Agent-Oriented Software Engineering
“Research Area Examination”*

March 31, 2005

1 Introduction

Agent-oriented software engineering is considered to be a new paradigm.
It represents an exciting new means for analyzing, designing, and building
complex software systems. Because it is a new paradigm, researchers have
directed their efforts towards accomplishing three primary tasks.

The first task is to qualitatively prove that this technology is an appro-
priate way to effectively handle the complexity of current software systems.
The common argument is based on showing that agent-oriented software
engineering is a natural evolution of object techniques and is often better
in dealing with the complexity of today’s software systems. Signs of such
an evolution in the current software are: 1) most software systems are now
de-facto concurrent and distributed and are expected to interact with com-
ponents and exploit services that are dynamically found on the web and 2)
software systems tend to be open in that they exist in dynamic operating
environments where new components join these systems and existing compo-
nents leave them. Current technologies (e.g. object technologies) fall short
or at best require extremely hard solutions for today’s complex software.

The second task is to build appropriate tools and abstractions to represent
the new concepts introduced by this new paradigm. Researchers have been
trying to extend UML (Unified Modeling Language) with new notation so
that it becomes appropriate for agents. Other researchers take agent theory
as their inspiration and produce notation peculiar to agents.

The third task is to take agent technology from research to industry. This
requires the creation of methodologies for guiding developers to efficiently and
inexpensively analyze and design agent-based systems.

*This work is supported by the National Science Foundation under grant #I1S-0083127.

This survey is outlined as follows. Section 2 introduces the fundamental
concepts of software engineering. Section 3 provides an overview of agent
theory. Section 4 introduces agent-oriented software engineering. Finally, in
section 5, we give some directions for future work in agent research.

2 Software Engineering

The purpose of this section is to highlight the main principles of software en-
gineering. The relevancy of this section emerges from the fact that software
engineering principles provide the basis for agent-oriented software engineer-
ing.

2.1 Fundamentals of Software Engineering [GJM91]

This book covers the fundamental principles of software engineering. The
book discusses in detail many principles, including rigor and formality, sepa-
ration of concerns, modularity, abstraction, anticipation of change, generality,
and incrementality, and their effects on software engineering. Software de-
sign is discussed in detail. Specifically, the design activity and its objectives
such as design for change, modularization techniques, and design notations.
The book also discusses top-down and bottom-up strategies to design a sys-
tem. Software specification is also discussed. Specifically, the book focuses
on uses of specification (e.g. statement of user needs), specification qualities
(e.g. clearness, consistency, etc.), classification of specification styles and
how the specification highly affects the whole software development process.
The types of system verification such as testing and analysis are also cov-
ered. The book also discusses the software production process in much detail.
Specifically the book sheds light on many software production process mod-
els such as the water fall model and the evolutionary model. Finally, the
book discusses in detail the tools and the environments that can be used to
automate or semi-automate some of the software engineering activities and
how these tools can simplify the job of engineers

2.2 Software Architecture: A Roadmap [Gar00]

The important trends of software architecture in research and practice are
addressed in this paper. First, the author discusses the key roles of architec-
tures in software systems development (e.g. as a bridge between requirement
and implementation). Second, the author summarizes the past and cur-
rent state of software architectures. In the past decade, architectures were

ad-hoc. Descriptions depended on informal box-and-line diagrams and ar-
chitectural choices were made by adapting some previous design. Today,
the technological basis for architectural design has improved. Specifically
three advancements have had a major role in improving architectural design:
Architectural Description Languages and Tools such as the Adage language
to formally represent and analyze architectural design, Product Lines and
Standards to exploit commonalities across multiple products, and Codifica-
tion and Dissemination to spread knowledge about architectures and tech-
niques. Third, the author discusses the future changes in the software world
and their impacts on software architecture. Three major trends and their
impacts on software architecture are discussed. The first trend is Chang-
ing Build-Versus-Buy Balance where software is not totally developed in
the same company; rather it is built from components bought from other
companies. This definitely has consequences for software architecture, ex-
amples of which are the need for industry-wide standards and the need for
standardization of notations and tools across vendors. The second trend is
Network-Centric Computing, which changes the nature of software from hav-
ing central control to being distributed. Distribution creates new challenges
for software architecture, examples of which are the need to scale up with the
size and variability of the Internet and to support computing with dynami-
cally formed coalitions of distributed resources. The third trend is Pervasive
Computing, which has many consequences for software architecture, exam-
ples of which are the need for architecture suited for systems in which the
resource usage is the critical issue and architectures that need to be more
flexible.

