
Query Rewriting for
Extracting Data behind HTML Forms
Xueqi (Helen) Chen1, David W. Embley1, Stephen W. Liddle2
1Department of Computer Science

2School of Accountancy and Information Systems
Brigham Young University
{chen,embley}@cs.byu.edu, liddle@byu.edu
Abstract. Much of the information on the Web is stored in specialized searchable databases and can only be accessed by interacting with a form or a series of forms. As a result, enabling automated agents and Web crawlers to interact with form-based interfaces designed primarily for humans is of great value. This paper describes a system that can fill out Web forms automatically according to a given user query against a global conceptual schema for an application domain and, to the extent possible, can extract just the relevant data behind these Web forms. Experimental results on two application domains show that the approach can work well.

1
Introduction
With the enormous amount of information on the Internet, databases, which can be accessed by interacting with a form or a series of forms, become a useful and common data management tool for Internet information and service providers. Web forms and dynamically generated pages are helpful to users because users can often obtain exactly the information they want. It is tedious, however, for users to visit dozens of sites for the same application and fill out different forms provided by each site. As a result, enabling automated agents and Web crawlers to interact with form-based interfaces designed primarily for humans is of great value.

Others have also recognized this challenge. The Hidden Web Exposer (HiWE) [9] extends crawlers by giving them the capability to fill out Web forms automatically. HiWE, however, starts with a user-specified list of sources for a particular task; it tends to retrieve all the information behind the sources, and human assistance is critical to ensure that the Exposer issues queries that are relevant to the particular task. Microsoft’s Passport and Wallet system [7] encrypts a user’s personal information and then automatically fills out Web forms with the user-provided information whenever it is applicable, but the system makes no attempt to retrieve information behind those forms. The commercial system ShopBot [2] is a general purpose mechanism for comparison shopping. Its form filling process is automatic, but simplistic. ShopBot fills each form using a set of domain-specific heuristic rules provided in a domain description. The domain description contains regular expressions encoding synonyms for each attribute. If the regular expression matches the text preceding a field, then the system associates that attribute with the field; if there are multiple matches, the first one listed in the domain description is used; if a match fails, the field is left blank. In earlier work with our research group [5], a fully automated system aims to extract all the information from one Web site (behind one Web form), regardless of what a user wants. In our current work, we aim to provide only the information a user wants.
There are significant technical challenges in automating the form filling process. First, an automated agent must understand a user’s needs by interpreting the user’s input or query. Second, an automated agent must understand Web forms, which provide for site queries, and map the user’s query to a site query. This is challenging because different Web forms, even for the same application, provide different ways to query their databases. Figure 1 shows three different Web forms for the same application, car advertisements, from three different information providers. In Figure 1(a), Year, Make, Model, Color, and Price are the fields on which a user can query. The form in Figure 1(b) asks for Zip Code, Make, and New or Pre-owned. In Figure 1(c), a user must provide values for location (Zip Code and Distance), but Price, Make, Model, Year, and Key Word are optional fields. In addition, information providers can choose to represent their forms using different combinations of radio buttons, checkboxes, selection lists, and text boxes. All of these cause problems in matching a user’s query to a site query.

[image: image1.png]lo0o0o0oo0ooooo

2000

2001

2000

1998

2000

2003

1993

1998

1996

Laae

Ford Explorer

Ford £260 Serins

Ford Explorer Spo.

Ford Explorer
Ford Esoort
Ford Mustang

Ford Escape

Ford Esoort
Ford Windstar
Ford Tauns

S

Ford Evonslin

53005

5005

522005

516,095

16,005

10095

5705

54505

18795

5905

POV,

110185

stare

17,425

eaare

700

132380

sz

1858

717

12090

47,168

PR

Black
white
Red
Black
Burgund.
Grean
white
Blue
Bugand.
Grean
white

B

Chantily, va
Chanily, va
Chantily, va
Chanily, va
Chantily, va
Chanily, va
Chantily, va
Hemdon, A
Fairtax, Vi

