as object set y in knowledge bundle B2.

4 WoK Construction

To construct a WoK, we must be able to construct a knowledge bundle, and we must be able to
establish links among knowledge bundles. We can construct knowledge bundles and establish links
among them by hand (and this should always be an option). However, scaling WoK construction
demands semi-automatic procedures, with as much of the construction burden placed on the
system as possible—all of it when possible. For knowledge bundles, our automated construction
tools identify applicable source information and transform it into knowledge-bundle components.
For links among knowledge bundles, we apply record-linkage and schema-mapping tools.

We define the transformation we seek as a 5-tuple (R, S, T , Σ, Π), where R is a set of
resources, S is the source conceptualization, T is the target conceptualization for an S-to-T
transformation, Σ is a set of declarative source-to-target transformation statements, and Π is
a set of procedural source-to-target transformation statements. We have conducted preliminary
work on these transformations [TEL+05, LE09]. For the R component in this preliminary work,
we used some of the basic links in WordNet [Fel98] and a minimal data-frame library. For the S
component, we focused on canonicalized tables [JN08, PJK+09]. For the T component, we aimed
at OSM-O knowledge bundles. In our implementation, we coded procedural (Π) source-to-target
transformation statements, some of which were based on declarative (Σ) statements.

In previous work we have also shown how information contained in tables (including nested
tables) can be harvested from web sites like WormBase and converted into OSM-O ontologies
[TE07], and then to knowledge bundles for a WoK. Furthermore, when several tables on a web
site have similar tabular content and structure (i.e., sibling pages), we can automatically construct
an ontology for the entire site. We can also reverse the process and let users specify ontologies
via nested forms [TEL09].

To the extent possible, we want our transformations to preserve information and constraints.
Let S be a predicate calculus theory with a valid interpretation, and let T be a populated OSM-O
model instance constructed from S by a transformation t. Transformation t preserves information
if there exists a procedure to compute S from T . Let CS be the closed, well-formed formulas of
S, and let CT be the closed, well-formed formulas of T . Transformation t preserves constraints if
CT ⇒ CS .

For a WoK, preservation and transformation requirements entail extraction of each base fact
and its representation in an ontology. Hence, to make a WoK highly meaningful, we should recover
as much as is possible of the underlying semantics—the facts, the constraints, and the linguistic
connections. Therein lies the difficulty: some of the underlying semantics in source conceptualiza-
tions exist only implicitly and are thus difficult to capture, and some of the underlying semantics
do not exist at all, having been discarded in the abstraction process of producing the conceptu-
alization. But therein also lie the research opportunities. Many researchers are endeavoring to
create automatic and semi-automatic procedures to capture richer semantics—making extensive
use of the Σ and Π components of transformation. And some are making use of the R component
to recover semantics lost in the abstraction process. In general, there is an effort to recover as
much of the semantics as possible from many different source genres. For example, we and other
researchers have investigated semantic recovery from relational databases [EX97, Ast04, ABA08],
XML [AK07, WNB06], human-readable tables [PSC+07, TEL+05, LE09], forms [GMJ04, SWL09],
and free-running text [Cim06].

For the last stage of WoK creation—creating links among knowledge bundles—we rely on
record linkage and schema mapping, also called ontology alignment or ontology matching. Record
linkage is the task of finding entries that refer to the same entity in two or more data sources, and
ontology matching is the task of finding the semantic correspondences between elements of two
ontology schemas. An extensive body of work exists for both record linkage [EIV07] and ontology
matching [ES07]. Unfortunately, both problems are extremely hard. General solutions do not
exist and may never exist. However, “best-effort” methods do exist and perform reasonably well.
For the WoK vision, we can use these best-effort methods to initialize and update same-as links
for object identity and equivalence-class links for concept identity. Using “best-effort” methods
in a “pay-as-you-go” fashion appears to be a reasonable way to enable a WoK.

5 WoK Usage

The construction of extraction ontologies leads to “understanding” within a WoK. This “under-
standing” leads to the ability to answer a free-form query because, as we explain in this section, a
WoK system can identify an extraction ontology that applies to a query and match the query to
the ontology. This identification leads to a reformulation of the free-form query as a formal query,
so that it can be executed over a knowledge bundle.