3 Agent Theory

The purpose of this section is to introduce software agents, agent-based sys-
tems, and multi-agent systems. The relevancy of this section immediately
emerges from the fact that agent-oriented software engineering takes the
agent as its fundamental abstraction.

3.1 Introduction to Software Agents [Bra97|

In the first chapter of his book (software agents) Bradshaw discusses two ma-
jor concepts, namely the definition of software agents and the advantages of
software agents. According to Bradshaw an agent is “a software entity, which
functions continuously and autonomously in a particular environment, often
inhabited by other agents and processes.” The requirement for continuity and

autonomy comes from the desire that agents are able to carry out activities
in a flexible way without direct guidance from a human. Also, agents that
inhabit the same environment should ideally be able to cooperate. Agents
usually enjoy some properties such reactivity—able to sense the environment
and act on it and socialability—able to cooperate. In addition, Bradshaw also
discusses how the agent could be classified using different perspectives. For
example, the Al (Artificial Intelligence)community distinguishes two types
of agents, weak and strong agency, and the DAT (Distributed AI) community
classifies agents by their degree of problem solving (e.g. reactive agents and
intentional agents).

Software agents provide two major advantages. First they can be used
to simplify distributed computing. The major barrier to intelligent interop-
erability is that the low level of interoperability among systems. Software
agents can help mitigate this problem by embedding one or more peer agents
within cooperating systems. Applications can request services through these
agents at a higher level corresponding more to user intentions than to spe-
cific implementations. Second, software agents can overcome the limitation
of the current user interfaces approaches. Examples of these limitations in-
clude large-scale spaces, actions in response to immediate user interaction
only, and no improvement of behavior. Software agents can help overcome
these limitations by allowing an indirect management style of interaction.
In such an approach, users are not required to spell out each action for the
computer explicitly; instead, the flexibility of software agents will allow them
to only give general guidelines

3.2 Is it an Agent or just a Program?”: A Taxonomy
for Agents [FG96]

The authors of this paper try to make a clear distinction between agents
and normal programs by formally defining the notion of an agent. After
listing many definitions given by others and finding neither consensus on
what constitutes an agent nor how an agent differs from a normal program,
the authors give their own: “An autonomous agent is a system situated
within and part of an environment that senses that environment and acts on
it, over time, in pursuit of its own agenda and so as to effect what it senses
in the future.”

This definition seems to rule out many ordinary programs, for instance, a
payroll is a program, but not an agent, because it fails to satisfy the definition
above, namely it fails to affect “what it senses in the future” and also fails
“over time.” However, they observe that this definition is still very broad

and even a thermostat could qualify as an agent, therefore they discussed
various properties of agents and offered a taxonomy that covers most of the
agent examples found in literature. Below this initial classification, they
suggest that agents could be further categorized by their control structure,
their environment (e.g. planning, database, file system, network, Internet),
by languages in which they are written, or by applications on which they
operate.

3.3 A Roadmap of Agent Research and Development
[JSWOS8]

The authors summarize many issues in agent research. First, the notion of
agent is defined as “a software system that is situated in some world and is
capable of flexible autonomous actions in order to meet its design objectives.”
Here, situated means that an agent receives input from its world and acts on
that world, autonomy means an agent acts without direct intervention of a
human and has control over its state and behavior, and flexible means reactive
(responds to world changes in a timely fashion), proactive (goal-driven), and
social (interaction ability). Second, an agent-based system is defined as a
system whose key abstraction is an agent and could have one or more agents
and a multi-agent system is defined as a collection of interacting agents, which
is ideally suited for representing problems that have multiple problem solving
methods/entities. Third, the authors briefly show that the current interest
in autonomous agents did not emerge from a vacuum because researchers
from different disciplines have been talking about closely related issues such
as artificial intelligence, which is concerned with building artificial artifacts
that if they sense the environment, they can be considered as agents, and
objects and concurrent object systems, where objects are similar to agents
in that both support, for instance, encapsulation, but largely differ in other
aspects such as the degree to which objects and agents are autonomous.
Concurrent objects, however, are close to the notion of agents although not
capable of flexible behavior. Fourth, the authors point out some incentives for
the increasing interest in multi-agent systems such as the ability to provide
robust behavior and to allow inter-operation among legacy systems.