Fairtax, VA

Fairtax, Vi

S

3

3

Since Web forms are designed in a variety of ways, handling all kinds of Web forms according to user queries by one automated agent is challenging. Although seemingly simple, direct matches between user-query fields and form fields can be challenging because synonymy and polysemy may make the matching nontrivial. Moreover, problems arise when user queries do not match with form fields. Consider, for example, the three example forms in Figure 1, the user query, “Find green cars that cost no more than $9,000,” and the returned information in Figure 2 for the form in Figure 1(b) filled in for one of the makes, “Ford”. Mismatches occur as follows. (1) Fields specified in a user query are not contained in a Web form, but are in the returned information (e.g. color in Figures 1(b) and 2). (2) Fields specified in a user query are not contained in a Web form, and are not in the returned information (e.g. color, which is not in the returned information for the form in Figure 1(c)). (3) Fields required by a Web form are not provided in a user query, but a general default value, such as “All” or “Any”, is provided by the Web form (e.g. make and model in Figure 1(a)). (4) Fields required by a Web form are not provided in a user query, and the default value provided by the Web form is specific, not “All” or “Any”, which leads to the need for multiple form submissions to satisfy the query (e.g. for Figure 1(b) a make and either new or pre-owned must be selected). (5) Values specified in a user query do not match with values provided in a Web form, which leads to the problem that the desired information cannot be retrieved using a single form query (e.g. no $9,000 in either Figures 1(a) or (c), no price field in Figure 1(b), and no color field in Figures 1(b) and 1(c)).
[image: image2.png]World Wide Wheels

The Hottest Automotive Spot on the Nett

Year: 1906 | 1 [2005 v

Nake: — All Makes — v

Nodel: |Al_Models

Color: |——AllColors

Price: [80 ¥| 4o [nolimit v

52500
BeginSearch _|ec' oy
$10,000
15,000

By using this semvic, you acospt the ter{$20,000 | Agreement
Privaey Staterlg 30 0p

450,000

To solve the problems described above, we have produced a prototype system designed to fill out Web forms automatically according to a given user query against a global conceptual schema. To the extent possible, the system extracts just the relevant data behind Web forms. We have implemented the system using the Java, Java Servlets, and MySQL. Our prototype system has two central parts, the input analyzer (described in Section 2) and the output analyzer (described in Section 3). Our input analyzer interacts with the user to obtain a query, fills in a site form according to the user query, and retrieves relevant Web pages. The output analyzer retrieves Web data contained in multiple pages using “next” or “more” links, extracts data from all retrieved Web pages, populates our database, and displays the final results to the user. In Section 4, we analyze experimental results and discuss the advantages and disadvantages of our system. We conclude with summary remarks in Section 5.
2
Input Analyzer
Our system starts by allowing a user to choose an application from a list of applications for which we have domain extraction ontologies. The input analyzer then parses the extraction ontology (Section 2.1), collects data from the user query (Section 2.2), and matches the fields in the user query to the fields in a given site form, generates a set of one or more queries, and submits the set for processing at the form’s site (Section 2.3).
2.1
Extraction Ontology Parsing

An extraction ontology is a conceptual-model instance that serves as a wrapper for a narrow domain of interest such as car ads. The conceptual-model instance consists of two components: (1) an object/relationship-model instance that describes sets of objects, sets of relationships among objects, and constraints over object and relationship sets, and (2) for each object set, a definition of the lexical appearance of constant objects for the object set and keywords that are likely to appear in a document when objects in the object set are mentioned.

Figure 3 is a partial extraction ontology for car ads. An object set in an application ontology represents a set of objects which may either be lexical or nonlexical. Year in Figure 3, for example, is a lexical object set whose character representations have a maximum length of 4 characters; Car is the only nonlexical object set. We describe the constant lexical objects and the keywords for an object set by regular expressions using Perl-like syntax. In Figure 3, for example, the constants for Mileage are 1-3 digit integers followed by “k” (plus other possibilities), and the keywords are “miles”, “mi”, “mi.”, and “mileage”. When applied to a textual document, the extract clause in a data frame causes a string matching a regular expression to be extracted, but only if the context clause also matches the string and its surrounding characters. A substitute clause lets us alter the extracted string before we store it in an intermediate file. One of the nonlexical object sets must be designated as the object set of interest, e.g., Car for the car-ads ontology, as indicated by the notation “[-> object]” in the first line in Figure 3.