Let S be a source conceptualization and let T be a target conceptualization formalized as an
OSM-EO model instances. We say that T understands S if there exists an S-to-T transformation
that maps each one-place predicate of S to an object set of T , each n-place predicate of S to an
n-place relationship set of T (n ≥ 2), each fact of S to a fact of T with respect to the predicate

Figure 3: A Filled in Form with a Source Data Page

mappings, and each operator of S to an operator in a data frame of T , such that the constraints
of T all hold over the transformed predicates and facts.

Observe that although this definition of “understanding” states how T is formalized, it does
not state how S is formalized. Thus, the predicates and operators of S may or may not be directly
specified. This is the hard part of “understanding”—to recognize the applicable predicates and
operators. But this is exactly what extraction ontologies are meant to do. If an OSM-EO model
instances is linguistically well grounded, then it can “understand” so long as what is stated in
S is within the context of T—that is if there is an object set or relationship set in T for every
predicate in S and if there is an operator in a data frame of T for every operator in S.

Applications and tools for “understanding” include automated ontology construction, free-form
query processing, and advanced form-query processing.

5.1 Form-based Ontology Builder

Developing ontologies by hand is difficult and time-consuming. On the other hand, using forms
is a natural way to elicit information from users. As one way to semi-automatically construct
OSM-EO ontologies, we have developed a tool called FOCIH (Form-based Ontology Creation and
Information Harvesting) that allows users to create their own forms to harvest information they
are seeking [Tao08]. Once users define forms, they can copy and paste information from web
pages into form fields. From this information, FOCIH generates an ontology that can annotate
web pages with respect to the ontology and automatically harvest information from comparable
pages elsewhere.

For example, suppose we wish to buy a used car. We can let FOCIH harvest the information
we wish to consider and then query the harvested information to find cars we may want to buy.
As Figure 3 indicates in its left panel, we specify features of interest: Year, Make, Model, Mileage,
and Price are examples of single-value features. We may also want to specify colors; since a car

Figure 4: Screenshot of WoK Prototype Showing Free-Form Query Processing.

may have more than one color, this would be an example of a multiple-value element. A car may
have several other features of interest: Body features, Engine features, and Accessory features.
Once a form has been filled in with these fields, users can browse to a web page they wish to
annotate and copy and paste values into form fields. A user highlights values in the web page and
then clicks on the pencil icon in the form field to fill in a value. Figure 3 shows the price $6,990
highlighted and entered in the Price form field. To add several values to a multiple-value field, a
user adds each to the field one at a time. The values “4 Cylinder”, “Gasoline”, and “Automatic”
for example are all Engine features. To concatenate values that may be separate such as “Altima
SL” in Figure 3, a user adds subsequent components by clicking on the plus icon instead of the
pencil icon. (The × icon deletes filled-in values.)

From the filled-in form, FOCIH can generate both a conceptual model, eventually to be rep-
resented as an OWL ontology, and an annotation document, eventually to be represented as RDF
triples. Further, FOCIH also records the annotation information: (1) paths to leaf nodes in the
DOM tree of an HTML page containing each value and, for concatenated values, each value com-
ponent; (2) for each value the most specific instance recognizer from the data-frame library (e.g.,
string, number, year, make, model, color); and (3) enough left, right, and delimiter context within
each leaf node to identify the value or values within the DOM-tree node. This enables FOCIH to
harvest the same information from all machine-generated sibling pages from the same web site.

Moreover, from the user-declared form and the harvested information, FOCIH is able to as-
semble an OSM-EO ontology (O, R, C, I, L). FOCIH obtains its O, R, and C components from
analyzing the user-declared form, obtains its I component from the harvested information, and
constructs its L component for each object set in O and relationships in R from the I information
harvested. Lexicons for L are lists of harvested values. For example, for Make, FOCIH would
likely have harvested “Dodge”, “Ford”, “Honda”, ... from the pages of the web site. Value recog-
nizers for L come from matching harvested values with data frames in a data-frame library. For
example, a Price data frame would match the highlighted value $6,990 in Figure 3.