3.4 Agent Communication Languages: Knowledge
Querying and Manipulating Language—KQML
[FLM97]

KQML is a high-level, message-oriented communication language and proto-
col for information exchange among agents. The KQML language is divided
into three layers. The content layer carries the actual message that the send-
ing agent wants to deliver to a receiving agent. The communication layer
encodes a set of parameters that describe some lower level communication
parameters such as a sender, a receiver, and a unique identifier that uniquely
identifies a message. The message layer specifies the speech act (or performa-
tive) of the message, the ontology that defines the concepts in the content,
and the language in which the content is encoded.

4 Agent-Oriented Software Engineering

The four subsections in this section provide an overview of the main topics
in agent-oriented software engineering (AOSE). Section 4.1 justifies this new
paradigm in software engineering. Section 4.2 provides an overview of the
modeling tools that are used to model agent systems. Section 4.3 gives some
of the methodologies. Section 4.4 discusses the reuse in agent paradigm.

4.1 On Agent-Based Software Engineering [Jen00]

In this paper, the author advocates the agent-oriented approach to software
engineering. He makes a qualitative argument to show that the agent ap-
proach is very effective in dealing with the complexity exhibited in today’s
software systems. The author argues that analyzing, designing, and imple-
menting complex software systems as a collection of interacting, autonomous,
flexible components (i.e. agents) provide software engineers several advan-
tages over contemporary methods. The author uses qualitative justification
(although a quantitative one would be more compelling, but no supporting
data is available) to support his argument. The qualitative justification is
built on three principles, which are exactly the principles used by software
engineers to deal with the complexity of systems: 1) showing that agent-
oriented decompositions are an effective way of partitioning the problem
space, 2) showing that the key abstractions of agent-oriented mindset (agents,
interactions, and organizations) are a natural means for modeling complex
systems, and 3) showing that the agent-oriented philosophy for modeling

and managing organizational relationships is appropriate for dealing with
dependencies and interactions that exist in complex systems.

In addition, the author investigates the possibility of wide adoption for
agent-oriented techniques. He considerers two pragmatic issues that deter-
mine whether agent-oriented will catch on as a software engineering para-
digm, namely the degree to which agents represent a radical departure from
current software engineering thinking and the degree to which existing soft-
ware can be integrated with agents.

4.2 Agent Modeling Tools

This section provides an overview of the tools (languages) to model agent
systems. Two major papers are presented here.

4.2.1 AML: Agent Modeling Language Toward Industry-Graded
Agent-Based Modeling [CTCGO04]

The authors describe a modeling language, called AML (Agent Modeling
Language). AML is a semi-formal visual language for specifying, modeling,
and documenting systems that incorporate concepts from Multi-Agent Sys-
tems(MAS) theory. The motivation behind AML is the need for a highly
expressive modeling language suitable for developing software systems based
on multi-agent technologies. AML takes UML 2.0 as its starting point and
augments it with modeling concepts that suitably capture typical features
of MAS. In addition, AML can be extended with new concepts to cover any
new concepts in MAS. AML provides constructs to model many aspects of
MAS. Examples include:

1. Constructs to model architectural aspects of MAS (e.g. ontologies and
social aspects).

2. Constructs to model the aspects of MAS behavior (e.g. communicative
interactions)

3. Constructs to model mental aspects of agents (e.g. beliefs, goals, plans,

and mental relations).

4.2.2 Representing Agent Interaction Protocols with Agent UML
[PO04]

The authors suggest extensions to the Unified Modeling Language, UML 2.0,
to efficiently support agent protocol modeling. Specifically, the authors sug-
gest some extensions that increase the expressivity of sequence diagrams to

7

take into account the requirement imposed by the richness of agent interac-
tions. The extensions affect the following UML 2.0 elements.

1. Lifeline. Lifeline can represent a set of agents rather than a unique
agent as in UML 2.0 through adding roles and grouping agents that
have the same behavior in this interaction. Also, the dynamics of roles
are captured by adding two stereotypes << addrole >> and
<< changerole >>.