We denote a relationship set by a name that includes its object-set names (e.g., Car has Year in Figure 3). Min:max pairs in relationship-set names are participation constraints. Min designates the minimum number of times an object in the object set can participate in the relationship set, and max designates the maximum number of times an object can participate, with * designating arbitrarily many. For instance, in Car has Make the 0:1 participation constraint on Car specifies that a car need not have a listed make and can have at most one make listed.

By parsing the ontology, our system obtains a set of object sets, relationship sets, constraints, a set of constant/keyword matching rules, and a database schema. The system uses the object and relationship sets to acquire a user query; it uses the constant/keyword matching rules to match fields in a user’s query to fields in a site form; and it sends the database schema to the output analyzer so that it can be populated with output values.
2.2
User Query Acquisition

[image: image3.png]Instant Vehicle Search!

1 new @ Praounsd @

2 zpcote [

Our prototype system provides a user-friendly interface for users to enter their queries.
 In order to make the interface user-friendly and make query specification easy to understand for our system, we construct an intermediate application-specific form with the lexical object sets of the chosen application ontology. Figure 4 is a sample intermediate form for the car-ads application. In the intermediate form, our system provides the user with a list of fields from which to choose. For fields for which the user can specify ranges our system allows the user to select the type of input—exact value, range values, minimum value, or maximum value.
After the user selects the desired fields and range types, our system provides a final search form to the user. This search form includes fields selected by the user as well as default fields including Zip Code, Search Range, and Site URL.
 Figure 5 shows a sample search form after a user chooses Make, Year with type minimum value, and Price with type range value. Once a user enters a query, our system parses the query and stores each attribute-value pair for later use.
2.3
Site Form Analysis and Submission
[image: image4.png]. ads4eantes

Search Auto Ads

Zip Code:

Distance: |25 Miles v

| Any Price

Any Price.

Make: e 000 and undier

5,001 -$10.000
10,001 - $15.000
Year: 415,001 - $20,000
520,001 and over

Model:

Key Word:

Search Database

We assume that the given URL is for an HTML page with a form that applies to our chosen application. We then parse its content into a DOM tree. For form fields created with an input tag, we are interested in the type, name, and value attributes. After parsing the input tag, we store the field name, field type, and field value for fields with type text, hidden, checkbox, radio, and submit. For form fields created with a textarea tag, we store the field name with field type textarea. For form fields created with a select tag, we obtain the field name, the option values (values inside the option tags), and the displayed values (values displayed in the selection list on the Web page). Our system fills in the site form by generating a query or a set of queries according to the user query and the site form. The form filling process consists of three parts: (1) field name recognition, (2) field value matching, and (3) query generation.

Form Field Recognition. Because site forms vary from site to site, even for the same application domain, site-form field recognition is difficult. Because of the way we allow a user to specify a query, field-name recognition is essentially a problem of matching the fields in a site form to object sets in our extraction ontology.