5.2 Free-Form Query Processing

Figure 4 illustrates free-form query processing within our WoK prototype. To “understand” a
user query, our WoK prototype first determines which OSM-EO ontology applies to the query by
seeing which one recognizes the most instances, predicates, and operators in the query request.
Having chosen the Car extraction ontology illustrated in Figures 1 and 2, the WoK applies the
S-to-T transformation highlighting what it “understands” (“Find me a honda, 2003 or newer for
under 15 grand”). Figure 5 shows the result of this transformation—each predicate and each
operation is mapped correctly and the constraints of the OSM-EO model instance all hold. Given
this “understanding,” it is straightforward to generate a SPARQL query. Before executing the
query, our WoK prototype augments it so that it also obtains the stored annotation links. Then,
when our WoK prototype displays the results of the query in the lower-left box in Figure 4, it
makes returned values clickable. Clicking on a value, causes our WoK prototype to find the page
from which the value was extracted, highlight it, and display the page appropriately scrolled to
the location that includes the value. The right panel of Figure 4 shows several highlighted values,
which happens when the user checks one or more check-boxes before clicking.

5.3 Advanced Form-Query Processing

Figure 5: Generated Form.

The form in Figure 5 is for an alerter system
that we have implemented for craigslist.org.
We use it as feedback to a user that a query
has been understood (as just explained in Sec-
tion 5.2). As such, it illustrates not only the
ability of an OSM-EO ontology to “read” and
“understand,” but also its ability to “write.”
Note, for example, the conversion of “15 grand”
to “$15,000” and the mnemonic names for
predicates and operations. Besides providing
feedback, this writing ability also lets the user
know what else the OSM-EO ontology knows
about. A user then has the opportunity to ad-
just the query or add additional constraints.
For example, the user may also wish to know
if Toyotas are listed so long as they are not
Camrys. Clicking on OR for Make and adding
Toyota and then clicking on NOT for Model
and adding Camry makes this possible. The
plus icons show that more operators are avail-
able; clicking on the plus displays them. For
example, the user might wish to limit prices
with Between(Car.Price, $11K , $16K). Since
the OSM-EO ontology has general recognizers
for prices, a user can enter them in any recog-
nizable format.

6 Prior and Proposed Research

We have discussed our WoK vision from a theoretical perspective and sketched how to build a
WoK using sound techniques. We have also presented examples of how a user could use tools
to specify and find information that would be of interest, so that any information located and
extracted can be encoded, annotated, and queried. Our vision for a WoK and its associated KB’s
is informed by years of work in this area. Although there is still much work to accomplish toward
this goal, we have made incremental and innovative progress in developing and prototyping the
ideas, methods, and tools we have presented here. We now explain what we have accomplished
and what we intend to accomplish.

6.1 Prior NSF-sponsored Research

Our previous NSF-sponsored collaborative project “TANGO: Table ANalysis for Generating On-
tologies” leveraged the strengths of our research teams at Brigham Young University (IIS-0414644,
PI: David W. Embley) and Rensselaer Polytechnic Institute (IIS-0414854, PI: George Nagy).
It began on 8/01/2005 and ended 7/31/2008 with a one-year no-cost extension that ended on
7/31/2009. TANGO is a framework for organizing domain-specific factual data appearing in lists
and tables in independently generated web pages. Algorithms and software were developed for
extracting and interpreting individual lists and tables and integrating them with the contents of
other tables that have partially overlapping information.

The tools developed in TANGO along with the tools developed in an even earlier NSF-funded
project on extraction ontologies (IIS-0083127, PI: David W. Embley) are the starting point for the
proposed research. We list these tools below in Section 7 where we also show how they provide
the basis for the work we plan to do for this proposal.

In addition to developing tools, these two cross-disciplinary and cross-university endeavors
introduced 25 graduate students (including 6 women) and 9 undergraduate students to cutting-
edge research. The effort produced 17 MS theses ([Yau01, Jac02, Cha03, Din03, Tao03, Che04,
AM04, AK04, Wal04, Wes05, Par05, Zho05, Vic06, Jha08, Lyn08, Lia08, Pad09]). and 4 PhD
dissertations ([Xu03, AK07, AM07, Tao08]). and over 45 student-co-authored, peer-reviewed
publications, many of which are referenced throughout this proposal.