2. Messages. Important modifications to UML 2.0 message elements in-
clude the name of an instance agent, which must be written on the
message close to the receiver lifeline (since the lifeline can represent
more than one instance agent) and cardinality, which is added on the
message to specify how many agents receive the message (since each
lifeline may represent more than one instance agent).

3. Protocol Template. The purpose of protocol template is to create
reusable patterns for useful protocol instances. To define a protocol
template, Agent UML provides a stereotype << unbound >>. The
unbound protocol can be instantiated by binding its parameters.

4. Action. Sending and receiving messages imply performing actions with
agents. An action is depicted as a round-cornered rectangle linked to
the message that triggers it. The action is written inside the round-
cornered rectangle.

4.3 Methodologies

Agent researchers have produced methodologies to assist engineers to cre-
ate agent-based systems. Some researchers have taken agent theory as their
starting point and have produced methodologies that are rooted in that the-
ory (Section 4.3.1). Other researchers have taken object techniques as their
point of departure and have enriched them to be suitable for agents (Sec-
tion 4.3.2). Others have taken knowledge engineering concepts and extended
them (Section 4.3.3). Researchers also have tried to assemble methodolo-
gies by combining features from different methodologies (Section 4.3.4). Yet
other researchers have produced methodologies based on both agent and ob-
ject technologies (Section 4.3.5).

4.3.1 Approaches Based on Agent Technology

The rationale behind these approaches is that, despite the fact that objects
are superficially similar to agents, there are significant differences. Hence,

methodologies should logically be rooted in agent theory. In what follows,
we briefly outline the important features of the most cited methodologies.

Methodologies that are based on agent theory conceive a multi-agent
system as a society rather than collections of interacting entities [ZJWO03,
Omi01, BNR*02, JPS02]. These methodologies cover analysis and design;
however, [JPS02] goes a step further by supporting requirement gathering.
Generally, the analysis phase of these methodologies produces three models.
The role model describes the basic skills (roles) needed by a system to ac-
complish its goals. A role is described by the role schema, which contains
information about the role such as its responsibilities. The role model in
[Omi01] describes not only individual roles, but also groups of roles that are
in charge of doing some social tasks. The environment model, called re-
source model in [Omi01], describes the place in which a system is situated.
This description includes, for instance, the services provided by the environ-
ment and the data a role can access or manipulate. The interaction model
describes a set of protocols associated with roles. The design phase elabo-
rates on the analysis models and produces more detailed models. The agent
model [ZJWO03, JPS02, Omi01] describes the agent classes that populate the
system and how many instances of each agent must be used. The service
model [ZJWO03, JPS02] describes the services that an agent must provide. It
is worth mentioning though that [OmiO1] deals only with inter-agent issues
and the intra-agent issues are completely ignored. As a result, it has noth-
ing to say about the service model; instead it produces two models, namely
a society model, which describes how a group of roles is mapped to a soci-
ety of agents, and an environment model, which describes how resources are
mapped to infrastructure classes, which are characterized by the services, the
access models, and the permissions granted to roles and groups. The Tropos
Software Development Methodology [GMPO02] gives strong emphasis on early
requirement analysis where the stakeholders and their objectives are identi-
fied and analyzed. Tropos uses many primitive knowledge level concepts such
as Actor and Goal to build different types of models.

4.3.2 Approaches Based on Object Technology

Some researchers take object-oriented technologies as their starting point and
enriched it with extensions to be suitable for agent concepts. They give many
reasons for such an approach. First, there are similarities between the agent
paradigm and the object paradigm in that agents can be thought of as active
objects. Second, both paradigms use message passing as a means for com-
munication and use inheritance and aggregations for defining architectures.
Finally, extending techniques that have been in use for a long time and well

understood by engineers may result in accelerating agent use in industry. In
what follows, we outline some of the most cited methodologies.

Multi-agent Systems Engineering [WDO01] leads designer from a system
specification to an implemented agent system. The development process
passes through seven steps such as capturing goals of a system and creating
roles that are responsible for achieving these goals.

In [KKB*03] an extension to UML along with a framework to Model and
Design Multi-Agent Systems is proposed. Some of the extensions are new
modeling constructs such as Belief and Goal and diagrams such as Agent
Goal Diagram and Use Case Goal Diagram. Using these constructs and
diagrams, the paper suggests a many-step process to model a multi-agent
system.