We first group all radio fields and checkbox fields that have the same value for the name attribute and consider each group as one field. Then, for fields with values provided (i.e., select fields, grouped radio fields, and checkbox fields), we apply our constant/keyword matching rules to determine the field names. If more than half of the values in a field belong to the same object set, we conclude that the field corresponds to that object set.
For all input fields of type text and all textarea fields in the site form, we compare the field-tag names to the object-set names using similarity measures from 0 (least similar) to 1 (most similar), and we choose the object set with the highest similarity as long as the similarity is above an empirically-determined match threshold. When the field tag names and the object set names are exactly the same, we assign 1 to the similarity measure and conclude that there is a match between the two fields. Otherwise, we calculate the similarity between the two strings that represent the names of the object set and the field using heuristics based on WordNet [11, 12]. WordNet is a readily available lexical reference system that organizes English nouns, verbs, adjectives, and adverbs into synonym sets, each representing one underlying lexical concept. We use the C4.5 decision tree learning algorithm [8] to generate a set of rules based on features we believe would contribute to a human’s decision to declare a potential attribute match from WordNet, namely (f0) same word (1 if A = B and 0 otherwise), (f1) synonym (1 if “yes” and 0 if “no”), (f2) sum of the distances of A and B to a common hypernym (“is kind of”) root, (f3) the number of different common hypernym roots of A and B, and (f4) the sum of the number of senses of A and B. We calculate the similarity between an object-set name and a field name based on a set of rules generated by the C4.5 decision tree. If the similarity between the object-set name and the field name reaches a certain threshold, we match the two. If there is still no match, we calculate the similarity between an object-set name and a field name by a combination of character-based string matching techniques. First, we apply standard information-retrieval-style stemming to get a root for each name [13]. Then, we combine variations of the Levenshtein edit distance [14], soundex [15], and longest common subsequence algorithms to generate a similarity value.

Form Field Matching. Section 1 describes five ways that mismatches can occur between site-form and user-query fields. We treat these various cases in different ways. In the field matching process, we offer solutions to Case 0, which is the direct match between user-query fields and site-form fields, and two of the five aforementioned mismatch types (Cases 3 and 4). We also offer a partial solution to Case 5, but leave Cases 1, 2, and the remainder of 5 to the output analyzer.

Case 0: Fields specified in the user query have a direct match in a site form, both by field name and by field value(s). For example, a user searches for cars around a certain Zip Code, and Zip Code is a field of type text in the site query.
Solution: We simply pair and store the user-provided value with the attribute.

Case 3: Fields required by a site form are not provided in the user query, but a general default value, such as “All”, “Any”, “Don’t care”, etc. is provided by the site form. For example, a user does not specify any particular Make for cars of interest, and Make is a field with a select tag in a site form with a list of option values including a general default value as a selected default value.
Solution: We find the general default value and pair and store the corresponding option value with the field name.
Case 4: Fields that appear in a site form are not provided in the user query, and the default value provided by the site form is specific, not “All”, “Any”, “Don’t care”, etc. For example, a user does not specify any particular Make for cars of interest, and Make is a field with a select tag in a site form with a list of option values. Unfortunately, no general default value is provided in the option list.
Solution: We pair and store the field name with each of the option values provided for the fields by the site form. Later in the submission process, we submit the form once for each name/value pair.
Case 5: Values specified in the user query do not match with values provided in a site form. For example, a user searches the form in Figure 1(c) for “cars that cost no more than $9,000.”
Solution: This case happens only for range fields. As human beings, we know that we should find the least number of ranges that cover the user’s request. For our example, we should submit the form for “$5,000 and under” and “$5,001 - $10,000”. Our system converts range fields into a standard form and selects the appropriate ranges for the query.

Form Query Generation. Once our system has Web form fields paired with values, it can “fill out” the form, i.e. generate queries for the site form. Our system selects one name/value pair from each form field, concatenates all selected pairs together, and appends them to the URL constructed from the meta information of the page and the action attribute of the form tag. Using the form in Figure 1(a) for our sample query, “Find green cars that cost no more than $9000,” our output analyzer generates the following string:
http://wwwheels.com/cfapps/autosearchresults.cfm?
ExteriorColor=GREEN&PriceHigh=10000&SqlStatement=&
carLowPrice_range="MIN=1 MAX=500000"&
carHighPrice_range="MIN=1 MAX=500000"&
carLowMileage_range="MIN=1 MAX=500000"&
carHighMileage_range="MIN=1 MAX=500000"&
MinYear=1926&MaxYear=2005&cfr=cfr&YearBegin=1926&
YearEnd=2005&Make=&Model=All_Models&PriceLow=0
Observe that the system specifies Exterior Color=GREEN and PriceHigh=10000 as required by the query. It also specifies default values for all remaining fields as required by the form.
3
Output Analyzer
Our system stores the Web result pages the input analyzer collects and then sends them to the output analyzer. The output analyzer examines each page and extracts the information relevant for the user query. The output analyzer then filters the extracted information with respect to the user query and displays the final results to the user in HTML format. At this point, the records displayed to the user are, to the extent possible, just the data relevant to the user’s original query.

