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Abstract

Software systems analysis is a field in which analysts continually learn new tech-
niques and approaches to properly capture, maintain, understand, and develop more
efficient and effective software systems. We begin this research area overview by defin-
ing systems, systems analysis, and modeling. In subsequent sections, we focus on data
and behavior representation of the system under study, prototyping, and formalism.
Finally, we introduce some of the current work such as form-oriented analysis, fisheye
views to support system analysis, and extreme programming and consider future work
on software systems analysis such as extreme non-programming and new challenges
for conceptual modeling.

1 Introduction

By way of introduction, it is important to define software systems, systems analysis, and

modeling.

1.1 Systems

Several authors have defined a software system: “a system is an assemblage of parts forming

a complex or unitary whole that serves a useful purpose” [BF90], “a system is a group of

interacting objects” [EKW92], and “a system is a set or arrangement of elements that are

organized to accomplish some predefined goal by processing information” [Pre01].

From these definitions we draw our definition of a software system as a set of interacting

software components that serve a useful purpose. The components themselves may be

considered to be software systems; with respect to large systems they are considered to be

subsystems.

1.2 Systems Analysis

Systems analysis is the study of a system under consideration (which may be real or imag-

ined) [EKW92]. Its purpose is understanding and documentation of the essential charac-
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teristics of the system being studied. Its eventual goal is to come up with a specification

of the system under study.

1.3 Modeling

A model provides the blueprints of a system [BRJ99]. A good model includes all the effec-

tive components in the system under study and ignores all elements that are not relevant.

Modeling provides a better understanding and visualization of the system under study.

Every system can be described from different aspects using different models. A model

may emphasize components and their relationship to other components in the system un-

der study, the behavior of each component in the system or the interactions among the

components in the system under study.

2 Representation—Data

During analysis, analysts represent the data of the system under study in terms of metadata

concepts and relationships. Metadata helps the analysts focus more easily on matching the

data representation to the requirements of the system under study.

We consider three representations of data that are commonly used in systems analysis:

conceptual data modeling, knowledge representation, and ontologies.

2.1 Conceptual Data Modeling

In software systems analysis, conceptual data models have proven to be quite successful for

representing data at a higher level of abstraction. Conceptual models represent components

and their relationship to other components in the system under study in a graphical way at a

conceptual level. Some of the well known conceptual models are ER [Che76], ORM [Hal01],

ORM [EKW92], and UML [BRJ99]. (Note that “ORM” in [Hal01] is Object-Role Modeling

and is pronounced “orm”, while “ORM” in [EKW92] is Object-Relationship Model and is

pronounced “O”-“R”-“M”.)

• Entity Relationship Model [Che76]: ER models were introduced by Chen in his classic

1976 article to represent the conceptual structure of data in a database system. The

ER modeling constructs are entities, attributes, and relationships among the entities.

In ER diagrams (ERD’s) entities are represented as rectangles, relationships among

entities are represented as diamonds connected by lines to entities, and attributes

are represented by ovals hanging off lines attached to entities. Later modifications to

classic ERD’s include ISA and CONTAINED-IN relationships [TYF86].
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• Object-Role Modeling [Hal01]: ORM consists of a set of objects (entities or values)

that play roles (parts in relationships). In ORM models there are no attributes which

is the main feature that distinguishes them from ER models. The number of roles in

each relationship set indicates the type of the relationship set (a unary relationship

set has one role, a binary relationship has two roles, a ternary relationship set has

three roles). ORM has mandatory constraints, uniqueness constraints, and subset

constraints. Mandatory constraints indicate that the role that an object plays is

mandatory. Uniqueness constraints indicate that the object plays the role only once.

Subset constraints indicate that an object is a subset of another object.

• Object-Relationship Model [EKW92]: ORM is a conceptual model consisting of ob-

ject sets, relationship sets, and constraints over these object and relationship sets. An

object set may be a subset of another object set in a generalization/specialization hi-

erarchy (ISA hierarchy). An ISA hierarchy may be constrained by partition (]), union

(∪), or mutual exclusion (+) among specializations. Any object-set/relationship-set

connection may have a role, but a role is simply a shorthand for an object set that de-

notes the subset consisting of the objects that actually participate in the connection.

An ORM also has aggregation, association relationship sets to model respectively,

subpart/superpart and set/member relationships.

• Unified Modeling Language [BRJ99]: UML is an object-oriented modeling approach.