6.2 Proposed Work

In general, we intend to enhance and integrate the tools we have built so far, so that they can
enable the envisioned WoK. More specifically, however, we have four research objectives, which
we explain here.

Grammar-Based Data Frames for Relationship Sets

We have defined and implemented data frames to locate facts that correspond to simple exten-
sional objects and to link them to concepts (IIS-0083127). For the most part this work involves
only one-place predicates which typically represent the semantics of nouns and adjectives. Any
relationships between concepts identified and represented in this manner are currently only im-
plicit.

To accommodate relationships between concepts explicitly, rather than implicitly (as we do
now), we plan to extend our data-frame representations. This will involve developing data frames
for verbs and adapting our framework to accommodate this substantial enhancement. We ac-
knowledge that word-sense ambiguity will be more of an issue for verbally grounded data frames

than it has so far; luckily excellent resources have been developed to help specify subcategoriza-
tion frames, valency, and co-occurrence restrictions.3 In fact, we expect that our linguistically
grounded ontology formalism is ideally suited to help provide insight into the lexical semantics of
verb constructions.

By boosting the semantic content of our ontologies to involve clausal and predicative linguistic
content, we will be creating more versatile knowledge sources. In addition to these “atomic”
structures, we plan to define “molecular”-size ontology snippets that include a small number
of interconnected and hence interrelated data frames. Where text is coherent or structure is
consistently arranged, we will be able to better analyze and extract the associated content.

The nexus between syntactic structure and semantic content is well understood and has been
implemented in various frameworks. Some view the connection as interpretive: syntactic content
must first be recognized, and then semantic content is derived from it. Indeed, in prior research we
have extracted semantic predicates from syntactically parsed clinical-trial documents [LTPE08].
Others view the association as unfolding in tandem: syntactic and semantic structures are in-
crementally derived synchronously. With relationship sets that are both grounded in syntactic
structure and indicative of semantic correspondences, we should be in a position to explore the
full spectrum of approaches to the syntax/semantics interface.

Related research would also include recognition of meaningful aggregates of atomic concepts.
Detecting event structure in text, for example, would involve matching “molecular” snippets
of related ontological content. Traditionally, natural language processing approaches to event
detection involve extensive domain-specific and world knowledge, and our ontologies are capable
of providing exactly this kind of information.

Further, although we have worked some with high-precision filtering [XE08], we have not
yet applied our work to free-running text repositories, choosing instead to focus on data-rich
documents. Extending extraction ontologies with data frames for relationships and “molecular”-
size ontology snippets should help extend our range of coverage to more traditional text types,
but we also believe that we will likely need to adapt techniques from natural language processing
such as probabilistic approaches to parsing.

Synergistic Layout-Based/Ontology-Based Annotator

Based squarely on our previous NSF research on ontology-based annotation (IIS-0083127) and
on FOCIH’s layout-based annotation capabilities (IIS-0414644), we propose to build a synergistic
annotator that capitalizes on the strengths of one annotation method to largely overcome the
weaknesses of the other. We envision our proposed synergistic annotator working as follows:

• If we encounter a new page P we wish to annotate in a domain for which we have no
extraction ontology, we use FOCIH to first let a user define, via a form, the information of
interest and then fill in the form, by copy and paste, to annotate and gather the information
from P . FOCIH’s normal mode of operation is to generate a layout-based annotator for P
and all the sibling pages of P from the same site.

• Behind the scenes, we create the structure of an extraction ontology from the given form,
and we begin to linguistically ground the extraction ontology from the given information
from P and all its sibling pages from the same site. We initialize lexicons with the data
extracted from these pages. For example, from the country web pages we have experimented
with [TEL09], we can obtain fairly complete lexicons for countries, country capital cities,
religions, agricultural products, and so forth. Further, we can match data in P and its
sibling pages with data-frame recognizers from a library of data frames for common items

3See, for example, http://verbs.colorado.edu/verb-index/.

of interest. If, for example, one of the data items extracted from P is a phone number,
the system would associate the form field (equivalently, the OSM-EO object set) with the
phone-number data frame. The result is a reasonably good extraction ontology, built from
scratch with little user effort.