Sometimes, the results for one query come in a series of pages, but by submitting the query, we can only retrieve the first page of the series. To obtain all results, our system iteratively retrieves consecutive next pages. It may need to follow the value of the href attribute of an anchor node with the keyword “next” or “more” or a sequence of consecutive numbers that appear as a text child node of the anchor node. Or it may need to submit a form with the keyword “next” or “more” appearing in the value attribute of an input node with type submit in the form node.
In the next step, the output analyzer takes one page at a time, runs it through a record separator [4] and then through BYU Ontos [1, 3], a data extraction system, to populate a database. To extract information from Web pages using Ontos requires recognition and delimitation of records (i.e. a group of information relevant to some entity, such as an individual car ad in a car-ads application). Our record separator captures the structure of a page as a DOM tree, locates the node containing the records of interest, identifies candidate separator tags within the node, selects a consensus separator tag, removes all other HTML tags, and writes the modified page to a record file. Given the output from the record separator, the next step is to invoke Ontos. For each document, Ontos produces a data-record table containing a set of descriptor/string/position tuples for the constants and keywords recognized in the record, resolves all conflicts found in the data-record table, and constructs SQL insert statements for database tuples from the modified data-record table. After the system processes all pages obtained from the Web site, it generates a fully populated database. Once the database is populated, it is simple for the system to execute the SQL query generated from the user’s original filled-in form.
This generated SQL query performs the post-processing necessary to return the data and just the data requested by the user. It therefore resolves Case 1 (as described in Section 1) by obtaining the information requested in a user query that is returned but not specifiable in a site form. For example, it obtains the records for just green cars for the form in Figure 1(b), the sample returned results in Figure 2, and our sample query, “Find green cars that cost no more than $9,000.” It also resolves the remaining part of Case 5 by eliminating extraneous values returned by the site form but not requested in the user query. For our sample query and the returned results in Figure 2, for example, it eliminates cars costing more than $9,000. Since Case 2 is unresolvable in the sense that the information is simply nowhere available, the system reports to the end user that the site does not supply requested information.
4
Experimental Results and Analysis
In this project, we experimented on seven Web sites for each of two applications: car ads and digital camera ads. The approach, however, is not limited to the two applications on which we experimented. It can work with other applications as long as those applications have Web sites with forms, and we have ontologies for those applications. The process of rewriting queries in terms of site forms is the same.

4.1
Experimental Results

In this study of automatic form-filling, we are interested in three kinds of measurements: field-matching efficiency, query-submission efficiency, and post-processing efficiency.

To know if we properly matched the fields in a user query with the fields in a site query, we measure the ratio of the number of correctly matched fields to the total number of fields that could have been matched (a recall ratio Rfm for field matching, fm), and we measure the ratio of the number of correctly matched fields to the number of correctly matched fields plus the number of incorrectly matched fields (a precision ratio Pfm). To know if we submitted the query effectively, we measure the ratio of the number of correct queries submitted to the number of queries that should have been submitted (a recall ratio Rqs for query submission, qs), and we measure the ratio of the number of correct system queries submitted to the number of correct queries submitted plus the number of incorrectly submitted queries (a precision ratio Pqs). We also compute an overall efficiency measurement which we obtain by multiplying the recall measurements together and the precision measurements together. Because the two kinds of metrics measure two stages of one single process, we use products to calculate the overall performance of the process with respect to our extraction ontology.