UML data diagrams consist of classes (rectangles) and relationships that connect

classes (paths with different kinds of lines used to distinguish the kinds of relation-

ships). Classes represent the objects in the system under study. Classes must have a

name, and may have attributes and operations. The relationships include dependency,

generalization, association, role, or aggregation relationships.

2.2 Knowledge Representation

The objectives of knowledge representation are: (1) having a representation that is rich

enough to represent all needed information, (2) having a representation that is as close

to the system under study as possible, and (3) having a representation that is as robust

as possible, so that small changes in the system under study result in small changes in

the representation. Various techniques for knowledge representation are used in systems

analysis, but semantic networks [Gri82] and frames [Min75] are the most common.

• Semantic networks [Gri82] are the most popular graphical method for representing

knowledge. This technique uses object-oriented concepts to represent knowledge,
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making use of classes, class properties, object instances, and inheritance. Semantic

networks are used basically as a visual representation. Common relationships are is-a,

has-a, owns, and made from.

• Frames [Min75] have proven to be good models for representing real-world objects. A

frame is a holistic data structure based on object-oriented programming technology.

A frame contains related knowledge about an object, which is derived from a class to

which the object belongs. Frames can show complex relationships, graphic informa-

tion, and inheritance in a concise manner. A frame is a collection of slots and fillers

that define an object. A slot is like a field within a table that holds values, called

fillers, within a frame.

2.3 Ontologies

An ontology in philosophy refers to a conceptualization of what can exist or what can be in

the world [Bun77]. Ontologies have been used as a source of theory to investigate tools and

techniques used in the analysis and design of information systems. A key development in

the use of ontologies for the study of information systems is the work of Wand and Weber

[WW90], based on Bunge’s ontology [Bun77, Bun79]. A common working definition of

an ontology is Gruber’s statement that an ontology is an explicit specification of a shared

conceptualization [Gru93].

Ontologies are used in systems analysis for the following three reasons: (1) ontologies

facilitate the process of identifying the requirements of the system and understanding the

relationships among the components of the system under study; (2) ontologies improve the

reliability of software systems; and (3) ontologies facilitate the design of reusable systems.

Many concrete ontologies have been developed. In knowledge representation, well known

contributions include Ontolingua [Gru93], CYC [LG90], and the XML based schemas, the

latest of which is OWL [HPSH03].

• Ontolingua [Gru93]: The Ontolingua language is based on KIF (Knowledge Inter-

change Format) and the Frame Ontology. KIF has a declarative semantics and is

based on first-order predicate calculus. It provides definitions for object, function,

relation, and logical constants. KIF is a language for knowledge exchange and is

tedious to use for the development of ontologies. Thus, the Frame Ontology is built

on top of KIF and provides definitions for object-oriented and frame-language terms

like class, subclass-of, and instance-of. Ontolingua lets the developer decide whether

to use the full expressiveness of KIF, where axioms can be expressed, or to be more

restrictive during the specification by using only Frame Ontology terms. An ontology
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developed with Ontolingua is typically defined by: relations, classes (treated as unary

relations), functions (defined like a relation), individuals (distinguished objects), and

axioms (relating these terms).

• CYC [LG90]: CYC provides a foundation for common sense reasoning by developing

ontologies for a wide variety of domain-specific applications. Knowledge in CYC is

represented in the form of assertions in a variant of first-order-logic called CYCL. The

CYC knowledge base itself contains simple assertions, interface rules, and control rules

for its interface; an interface engine can be used to drive new assertions using this

knowledge base.

• Web Ontology Language (OWL) [HPSH03]: OWL is a standard ontology language for

the web and an interchange format for ontologies. It unifies three useful aspects for on-

tologies: knowledge modeling primitives provided by frame systems; formal semantics

and efficient reasoning support from description logics; and a syntax compatible with

the Web standard. It provides three sub-languages that meet different users’ needs:

(1) OWL-Lite can provide a class hierarchy together with some simple constraints,

(2) OWL-DL is based on description logic formalisms which allow for powerful logic

expressions, and (3) OWL Full enables maximum expressiveness, without regard for

computational limits. OWL is an extension of RDF and RDF Schema.

There is no strict line between ontologies and conceptual data models, but ontologies

are typically more general and more reusable; are intended for multiple purposes, goals,

and users; are more easily shareable; and take a stronger stand on semantics of concepts.