• If we now encounter a different page P ′ from a different site in the domain for which we have
generated an initial extraction ontology, we first apply the extraction ontology to annotate
the page. If P ′ is semi-structured, having regular patterns for data-element placement, the
system can take as input the extraction-ontology’s annotation and produce, in FOCIH-like
fashion, a layout-based annotator for P ′. (An interesting open research question here is
how accurate the extraction ontology has to be to enable the layout-based annotator to
be automatically generated. A human can be in the loop when the accuracy is too low to
correct, with the FOCIH interface, any mistakes made by the extraction ontology, so that
the generation of the layout-based annotator can always succeed.)

• The immediate use of the generated layout-based annotator is to annotate and extract
information from P ′ more accurately and to also accurately harvest the information of
interest from any and all sibling pages of P ′. In addition, however, the system can also
update the extraction ontology by augmenting lexicons and, perhaps, refining the selection of
data-frames from the library. Thus, we can semi-automatically “grow” extraction ontologies,
and as we use them in this synergistic fashion, they improve with use.

• Having learned by experience [TEL09] that sibling pages of an initial page are not as regular
as expected, the synergistic annotator can play yet another role in solving this problem.
First, it can help detect when the pattern breaks: i.e., when the layout-based annotator
returns nothing for a field or returns garbage but the extraction ontology finds data for the
field on the page. Second, it can rerun the pattern generator to discover an alternate pattern
for the field. In general, the synergistic annotator can use this mode of operation to also
detect and fix broken layout-based annotators (page wrappers) and thus help resolve the
so-called wrapper maintenance problem [LMK03, MHL03].

Structured Data Annotation

Extracting from and annotating structured documents is akin to work in reverse engineering,
which is a field of research unto itself. In previous work, most of it from NSF-sponsored research
(IIS-0414644), we have developed reverse-engineering algorithms to OSM-like conceptual mod-
els that preserve information and constraints: i.e., for normalized, constraint-explicit relational
databases [EX97], for XML-Schema documents [AKEL08, ME06], and for well structured sibling
tables of the kind often found on generated pages of hidden web sites [TE09].

For our proposal here, we intend to convert these reverse-engineering algorithms into data-
annotation algorithms for OSM-EO knowledge bundles (KBs). Thus, for example, we should be
able to directly annotate XML documents, allowing us to to superimpose knowledge bundles over
XML documents as well as ordinary web pages. Further, it should be clear from our discussion
above about our proposed synergistic annotator that reverse-engineering structured data to OSM-
EO allows us to constitute extraction ontologies for the application domain of the data. Then, as
explained in [LED+09], we should be able to cut out meaningful subcomponents from any large
application domain to constitute reusable extraction ontologies.

KB Information Organization

Much of what we have accomplished has been done as part of the work of master’s theses
and doctoral dissertations. We have begun to piece together these student projects into a unified

prototype, including a comprehensive integrated workbench that knowledge workers can exploit
to specify, manipulate, and use ontologies for their own information needs. Given the diversity of
project tools and their independent nature, integrating them together into a unified whole is and
will continue to be challenging.

Tool integration involves not only WoK creation and usage tools but also KB organization
and enhancement tools, which includes schema integration, record linkage, data cleaning, and
semantic enrichment—each, by themselves, entire fields of research. Data integration within KBs
can reduce uncertainty and mitigate the need for users to assimilate data from different sources
manually. Data linkage among KBs can lead to opportunities for cross KB data mining and
for serendipity by presenting researchers with (perhaps unexpected) connections among research
studies. Data cleaning and semantic enrichment can lead to community accepted KBs useful for
instruction and learning as well as question answering and fact finding. All of this is particularly
true in the current era of global language resource interoperability, and we expect to be part of
this emphasis in the technological landscape.