Car Advertisements. We experimented on seven Web sites containing search forms for car ads. We issued five queries to each of the sites and obtained the following results. We found 31 fields in the seven forms. Among them, there were 21 fields that are recognizable with respect to our application extraction ontology. The system correctly matched all 21 of them. There were no false positives. If we ignore nonapplicable fields, the system should have submitted 249 original queries generated from the five user-provided queries and 1847 queries for next links. For just the applicable fields, the system actually submitted 301 original queries and 1858 queries for next links. Table 1 shows the precision and recall ratios calculated with respect to recognizable fields for the measurements we made, and it also shows the overall efficiency.
Digital Camera Advertisements. We experimented on seven Web sites containing search forms for digital camera ads. We issued four queries to each of the sites and obtained the following results. We found 41 fields in the seven forms. Among them, 23 fields were applicable to our application extraction ontology. The system correctly matched 21 of them. There were no false positives. According to the four queries and the 21 matched fields, the system should have submitted 31 original queries and 85 queries for retrieving all next links. It actually submitted 31 original queries and 85 queries for retrieving next links. Table 2 shows the precision and recall ratios for the measurements we made, and it also shows the overall efficiency.
Table 1. Experimental Results for Used-Cars Search
	Number of Forms: 7

Number of Fields in Forms: 31

Number of Fields Applicable to the Ontology: 21 (67.7%)

	
	Field Matching
	Query Submission
	Overall

	Recall
	100% (21/21)
	100% (249/249)
	100%

	Precision
	100% (21/21)
	82.7% (249/301)

97.1% (249+1847)/(301+1858)*
	82.7%

97.1%*

*These numbers are calculated including queries submitted for retrieving next links.
Table 2. Experimental Results for Digital-Cameras Search
	Number of Forms: 7

Number of Fields in Forms: 41

Number of Fields Applicable to the Ontology: 23 (56.1%)

	
	Field Matching
	Query Submission
	Overall

	Recall
	91.3% (21/23)
	100% (31+85)/(31+85)
	91.3%

	Precision
	100% (21/21)
	100% (31+85)/(31+85)
	100%

4.2
Results Analysis and Discussion
Field-matching efficiency is a measurement for field-name matching. This matching is affected by the value for the name attribute and the type attribute the site form designer chooses for each field. For fields in the site form with no values provided or fields having less than half their values recognized, our system depends only on the values of name attributes. If the site form designer assigns meaningful names to each tag, our field-matching efficiency is high. In our experiment, we found respectively 7 and 6 such fields from the two domains, and our system recognized 95.7% of the fields for the two domains. We found respectively 14 and 17 fields from the two domains with values provided, and the result was 100% for both precision and recall for the two domains tested. We have no way of recognizing fields that are not described in our extraction ontology, so we did not consider those fields when calculating name matching efficiency.

Query-submission efficiency is a measurement of field-value matching. When calculating query-submission efficiency, we consider only the fields where names matched correctly. This efficiency is greatly affected when fields are designed in a way that our system cannot handle. For the form in Figure 6, we found two fields for Price; together, they form a range. Range fields formed by two independent fields normally are of the same type, e.g. both fields are text fields or both fields are selection lists. The range in Figure 6, however, is formed by a text field and a selection list. Our system does not recognize these two fields as a range. So, when it fills out the Price fields, it puts both the lower value and the upper value a user specifies in the first Price field. For the second Price field, which is a selection list, our system chooses all three values in the selection list. This generates six queries instead of one query—properly chosen, one query would be sufficient. For the particular form in Figure 6, our system always generates 6 queries if either Price or Year is specified by the user, among which 5 of the queries are not necessary. When the user specifies both fields, our system submits 36 queries, among which 35 of the queries are not necessary. This result significantly affects the precision of query submission. The recall, however, is 100% because all queries that could have been submitted are submitted correctly.

Even though our experimental results turned out well, the results can be adversely affected if text fields come with poor internal names or if extraction ontologies are poorly written. Poor internal names can make the name-matching process for text fields impossible, and poorly written extraction ontologies can make the name-matching process for fields with values inaccurate. Both cases would decrease the field-matching efficiency dramatically. With considerably more work, which we did not do because others have already solved this problem [6, 9], it would be possible to resolve the first problem by locating the displayed names, which should be human readable, rather than the internal names, which need not be human readable. The solution for the second problem is to improve the quality of a poorly written extraction ontology.