3 Representation—Behavior

An important goal of analysis is to capture and communicate not only the static aspects

of a system under study, but also its dynamic behavior. Behavior may be the behavior of

each component in the system or interactions among the components in the system under

study. There are several behavior models commonly used to describe the behavior of the

system under study including Petri nets [Pet77], finite-state machines [Cho78], statecharts

[Har87], and state nets [EKW92].

• Petri Nets (PNs): Petri nets were first introduced in 1962 by C.A. Petri and were

described well by Peterson [Pet77]. A Petri net model has two types of nodes: places

and transitions.
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Places can contain tokens which are used to simulate the dynamic and concurrent

activities of systems. Once tokens are assigned to places, the resulting Petri net is

said to be marked. A transition is enabled if each of its input places contains at least

one token. Only enabled transitions can fire, and when a transition fires it consumes

a token from each input place and produces a token for each output place.

There are three kinds of arcs in petri net graphs: input arcs, output arcs, and inhibitor

arcs. Input arcs are arrow-headed arcs from places to transitions; output arcs are

arrow-headed arcs from transitions to places, and inhibitor arcs are circle-headed arcs

from places to transitions. In Petri-net modeling, places can represent conditions,

and transitions can represent events. A token arriving at a place can be interpreted

as a true condition.

Petri nets have gained popularity in recent years because of their usefulness in model-

ing and analyzing concurrent systems. However, the concept of time is not explicitly

provided in Petri nets, which limits their usefulness for real-time systems.

• Finite State Machines (FSM) [Cho78]: Finite state machines (FSM) are used in many

reactive systems to describe the dynamic behavior of an object based on its state.

Early on [Cho78] suggested using finite-state models to design and test small software

components. Finite state machines can be represented as graphs where states are

represented by circles and arcs are labeled with an event and an (optional) output

event. A transition occurs if the system is in the state at the beginning of the arrow

and the event on the transition occurs. The action is executed, and afterwards the

system is in the state at the end of the arrow. Finite state machines cannot model

concurrent systems.

• Statecharts [Har87]: Statecharts extend traditional FSMs to include hierarchy, syn-

chronized concurrency, and global communication. Statecharts consist of states, tran-

sitions, and actions. A transition has a trigger. The triggers of the transitions are

all events of two types: external events that come from external sources and internal

events that come from internal sources. The trigger of a transition may also include

a condition. A transition can be labeled not only with a trigger that causes it to

be taken, but also, optionally with an action separated from the trigger by a slash.

When the transition is taken, the specified action is carried out instantaneously.

• State Nets [EKW92]: State nets are used to model the behavior of object instances

of an object class. Every object set has a state net that documents states, tran-

sition conditions, and actions for that object set. The state net consists of states
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and transitions. Transitions are represented as rectangular boxes with a horizontal

dividing line. The upper part of a transition box contains its trigger. A trigger gives

the condition that, when met, may cause the transition to fire. The lower part of

a transition box contains its action, if any. Actions are operations that take place

when the transition fires. Arrows (directed arcs) connect one or more states to a sin-

gle transition. Arrows may have single-heads/single-tails, single-heads/multiple-tails,

or multiple-heads/single-tails. Arrows that point to transitions are called in-arrows,

while arrows that point away from transitions are called out-arrows. An in-arrow

always has a single head. An out-arrow always has a single tail. State nets can have

both inter-object concurrency and intra-object concurrency. Inter-object concurrency

happens when several objects are in various states and transitions at the same time.

Intra-object concurrency happens when an object instance is in more than one state

or transition of a single copy of a state at any point in time.

4 Prototyping

Prototyping is the technique of constructing a partial implementation of a system so that

customers, users, or developers can learn more about a problem or a solution to that

problem [Dav92]. It is a partial implementation because if it were a full implementation, it

would be the system, not a prototype of it.

There are at least two types of prototyping—throwaway and evolutionary.

• In the throwaway approach, the prototype software is constructed in order to learn

about the problem or its solution and is usually discarded after the desired knowledge

is gained.

• In the evolutionary approach, the prototype is constructed in order to learn more

about the problem or its solution. Once the prototype has been used and the required

knowledge gained, the prototype is then adapted to satisfy the new better understood

needs. The prototype is then used again, more is learned, and the prototype is re-

adapted. This process repeats indefinitely until the prototype system satisfies all

needs and has thus evolved into the real system.

Exemplary descriptions of prototyping include [BBC91, Hab91, JEW95].

5 Formalism

Formal methods are mathematically based techniques for describing system properties.

Formalization can lead to models that are: (1) consistent such that no contradiction remains
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between specified components; (2) complete which guarantees all the needed information is

present; and (3) unambiguous such that all information used is precisely defined.

