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ABSTRACT

GENERATING MEDICAL LOGIC MODULES

FOR CLINICAL TRIAL ELIGIBILITY

Craig Gerold Parker

Department of Computer Science

Master of Science

 Clinical trials are important to the advancement of medical science.  They provide 

the experimental and statistical basis needed to determine the benefit of diagnostic and 

therapeutic agents and procedures.  The more patients enrolled in a clinical trial, the more 

confidence we can have in the trial’s results.  However, current practices for identifying 

eligible patients can be expensive and time-consuming.  To assist in making identification 

of eligible patients more cost effective, we have developed a system for translating the 

eligibility criteria for clinical trials to an executable form.  This system takes as input the 

eligibility criteria for a trial formatted as first order predicates.  We then map these criteria 

against concepts in a target database.  The mapped criteria are output as an Arden Syn-

tax medical logic module using virtual medical record queries in the curly braces.  The 

system was able to successfully process 85 out of 100 trials attempted.  From these 85 tri-





als, the system idendified 1,545 eligibility criteria.  From these criteria, we generate 520 

virtual medical record queries, 253 of which were deemed useful in helping to determine 

eligibility.
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1

Clinical trials are important for medical research.  They provide the experimental 

and statistical basis needed to determine the benefit of diagnostic and therapeutic agents 

and procedures.  As a basic principle of statistics, the more people that can be enrolled in 

a clinical trial, the greater the confidence we can have in the results of the trial.  However, 

it can be difficult to identify a significant number of patients who meet the criteria for 

participation.  This is because trials often have very specific criteria for age, gender, state 

of a given disease, number and types of co-existing diseases, etc.

There are many ways to identify patients who are eligible for clinical trials.  One 

commonly used method is for the clinicians who are participating in the trial to evaluate 

each patient they see in their clinic for eligibility.  The advantages of this method include: 

(1) The workflow of the clinician is only minimally disturbed.  (2) The clinician generally 

has an up-to-date picture of the patient’s health conditions.  (3) For any eligibility criteria 

that the clinician is unsure about, the patient is present for questioning or examination.  

The biggest disadvantage of this method is the fact that it only identifies patients who 

happen to have a clinic visit with a participating clinician immediately prior to or during 

the enrollment phase of the trial.

Another common method for identifying candidates is through advertisements 

distributed via television, radio, the internet, newspapers or magazines.  These advertise-

ments usually present a number of eligibility criteria and a method for contacting some-

1 - Introduction
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one who can further evaluate their eligibility.  The main advantage of this approach is that 

it can screen a large number of people, including people who would not have normally 

visited a clinician’s office during the enrollment period.  One of the obvious drawbacks 

of this method is the cost of advertising.  Another is that the criteria must be presented in 

a manner understandable by individuals without medical training.  This often means that 

many people who may meet the criteria presented in the advertisement will not be eli-

gible for the trial when evaluated against the detailed trial criteria by a clinician.  Finally 

this method usually requires a clinician to spend significant time evaluating potential trial 

enrollees.  This is time that must be allocated outside of their normal clinic schedule and 

may present a significant impact on their practice.

A third method that is commonly used for identifying candidates is to review 

medical records looking for patients that may meet the eligibility criteria.  As with ad-

vertising, this method can find individuals who are eligible, but may not have normally 

visited a clinic during the trial’s enrollment.  It also has the advantage that many of 

the details of the patient’s medical status are available to the screener.  In addition, the 

screener usually has some amount of clinical training.  However, searching through medi-

cal records can be a laborious task, and the cost of hiring someone with medical training 

to do this can be significant.  In addition, the information available may be out-of-date 

causing some eligible patients to be missed, and some ineligible patients to be evaluated 

further. 

As more and more patient-specific medical data is stored in electronic medical 

records, a variation on this third approach is becoming increasingly feasible.  Automated 

processes could be developed to sift through the available data and identify patients who 

are likely to be eligible for a given trial.  For trials with simple eligibility criteria that cor-

respond well with clinical observations that are commonly captured and recorded elec-

tronically, an automated system may be able to determine eligibility directly.  In the more 
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common case where the criteria may be more complex and the corresponding clinical 

observations are not guaranteed to be available electronically, an automated system may 

still add valuable assistance by reducing the number of patients that would need to be 

evaluated manually.

We have developed an automated process for transforming natural language eligi-

bility criteria into an executable form which can assist in identifying potential candidates 

for participation in a clinical trial.  Figure 1 illustrates the process.  We divide the process 

into three steps: Extraction and Formula Generation, Code Generation, and Evaluation.

Step 2: Code Generation

Step 1: Extraction and
Formula Generation

Step 3: Evaluation

Criterion
Extraction

Formula
Generation

Clinical Trial
(HTML)

see Figure 2

Criteria as Predicate
Calculus Formulas

(XML)
see Figure 3

Concept
Mapping

Code
Generation

Executable Code
(Arden Syntax)
see Figure 4

Unmapped Criteria
see Figure 5

Eligibility
Evaluation

Eligibility Report
see Figure 6

Figure 1 - Process for automatically evaluating clinical trial eligibility criteria.
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Comparing Effects of 3 Sources
of Garlic on Cholesterol Levels

Purpose:
 The purpose of this study is to determine whether fresh garlic can posi-
tively affect cholesterol in adults with moderately high cholesterol levels.  This 
study will also determine whether the same effects can be found for two main 
types of garlic supplements: a dried powdered garlic (designed to yield the 
same effect as fresh garlic) and an aged garlic extract preparation.
 . . .