Although we have considerable experience with schema integration (e.g., [BE03, EJX01, EJX02,
EXD04, XE06]) and some experience with semantic enrichment [LE09], we need not resolve all, or
even any, of the issues in these areas of research to be successful. However, opportunities abound
and we can provide some basic data integration within KBs, some basic data linkage among KBs,
and some basic data cleaning and semantic enrichment in our organization and use of KBs.

7 Research Plan

Several related fields of research are at the heart of our work: information extraction [Sar08],
information integration [ES07], ontology learning [Cim06], and data reverse engineering [Aik98].
The WoK- and KB-construction approach discussed here is a unique, synergistic blend of tech-
niques resulting in tools to efficiently locate, extract, and organize information for research studies.
(1) It supports directed, custom harvesting of high-precision technical information. (2) Its semi-
automatic mode of operation largely shifts the burden for information harvesting to the machine.
(3) Its interactive mode of operation allows research users to do their work without intrusive
overhead. The KB tools for building a WoK are helpful assistants that “learn as they go” and
“improve with experience.”

We are not starting from scratch. We have already implemented several tools (as student
project prototypes): (a) An OSM-EO editor lets users graphically create (O, R, C) conceptual
models as Figure 1 shows, add (O, R, C ,I) instance data, and specify (O, R, C, I, L) linguistic
grounding for object sets as Figure 2 shows; the result is OntoES (our Ontology-based Extraction
System) [ECJ+99]. (b) An OntoES Alerter for craigslist.org lets users specify a search that runs
periodically and sends email when items satisfy the search criteria; Figure 5 is from this project.
(c) TISP [TE09] interprets and harvests information from sibling tables from hidden web sites.
(d) FOCIH [TEL09] lets users build ontologies via form specification and semi-automatically an-
notate a collection of pages from the same site; Figure 3 shows one of the interfaces for FOCIH.
(e) AskOntos [Vic06] and SerFR [AME07] are free-form query processors; the free-form query in
Figure 4 is an adaptation of these tools. (f) MapMerge [Lia08] allows users to merge populated
OSM-O model instances; it runs semi-automatically or automatically based on schema-mapping
algorithms [BE03, XE06]. Further, we have implemented several algorithms (also as student
projects): algorithms to convert an XML-Schema specification to an OSM-O conceptual schema
[AKEL08, ME06], algorithms to establish mappings from source-to-target schemas for schema in-
tegration [EJX01, EJX02, EXD04, XE06], and algorithms to semantically enrich semantic models
for canonicalized tables [LE09]. In connection with our OWL/RDF-generated ontologies and tuple

stores, we have successfully used SWRL within Protegé [NSD+01] to write and execute deductive
rules for (O, R, C, I, L, D) model instances. And, we have built a basic framework to execute
queries over these rules and the extracted base data, which supports the A component of (O, R,
C, I, L, D, A) model instances as Figure 4 shows.

We plan to carry out the proposed research according to the following timeline:

Graduate student 1 Graduate student 2 Graduate student 3
(Computational Linguistics) (Computer Science) (Computer Science)

1st aca-
demic year

Design grammar-based data
frames for relationship sets
and begin implementation.

1st
summer

Complete implementation, do
initial testing, and make
adjustments.

Assemble, enhance, and inte-
grate prior work on FOCIH
(layout-based annotator) and
OntoES (ontology-based an-
notator) and implement the
synergistic annotator.

Assemble, enhance, design and
build structured data annota-
tors for XML, well-formed re-
lational databases, and Wang
tables [Wan96, EHLN06].

2nd aca-
demic year

Design and carry out exper-
imental evaluation of data
frames for relationship sets

Design and carry out experi-
mental evaluation of the syn-
ergistic annotator.

Develop proofs for informa-
tion/constraint-preserving
transformations.

2nd
summer

Write up and publish results

3rd aca-
demic year

Extend “atomic” ontology
snippets to “molecular” snip-
pets and integrate results with
other KB and WoK tools.

Enhance and integrate developed KB and WoK tools.

3rd
summer

Test and evaluate KB construction tools and WoK performance; write up and publish results.