In addition, our system is not designed to handle all kinds of forms on the Web. It does not try to handle form chains (one form leads to another), dynamic forms (the value filled in for a field generates the next form field to fill in, or other such unusual behaviors controlled by script code), forms with required fields when the user does not provide values for the fields in the user-query form, combined fields (e.g. Make and Model together in one field), and forms whose actions are coded inside scripts. As future work, we could program our system to handle most of these problems. For scripts, however, we note that Web application developers can write dynamic form-processing instructions that may be difficult to reverse-engineer automatically (for example the submit action of a form may be encoded within JavaScript rather than using the standard action attribute of a form). Since code analysis is computationally complex in general, there may not be a complete automated solution for all dynamic forms.

5
Conclusion
In this research, we designed and implemented a system that can fill out and submit Web forms automatically according to a given user query against a corresponding application extraction ontology. From the returned results, the system extracts information from the pages, puts the extracted records in a database, and queries the database with the original user query to get, to the extent possible, just the relevant data behind these Web forms.

We tested our system on two applications: car advertisements and digital camera advertisements. On average, there were 61.9% fields in the site forms that were applicable to the extraction ontologies. The system correctly matched 95.7% of them. Considering only the fields that were applicable to the extraction ontologies and were correctly matched, the system correctly sent out all queries that should have been submitted to the Web sites we tested. It, however, also sent out some additional queries that are not necessary according to the original user query. Among all queries our system submitted for our experiments, only 91.4% of them were necessary. Further, for the Web sites we tested, our output analyzer correctly gathered all linked pages. Finally, of the records correctly extracted by Ontos, our system always correctly returned just those records that satisfied the user-specified search criteria.

Acknowledgements

This work is supported in part by the National Science Foundation under grant IIS-0083127 and by the Kevin and Debra Rollins Center for eBusiness at Brigham Young University.
References

1.
Brigham Young University Data Extraction Group home page. http://www.deg.byu.edu/
2.
R.B. Doorenbos, O. Etzioni, and D.S. Weld. “A Scalable Comparison-Shopping Agent for the World-Wide Web,” In Proceedings of the First International Conference on Autonomous Agents, Marina del Rey, California, USA, February 5-8, 1997, pp. 39–48.

3.
D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, Y.-K. Ng, D. Quass, and R.D. Smith. “Conceptual-Model-Based Data Extraction from Multiple-Record Web Pages,” Data & Knowledge Engineering, 31(3):227–251, November 1999.

4.
D.W. Embley, Y.S. Jiang, and Y.-K. Ng. “Record-Boundary Discovery in Web Documents,” In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, May 31 – June 3, 1999, pp. 467–478.

5.
S.W. Liddle, D.W. Embley, D.T. Scott, and S.H. Yau. “Extracting Data Behind Web Forms,” In Proceedings of the Workshop on Conceptual Modeling Approaches for e-Business, Tampere, Finland, October 7-11, 2002, pp. 402–413.

6.
G. Modica, A. Gal, and H. Jamil. “The Use of Machine-Generated Ontologies in Dynamic Information Seeking, ” In Proceedings of the 9th International Conference on Cooperative Information Systems (CoopIS 2001), Trento, Italy, September 5-7, 2001, pp. 433–448.

7.
Microsoft Passport and Wallet Services. http://memberservices.passport.com

8.
J.R. Quinlan. “C4.5: Programs for Machine Learning.” San Mateo, CA: Morgan Kaufmann, 1993.

9.
S. Raghavan and H. Garcia-Molina. “Crawling the Hidden Web,” In Proceedings of the 27th Very Large Data Bases (VLDB) Conference, Rome, Italy, September 11-14, 2001, pp. 129–138.

10.
The Apache Jakarta Project. http://jakarta.apache.org/tomcat/index.html
11.
G.A. Miller. “WordNet: A Lexical Database for English.” Communications of the ACM, 38(11):39–41, November 1995.

12.
C. Fellbaum. “WordNet: An Electronic Lexical Database.” MIT Press, Cambridge, MA, 1998.

13.
M. Porter. “An Algorithm for Suffix Stripping.” Program, 14(3):130–137, 1980.

14.
V.I. Levenshtein. “Binary codes capable of correcting spurious insertions and deletions of ones.” Problems of Information Transmission, 1:8–17, 1965.