PASSI (a Process for Agent Societies Specification and Implementation)
[CP02] is a methodology for designing and developing multi-agent societies,
integrating design models and concepts from both object-oriented software
engineering and artificial intelligence approaches using the UML notation.
The methodology produces many models that cover all the development
process from the system requirement (System Requirements Model) to code
(Code and Deployment Model).

The Prometheus! methodology [PW02] is a detailed and complete process
for specifying, analyzing, designing, and implementing intelligent agent sys-
tems. The methodology consists of three phases: system specification—
determining actions, perceptions, and functionalities, architectural design—
determining types of agents in a system and their functionalities, and detailed
design—developing internal structure of each agent and how it accomplishes
its task(s).

4.3.3 Approaches Based on Knowledge Engineering Technology

Knowledge engineers argued that methodologies from knowledge engineer-
ing are useful to model agent-based systems because agents have cognitive
characteristics and these methodologies best model this knowledge. In addi-
tion, the expertise gained in the field of knowledge engineering can expedite
adopting agent technology in industry.

The most cited methodology is MAS-CommonKADS [IMGV98]. The
methodology starts with a conceptualization phase that is an informal phase
for collecting the user requirements and obtaining an initial description of the
system from the user’s point of view. The methodology then produces many

'Prometheus was the wisest Titan. His name means “forethought” and he was able to
foretell the future. Prometheus was known as a protector and benefactor of man. He also
gave mankind a number of gifts including fire (CF. http://www.greekmythology.com)

10

models such as the Agent Model and the Task Model for the analysis and de-
sign of the system. For each model, the methodology defines the constituents
(entities to be modeled) and the relationships between the constituents. The
methodology defines a textual template for describing every constituent and
a set of activities for building every model.

4.3.4 Assembling Methodologies

Some researchers believe that creating a general-purpose methodology that
satisfies all the issues in agent software engineering is unlikely to be feasible.
They, therefore, suggest merging the strong features from some of the current
methodologies to obtain a new methodology.

In [JSW02] a skeleton methodology is assembled from the Prometheus and
ROADMAP methodologies. The skeleton methodology is independent of the
implementation architecture and supports analysis and architectural design.
It has six models (common to both the Prometheus and ROADMAP) that
represent the core of the methodology and are created during the analysis
phase and elaborated during the design phase. There are optional models
obtained from the Prometheus and ROADMAP (peculiar to each) that can
be used as needed. It is worth noting that the core six models are sufficient
to model systems with low agency needs. However, when a stronger agency is
required, the required optional models can replace some of the core models.

In [JSMMO03] a conceptual framework for creating and reusing modular
methodologies is proposed. The foundation of the framework is the con-
cept of an AOSE feature. An AOSE feature is an encapsulation of software
engineering techniques, models, supporting CASE tools, and development
knowledge design such as patterns. An AOSE feature can be used by fol-
lowing the procedure of the encapsulated techniques to create models. The
features can be created by a three-step process.

4.3.5 Other Apporaches

Other methodologies rely on both agent theory and object techniques. In
[HGRO3] a three-level technique for modeling agent-based systems is pro-
posed, the role model, the agent model, and the object model. Each level
uses some methodology such as GAIA [ZJWO03]. The main idea behind this
approach is to produce a meta-model for each level and a translator that
transforms the models in a previous level to models accepted by the next
level.

In [KR02] a methodology that enables collaboration between domain ex-
perts and engineers is proposed. The main idea of this approach is to start a

11

multi-agent system development with one model, called the process model,
and refine this model to produce other models, which evolve to the multi-
agent system.

4.4 Reuse in Agent Software

Agent-oriented software engineering, like other software engineering approaches,
addresses reuse issues.

4.4.1 Reuse in Agent-Based Application Development [Gir02]

The author discusses software reuse in the agent world and proposes a model
to exploit reuse. In this model, the reusable agent-based software abstrac-
tions are described in terms of their abstraction level and their domain depen-
dency. In the model, the domain model and the user model abstractions are
produced by the requirements analysis. The requirements analysis produces
the requirements specification of a group of similar systems in the domain.
The domain model (domain dependent, but specified at a high-level of ab-
straction) represents the formulation of a problem. The user model specifies
the features, needs, preferences, and goals of the users.