The three co-PI’s have worked together on topics related to this project for more than a decade.
Going forward, Lonsdale will be specifically responsible for supervising the research of Graduate
Student 1. Embley will have project director responsibilities and will specifically supervise the
research of Graduate Students 2 and 3. Liddle has always been the chief implementation architect
of our research efforts and will continue in this role.

For experimental evaluation, we plan to conduct experiments much as we have in the past.
We will establish test sets for training, development, and blind tests and compute precision,
recall, and F-measures to test implementations of our proposed grammar-based data frames for
relationship sets and our proposed synergistic annotator. For the synergistic annotator, we can
in addition check learning accuracy by checking for an increase in F-measure after automatically
updating an extraction ontology. Test web pages will come from a broad range of applications:
past applications have included government-published demographic statistics, items for sale (e.g.,
cars), apartment rentals, genealogy and family history, bio-research applications, clinical trials,
and many more. For structured data annotation, as we have in the past, we can prove that our
reverse-engineering algorithms preserve information and constraints. Finally, as we continue to
build and add tools to our WoK workbench, we can field-test them. We can deploy prototype
tools on the web and allow open alpha-testing. This testing should not only serve the purpose
of allowing us to obtain and adjust according to received feedback, but should also provide for
dissemination of our work to all who have interest in WoK-like tools.

The work we propose presents a grand vision—one that others share [BL07]. What is different
and innovative, however, is that the proposed work shows a practical way to move toward this
vision.

8 Significance

The intellectual merit and broader impact of the proposed work have the potential to make a
significant and positive difference in how people interact with information on the web, itself the
“great equalizer,” enabling diverse populations across the country and throughout the world to
connect and collaborate.

8.1 Intellectual Merit

Our research addresses the question of how to advance knowledge by direct use of the vast store
of heterogeneous information available on the internet. The methods and tools we have developed
and plan to develop involve the information extraction, integration, and access of several types
of data across various application domains. Specifically, we intend to provide an answer to the
question about how to turn lexical and syntactic symbols into semantic knowledge and ultimately
into a web of knowledge. We also intend to provide a way for untrained users to directly query
for facts in fact-filled knowledge bundles and to enable provenance trace-back to fact sources.

Our team of PIs/coPIs has complementary expertise in the underlying theory and technologies
supporting this effort, and we have collaborated in various combinations for many years. Our
previous NSF-funded efforts have helped develop the core of an infrastructure that has proven
reliable and flexible. We follow up-to-date software engineering principles in the development of
our code base. Our tools and knowledge representations are built following best-practice guidelines
for data encoding, annotation, and exchange.

The research we have proposed here directly addresses difficult issues that will require experi-
ence, imagination, and vision. We are confident that what we propose to accomplish, while based
on our prior work and hence somewhat evolutionary, is also taking our research into revolutionary
new directions that we are eager to explore.

8.2 Broader Impact

Benefit to Education. In our research group we collaborate with a variety of undergraduate and
graduate students—men, women, and both domestic and foreign students. The bulk of our request
is to support this student team. To broaden our impact on students we teach several graduate
courses (in three colleges) related to our work on web-based data extraction and integration
(Embley), information architecture and web development (Liddle), and computational linguistics
(Lonsdale). We plan to continue recruiting a diverse group of students and to continue mentoring
students individually, in collaborative lab and implementation work, and in weekly group research
meetings, as well as in the classroom.

Dissemination of Results. Our papers, presentations, and other artifacts appear on our project
web site [DEG]. We continually publish our work in scientific conferences, workshops, and journals.

Benefit to Society. The internet and the web have become an integral and essential part of
modern life. Looking forward, the vision for the semantic web is compelling and highly ambitious
and could benefit humankind in a significant way—if it can be developed. Significant challenges
remain, and we are poised to help in overcoming them. Ultimately, the semantic web will be
populated directly with annotated information created purposefully by developers and publishers.
But we cannot rely solely on hand-annotated sources because the ordinary web is too large to
engineer into a completely annotated whole. Our proposal provides a practical way forward.
With our method, ordinary web pages can become a part of the semantic web without the need
for highly engineered, largely manual annotation processes.