15.
P.A. Hall and G.R. Dowling. “Approximate String Matching.” ACM Computing Surveys, 12(4):381–402, 1980.

� EMBED PBrush ���

Fig. � SEQ Fig. \n �2�. Partial Retrieved Data from dealernet.com, February 2004

� EMBED PBrush ��� � EMBED PBrush ��� � EMBED PBrush ���

	(a) wwwheels.com	(b) dealernet.com	(c) ads4autos.com

Fig. � SEQ Fig. \n �1�. Web Forms for Car Advertisement Search

Fig. 4. Sample Intermediate Form for Car-Ads

Car [-> object];

Car [0:1] has Make [1:*];

Make matches [10]

 constant { extract "\bAcura\b"; },

 ...

end;

Car [0:1] has Model [1:*];

Model matches [25]

 constant { extract "\bIntegra\b"; },

 ...

end;

Car [0:1] has Year [1:*];

Year matches [4]

 constant { extract "\d{2}";

 context "([^\$\d]|^)[4-9]\d[^,\dkK]";

 substitute "^" -> "19"; },

 ...

end;

Car [0:1] has Mileage [1:*];

Mileage matches [8]

 constant { extract "\b[1-9]\d{0,2}k"; substitute "[kK]" -> "000"; },

 ...

 keyword "\bmiles\b", "\bmi\.", "\bmi\b", "\bmileage\b";

end;

...

Fig. � SEQ Fig. \n �3�. Partial Car-Ads Ontology

Fig. 5. Sample Search Form for Car-Ads with User Selected Fields

� There are other ways to obtain a user’s query, which may be more conducive to real-world usage. Our prototype system, however, provides what we need for experimenting with automated form filling.

� Although Zip Code and Search Range should normally be specified for a car-ads application, the specification of a Site URL is for experimenting with our system. There are other ways to specify URLs over which the system can operate. In general, the system is designed to work on multiple URLs so that a user fills in a single query form to query many sites all having different forms.

� Because we do not want to measure the effectiveness of the existing application extraction ontologies and plug-in programs, such as the record separator and Ontos, which are outside the scope of our work, we do not measure their effectiveness (see [3] for measures of their effectiveness). Finally, we do not measure the effectiveness of the post-processing part of our system because, by itself, it cannot fail.

[image: image5.png]lo0o0o0oo0ooooo

2000

2001

2000

1998

2000

2003

1993

1998

1996

Laae

Ford Explorer

Ford £260 Serins

Ford Explorer Spo.

Ford Explorer
Ford Esoort
Ford Mustang

Ford Escape

Ford Esoort
Ford Windstar
Ford Tauns

S

Ford Evonslin

53005

5005

522005

516,095

16,005

10095

5705

54505

18795

5905

POV,

110185

stare

17,425

eaare

700

132380

sz

1858

717

12090

47,168

PR

Black
white
Red
Black
Burgund.
Grean
white
Blue
Bugand.
Grean
white

B

Chantily, va
Chanily, va
Chantily, va
Chanily, va
Chantily, va
Chanily, va
Chantily, va
Hemdon, A
Fairtax, Vi

Fairtax, VA

Fairtax, Vi

S

3

3

[image: image6.png]Step 3: Fill Out the Search Form

Please put exactly one value in each field.

zip

Search Range <=

Make

Year>=

Price from:

Site URL

Subrmit

[image: image7.png]Step 2: Choose Fields

OMake

OModel

OYear (ExactValue) | OMake (Range: from Lowto High) | OYear>=) | OYear (<=)
OMileage (Exact Value) | OMileage (Range: from Low to High) | OMileage (>=) | O Mileage
OPrice (ExactValue) | OPrice (Range: from Lowto High) | OPrice =) | OPrice (<=)
O Color

OTransmission

OEngine
OStyle

Continue >>

_1139494379

_1147154657

_1132996517

_1132986770