At present, formal methods have not gained the level of use that many had hoped for.

There are several reasons: (1) formal specification focuses on function and data (timing,

control, and behavioral aspects of a problem are more difficult to represent); (2) some

elements of a problem (e.g. human/machine interfaces) are better specified using graphical

techniques or prototypes; and (3) formal methods typically require understanding of various

types of logics, set theory notation, and predicate calculus. Although formal methods are

not as yet used widely in the industry, when used they do offer substantial advantages over

less formal techniques.

A variety of formal specification languages are in use today, including Communicating

Sequential Processes (CSP) [Hoa85], Vienna Development Method (VDM) [Jon91], and Z

[Spi89].

• Communicating Sequential Processes (CSP) [Hoa85]: CSP is a formal language used

to describe parallel systems. CSP describes processes in terms of entities (processes)

which interact using events (which can be thought of as messages). The representation

has two halves: processes can be described in terms of the events in which they may

participate, and groups of processes can be described in terms of the traces of events

in which they participate.

• The Vienna Development Method (VDM) [Jon91]: VDM is based on set theory and

first order predicate calculus. A VDM specification focuses on the functions of the

system that define ‘what’ the system does. The result of a VDM design process is a

series of specifications in which each succeeding specification is less abstract and closer

to the actual implementation than the preceding specification. Each specification is

tied to the preceding specification by a correctness argument. Each VDM specifica-

tion, regardless of its level of abstraction, can be viewed as a set of state descriptions.

Each state description is made up of a set of state variables, operations on the state

variables, and invariants on the state variables defined as pre and post-conditions.

These invariants form the correctness argument for the specification.

• Z [Spi89]: Z is based on typed set theory and first order predicate logic. Z specifi-

cations are structured as a set of schemas that introduce variables and specify the

relationships between these variables.

Another example of formalism is Description Logics (DLs) [BCM+03] which are for-

malisms commonly used for knowledge representation. The semantic characterization of
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DLs is based on first-order logic. DLs represent the knowledge of an application domain

first by defining the relevant concepts of the domain (its terminology), and then using these

concepts to specify properties of objects and individuals occurring in the domain. The basic

building blocks of DLs are concepts, roles, and individuals. Concepts describe the common

properties of a collection of individuals and can be considered as unary predicates which

are interpreted as sets of objects. Roles are interpreted as binary relations between objects.

Description logic systems have been used for a variety of applications including conceptual

modeling, software management systems, planning systems, and configuration systems.

6 Recent Work

Some of the current research related to software systems analysis are form-oriented analysis,

fisheye views to support systems analysis, and extreme programming.

6.1 Form-Oriented Analysis

Form-Oriented Analysis [DW04] is a new analysis technique for form-based applications.

Form-based style systems present to the user at each point in time a page that offers

information as well as a number of interaction options, typically forms. If the user has

filled out a form and submits the form, the system processes the data and generates a

response page. This response page again offers different interaction options to the user. A

complete system specification is given in four documents: a form chart, a dialogue constraint

annotation, a data dictionary, and semantic data model.

A form chart models the system interface as a bipartite state transition diagram that

alternates between two kinds of states. The first kind of state is called a client page,

which represents the form that a user fills. The system remains in such a client page state

until the user triggers a page change. The second kind of state is called a server action.

Server actions represent the system’s action in response to a page change. These states are

left automatically by the system and lead to a new client page. Each change in a client

page leads to a server page. The transitions leaving a client page are called page/server

transitions or options; the transitions from server actions to pages are called server/page

transitions. The form chart is annotated by declarative dialogue constraints, written in

Dialogue Constraint Language (DCL), an extension of Object Constraint Language (OCL).

The data dictionary represents each client page and server page as a rectangle that has a

name of the page (client page name or server page name) and contains the information

shown on the page with their types. The semantic data model represents the system state

between user interactions.
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6.2 Using Fisheye Views to Support Systems Analysis

A recent technique introduced in [TSSO04] uses fisheye views as an aid to systems analysis

and design. The idea is to make the conceptual models able to represent an entire system

and a specific part of the system at the same time. The designer in this case can see a

subprocess in the context of the entire system, while emphasizing a subprocesses of interest

by enlarging the scale. The advantages of using fisheye views are to increase the effectiveness

of system design due to the ability to recognize and eliminate redundancy and to effectively

see linkages between subsystems.