Eligibility:
Ages Eligible for Study: 30 Years - 65 Years
Genders Eligible for Study: Both

Inclusion Criteria:
• LDL-C 130-190 mg/dL
• BMI 19-30 kg/m2
• Weight stable for last 2 months
• Not actively on a weight loss plan
• Ethnicity representative of local population
• No plans to move from the area over the next 9 months

Exclusion Criteria:
• Pregnant, lactating, within 6 months postpartum, or planning to be-

come pregnant in the next year
• Diabetes (type I or II) or history of gestational diabetes
• Heart disease
• Active neoplasms
• Renal or liver disease
• Hyperthyroidism or hypothyroidism
• Lipid lowering medications (known to affect lipid metabolism, plate-

let function, or antioxidant status)
• Blood pressure medications
• Excessive alcohol intake (self reported, more than 3 drinks/day)
• Currently under psychiatric care or severely clinically depressed

Location and Contact Information:
 . . .

Figure 2 - A sample clinical trial.
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In Step 1, Extraction and Formula Generation, we extract eligibility criteria from 

a natural language description and transform them into first-order predicate calculus for-

mulas.  Figure 2 shows selected parts of a real clinical trial [Tust04], including the eligi-

bility criteria section which is divided into sections for inclusion and exclusion criteria.  

(The complete trial appears in Appendix A.)  The HTML source of a trial such as this is 

the input to Step 1.  Figure 3 shows the output of Step 1 for three of the criteria in Figure 

2.  This example illustrates successful parsing of two of the criteria into predicate calcu-

<criteria trial=”http://www.clinicaltrials.gov/ct/show/NCT00056511”>
  . . .
  <criterion>
    <text>Inclusion Criteria</text>
    <text>LDL-C 130-190 mg/dL</text>
    <formula>
      ldl-c(N1) &amp; greater_than_or_equal(N1,N2) &amp;
      measurement(N2) &amp; magnitude(N2,130) &amp;
      units(N2,N3) &amp; mg/dl(N3) &amp;
      less_than_or_equal(N1,N4) &amp; measurement(N4) &amp;
      magnitude(N4,190) &amp; units(N4,N3)
    </formula>
  </criterion>
  . . .
  <criterion>
    <text>Exclusion Criteia</text>
    <text>Heart disease</text>
    <formula>heart_disease(N1)</formula>
  </criterion>
  . . .
  <criterion>
    <text>Exclusion Criteia</text>
    <text>No plans to move from the area over the next 9 months</text>
    <formula>Not Parsed</formula>
  </criterion>  
  . . .
</criteria>

Figure 3 - Extracted eligibility criteria with predicate calculus formulas.
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maintenance:
  . . .
library:
  . . .
knowledge:
  type:
    data-driven;;
  data:
    . . .
    /* query for ldl-c */
    Criterion3 := READ {<VMRQuery> . . . </VMRQuery>};
    . . .
    /* query for heart disease */
    Criterion11 := READ {<VMRQuery> . . . </VMRQuery>};
    . . .
  logic:
    matches := 0;
    . . .
    if Criterion3 is present then matches := matches + 1;
    . . .
    if Criterion11 is present then matches := matches + 1;
    . . .
    write “Patient meets “ || matches || “ out of 18 criteria.”;
end;;

Figure 4 - Sample logic in the Arden Syntax [HCP+90] for determining eligibility.

lus formulas, as well as the output for a criterion that was not successfully parsed into a 

formula.  The details of Step 1 are the subject of another thesis [Tus04] and are described 

only at a high level in this thesis.

Step 2, Code Generation, is the focus of this thesis.  In this step, the system reads 

in parsed criteria and their predicate calculus formulas from Step 1 (see Figure 3).  The 

system then attempts to map the criteria to concepts in an electronic medical record.  For 

the criteria that are successfully mapped, the system outputs appropriate logic for com-

puting whether or not a patient meets each criterion as Figure 4 illustrates.  Since the 
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system cannot always map all criteria, it also creates a document listing the unmapped 

criteria.  Figure 5 shows an example of this output, illustrating both a criterion that was 

not parsed into a predicate-calculus formula in Step 1, as well as a criterion that was 

parsed in Step 1 but not mapped in Step 2.

In Step 3, Evaluation, the system evaluates the eligibility of a patient by executing 

the logic generated in Step 2 against that patient’s electronic medical record.  The sys-

tem presents the result of this evaluation, along with a report of unmapped criteria to the 

user.  Figure 6 shows an example of how this report may look.  Based on the information 

presented by the system, the user can make an informed decision about whether to fur-

ther evaluate the patient for enrollment in the clinical trial.  Due to patient privacy issues, 

evaluation of patient data is beyond the scope of this thesis.