The design stage of agent-based application engineering produces a reusable
design specification for a family of similar systems in the application domain.
The design specification consists of agent-based architectural styles, software
patterns, and frameworks.

4.4.2 Agent Patterns

In [Lin02] a pattern catalog for agent-oriented patterns and a pattern descrip-
tion schema is suggested. The suggested catalog categorizes patterns under
classes. These classes are: Interaction Pattern, Role Pattern, Architectural
Pattern, Society Pattern, System Pattern, Task Pattern, and Environment
Pattern. Pattern description schemata bring together a set of features that
capture a software pattern.

In [GLO4] a catalog of organizational patterns is added to the GAIA
methodology. Organizational patterns are exploited in the design step of the
methodology. The organizational patterns are described using a comprehen-
sive structured description that facilitates the selection of the most appro-
priate pattern. The description is divided into parts, general part, which
is similar to those found in other pattern descriptions and particular part,
which is specific to organizational patterns.

12

5 Future Directions

In my opinion, there are two main directions for future work in agent-oriented
software engineering.

1. Openness. Domain specific AOSE does not yet have good support for
open systems for specific domains that permit any agent to participate,
provided that this agent conforms to the system’s rules. This requires
changes to current methodologies. Methodologies need to be more spe-
cialized to specific applications (e.g. information gathering) and need
to provide more guidance and models to account for, at least, all the
foreseen scenarios.

2. Semantic Web. The semantic web is likely to significantly change the
way in which agents and agent systems will be created. We expect that
agents and agent systems will be developed by users (not engineers)
within a short time. This imposes many requirements. First, it re-
quires libraries of ready-to-use high-level components that can be used
to assemble an agent. Second, it requires a methodology that guides
users to configure these components and to combine specific compo-
nents to create an agent. Third, the methodology must also suggest
how to collect together the created agents into a multi-agent system
that satisfies a user’s goals.

References

[BNR*02] W. Brauer, M. Nickles, M. Rovatsos, G. Weib, and K. Lorentzen.
Expand: expectation-oriented analysis and design. In Proceedings
of the Second International Workshop on Agent-Oriented Soft-
ware Engineering (AOSE 2002), pages 46-54, New York, 2002.

[Bra97] J. BradShaw. Introduction to Software Agents. In J. BradShaw,
editor, Software Agents, pages 3—46. AAAI Press, Menlo Park,
California, 1997.

[CPO02] M. Cossentino and C. Potts. A CASE Tool Supported Methodol-
ogy for the Design of Multi-Agent Systems. In Proceedings of the
International Conference on Software Engineering Research and
Practice (SERP’02), pages 113-120, Las Vegas, Nevada, June
2002.

13

[CTCGO4] R. Cervenka, I. Trencansky, M. Calisti, and D. Greenwood. AML:

[FGI6]

[FLM97]

[Gar00]

[Gir02]

[GIMO1]

[GLO4]

[GMP02]

[HGRO3]

[IMG V9]

Agent Modeling Language Toward Industry-Grade Agent-Based
Modeling. In Proceedings of the Fifth International Workshop on
Agent-Oriented Software Engineering (AOSE 2004), New York
City, July 2004.

S. Franklin and A. Graesser. Is it an Agent or just a Program?:
A Taxonomy for Autonomous Agents. In Proceedings of the
Third International Workshop on Agent Theory, Architectures,
and Languages, pages 21-35, New York, New York, July 1996.

T. Finn, Y. Labrou, and J. Mayfield. KQML as an Agent
Communication Language. In J. Bradshaw, editor, Software
Agents, pages 291-316. AAAI Press, Menlo Park, California,
1997.

D. Garlan. Software Architecture: A Roadmap. In A. Finkelstein,
editor, The Future of Software Engineering. ACM Press, 2000.

R. Girardi. Reuse in Agent-Based Application Development. In
Proceedings the First International Workshop on Software En-
gineering for Large-Scale Multi-Agent Systems, Orland, Florida,
May 2002.

C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of
Software Engineering. Prentice Hall, New Jersy, 1991.

J. Gongzales and M. Luck. A Framework for Patterns in Gaia:
A Case-Study with Organizations. In Proceedings of the Fifth
International Workshop on Agent-Oriented Software Engineering
(AOSE 2004), New York, New York, July 2004.