Actually, this is similar to high-level abstract views introduced more than decade ago

in [EKW92]. High level abstractions reduce the complexity in large models. Their purpose

is to represent fundamental system concepts, whereas lower level abstractions unfold sup-

porting detail. Rather than using fisheye views, high-level constructs are shaded. When

they are imploded, the shading shows that the designer can explode them to reveal more

information. When they are exploded, the shading helps show the extent of the high-level

construct.

6.3 Extreme Programming (XP)

Although some people consider XP primarily as programming, it also includes the under-

standing and documentation steps of systems analysis. XP was originated by Kent Beck

[Bec00] as a new methodology for small-sized teams developing software with vague or

rapidly changing requirements. XP techniques can be viewed as methods for rapidly build-

ing and disseminating institutional knowledge among members of a development team. The

goal is to give all developers a shared view of the system which matches the view held by

the users of the system. To this end, XP favors simple designs, metaphors, collaboration of

users and programmers, frequent verbal communication, and feedback. In XP, the analyst

and the developer are no longer separate; they are basically united in a single unit. In

XP, progress during software development is measured and tracked based on the how well

the code implements the observable behavior of the system. The code is the model. XP

discourages documentation by making the requirement from the team only the code.

When developing software systems with XP, the customer is asked to sit with the XP

development team. Early on, the customer describes the system as a set of stories which

are high-level statements of what the features of the system to be implemented should be.

Stories are recorded on index cards. Developers estimate how long each story will take to

implement. The customer decides, based on value and cost, the order in which stories will

be developed. The team works iteratively: the customer writes tests and answers questions
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while the programmers program. The XP customer has frequent opportunities to change

the team’s direction if circumstances change. Because testing is so prominent, the customer

is aware of the project’s true status much earlier.

Some of the drawbacks of XP are: (1) it is designed for a single small team of fewer

than a dozen team members; therefore it has problems scaling up for large projects; and

(2) XP may not be applied to a system where planning ahead is necessary.

7 Summary and Future Directions

In conclusion, software systems analysis has been here for a long time, and it covers a lot of

things. We introduced some of its major aspects such as data and behavior representation

of the system under study, prototyping, and formalism. In addition, we presented some of

the recent work in that field. As we conclude, we mention some of the future directions in

the field: extreme non-programming and new challenges for conceptual modeling.

7.1 Extreme Non-Programming (XNP)

Tony Morgan in his keynote address at ISTA in July 2004, introduced the idea of extreme

non-programming, which is a challenge in developing software systems. He motivated the

change in the development process of software systems as follows: (1) the overall process of

developing software has not changed much since the 1960s; (2) currently produced software

is expensive, takes a long time to develop, and has low quality; and (3) most problems

arise during analysis and specification in software development. In 80% of the cases the

majority of problems can be traced back to the lack of a sufficient clear definition of project

requirements.

In extreme non-programming the process of developing software systems is the follow-

ing: First the customers describe their needs to the analyst. The analyst translates the

customers’ description into a model. Then the machine generates a human-readable view

of that model which allows customers to clear up any misunderstandings before going fur-

ther. A model can keep changing until the description is acceptable to the analyst and the

customers. The next step is to automatically translate the model into code. In XNP, both

the customers and the analyst share the same description of the problem; but they handle

it in the way that is best suited for each.

Potential benefits of applying extreme non-programming are: (1) fast development for

a software system; and (2) improved software quality.
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7.2 New Challenges for Conceptual Modeling

Michael Carey in his ER2003 keynote address in Chicago issued a challenge to the con-

ceptual modeling community to produce a simple conceptual model that (1) works well

with XML and XML Schema; (2) abstracts well for conceptual entities and relationships;

(3) scales to handle both large data sets and complex object interrelationships; (4) al-

lows for queries and defined views via XQuery; and (5) accommodates heterogeneity. The

conceptual model must work well with XML and XML Schema because XML is rapidly

becoming the de facto standard for business data. Because conceptualizations must sup-

port both high-level understanding and high-level program construction, the conceptual

model must abstract well. Because many of today’s huge industrial conglomerations have

large, enterprise-size data sets and increasingly complex constraints over their data, the

conceptual model must scale up. Because XQuery, like XML, is rapidly becoming the

industry standard, the conceptual model must smoothly incorporate both XQuery and

XML. Finally, because we can no longer assume that all enterprise data is integrated, the

conceptual model must accommodate heterogeneity. Accommodating heterogeneity also

supports today’s rapid acquisitions and mergers, which require fast-paced solutions to data

integration.
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