F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos Soft-
ware Development Methodology: Processes, Models, and Di-
agrams. In Proceedings the Third International Workshop on
Agent-Oriented Software Engineering, Bologna, Italy, July 2002.

F. Hernandez, J. Gray, and K. Reilly. A Multi-Level Technique
for Modeling Agent-Based Systems. In Proceedings of the Second
International Workshop on Agent-Oriented Methodologies, Ana-
heim, California, October 2003.

A. Iglesias, G. Mercedes, C. Gonzalez, and R. Velasco. Analysis
and Design of Multiagent Systems using MAS-CommonKADS. In

14

[Jen00)]

[JPS02]

[JSMMO3]

[JSWOS]

[JSW02]

[KKB*03]

[KR02]

[Lin02)

Proceedings of the Fourth International Workshop on Intelligent
Agents IV, Agent Theories, Architectures, and Languages, pages
313-327. Springer-Verlag, 1998.

N. Jennings. On Agent-Based Software Engieering. Artificial
Intelligence, 117(1):277-296, June 2000.

T. Juan, A. Pierce, and L. Sterling. ROADMAP: Extending the
Gaia Methodology for Complex Open Systems. In Proceedings
of the First ACM Joint Conference on Autonomous Agents and
Multi-Agent Systems, ACM Press, pages 13-10, Bologna, Italy,
July 2002.

T. Juan, L. Sterling, M. Martelli, and V. Mascardi. Customiz-
ing AOSE Methodologies by Reusing AOSE Features. In Pro-
ceedings of the Second International Conference on Agents and
Multi-Agent Systems (AAMAS 2003), pages 113-120, Melbourne,
Australia, July 2003.

N. Jennings, K. Sycara, and M. Woodridge. A Roadmap of Agent
Research and Development. Autonomous Agents and Multi- Agent
Systems, 1:7-38, 1998.

T. Juan, L. Sterling, and M. Winikoff. Assembling Agent Oriented
Software Engineering Methodology from Features. In Proceedings
of the third International Workshop on Agent-Oriented Software
Engineering, pages 198-209, Bologna, Italy, July 2002.

K. Kavi, D. Kung, H. Bhambhani, G. Pancholi, and M. anikarla.
Extending UML for Modeling and Design of Multi-Agent Sys-
tems. In Proceedings of the Second International Workshop on

Software Engineering for Large-Scale Multi-Agent Systems (SEL-
MAS 2003), Portland, Oregon, May 2003.

Knubaluch and T. Rose. Tool-Supported Process Analysis and
Design for the Development of Multi-Agent Systems. In Pro-
ceedings of the third International Workshop on Agent-Oriented
Software Engineering (AOSE 2002), Bologna, Italy, July 2002.

J. Lind. Patterns in Agent-Oriented Software Engineering.
In Proceedings of the Third International Workshop on Agent-
Oriented Software Engineering (AOSE 2002), Bologna, Italy, July
2002.

15

[Omi01]

[POO04]

[PW02]

[WDO1]

[ZJWO03]

A. Omicini. SODA: Societies and Infrastructures in the Analy-
sis and Design of Agent-Based Systems. In Proceedings of the
First International Workshop on Agent-Oriented Software Engi-
neering (AOSE 2001), pages 185-194, New York, May 2001.

M. Philippe and J. Odell. Representing Agent Interaction Pro-
tocols with Agent UML. In Proceedings of the Fifth Interna-
tional Workshop on Agent-Oriented Software Engineering (AOSE
2004), New York, New York, July 2004.

L. Padgham and M. Winiko. Prometheus: A Methodology for
Developing Intelligent Agents. In Proceedings the Third Interna-
tional Workshop on Agent-Oriented Software Engineering (AOSE
2002), Bologna, Italy, July 2002.

M .Wood and S. DelLoach. An Overview of the Multiagent
Systems Engineering. In Proceedings of the First International
Workshop Agent-Orinted Software Engieering (AOSE 2000), Lec-
ture Notes in Artificial Intelligence, volume 1957, pages 207215,
Springer Verlag, Berlin, January 2001.

F. Zembonelli, N. Jennings, and M. Woodridge. Developing Mul-
tiagent Systems: The GAIA Methodology. ACM Transactions
on Software and Methodologies, 12(3):317-370, July 2003.

16