The system described in this thesis combines computer science and medicine to 

present a new solution to the problem of finding patients who are eligible to participate in 

<MappingReport trial=”http://www.clinicaltrials.gov/ct/show/NCT00056511”>
  . . .
  <criterion>
    <text>Inclusion Criteia</text>
    <text>No plans to move from the area over the next 9 months</text>
    <criterionNotParsed/>
  </criterion>
  . . .
  <criterion>
    <text>Exclusion Criteria</text>
    <text>Active neoplasms</text>
    <formula>active(N1) &amp; neoplasms(N1)</formula>
    <criterionNotMapped/>
  </criterion>
  . . .
</MappingReport>

Figure 5 - Report of unmapped criteria.
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Eligiblity Report

Header
Title of Trial Comparing Effects of 3 Sources of Garlic on

Cholesterol Levels

Patient Name J. Doe

Medical Record # 1234567

Eligibility Summary
Criteria met 6

Mapped criteria for which eligibility could not be determined 7

Criteria not mapped 5

Total criteria 18

Criterion Detail
Criterion 1

. . .

Criterion 3

Criterion LDL-C 130-190 mg/dL

Mapped Yes

Status Patient meets this criterion

Criterion 4

. . .

Criterion 8

Criterion No plans to move from the area over the next 9 months

Mapped No

Status Unable to determine if patient meets this criterion

Criterion 9

. . .

Criterion 11

Criterion Heart disease

Mapped Yes

Status Unable to determine if patient meets this criterion

Criterion 12

Criterion Active neoplasms

Mapped No

Status Unable to determine if patient meets this criterion

Criterion 13

Figure 6 - Sample eligibility report.
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clinical trials.  Many individuals and organizations have created a number of technologies 

and resources to bridge these disciplines.  Chapter 2 presents background information on 

those technologies and resources that we use.

In Chapter 3 we describe the design of the system.  The focus is on Step 2 of Fig-

ure 1, but Steps 1 and 3 will also be covered briefly.  To evaluate the system, we applied 

it to a set of clinical trials.  In Chapter 4 we describe our method of evaluation and the 

results.  We also discuss the reasons behind the results and conclusions we draw from the 

results.  This system represents a first approach to this problem.  In Chapter 5 we look at 

ways the system could be enhanced in the future to provide better results.
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In this chapter we discuss some resources and technologies that are commonly 

used in medical information systems and that we use in this project.  In particular, we 

explain how these systems represent medical information in a computable form using a 

combination of medical vocabularies, data models, and languages for expressing medical 

logic.

2.1 - Coded Concepts

Medical information systems manage information that health care organizations 

need to care for patients, do administrative tasks, and meet regulatory requirements.  

These systems vary widely both in the breadth and the life cycle of information they 

handle.  Narrowly focused systems may deal only with information related to a single dis-

ease or specialty of medicine.  These systems may only be concerned with one or a few 

episodes of care.  Such systems generally have fewer requirements for the representation 

of the information they manage.  They need only what is sufficient for a specific task.  A 

specialized clinical note application, for example, may only need to faithfully store and 

retrieve free text entered by the user.  Such a system may need a few discrete data items 

such as a user identifier, a time stamp, and a note type, but beyond this, it may be suffi-

cient to handle everything else as an unstructured text field.

On the other end of the spectrum are comprehensive electronic medical record 

systems.  These systems strive to capture any information that may be clinically relevant 

2 - Background Information
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and support a broad range of tasks longitudinally through time.  This information may be 

used in many different ways including display back to the user, identification of clinical 

information to support billing, queries about the condition of a given patient, and popula-

tion queries across patients.  Therefore, these systems must represent information in more 

flexible and generalized ways.

To enable these diverse uses of clinical information, such systems collect and 

store information in a highly structured form.  It takes significant effort to design and 

maintain this type of structured data, but the benefit from the resulting flexibility is great.  

Consider, for example, the statement, “The patient does not have a family history of 

colon cancer.”  If this statement is stored as a text string, it is useful for displaying back 

to a human at some point in the future.  However, for an automated process to use the 

information, the statement would need to be enhanced by some mechanism such as natu-

ral language processing.  While natural language processing can be useful in medicine 

(indeed this project makes use of it), its reliability is not sufficient for many medical uses.  

It is much easier for automated processes to use information that is captured 

and recorded in a structured format.  The example above could be represented by a data 

structure with a field for the type of observation (“family history observation”), the value 

of the observation (“colon cancer”), and a negation indicator (“negated”) as Figure 7 

illustrates.  While this approach is more computable, it requires more effort in defining 

the data structures and the data capture methods associated with the data structures.  In 

observation:
 type = “family history observation”
 value = “colon cancer”
 negation_indicator = “negated”

Figure 7 - Psuedocode data structure for the statetment, “the patient does not have a family his-
tory of colon cancer.”
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addition, structured data entry requires more effort on the part of the user to think about 

the structure of the information and enter it appropriately.  In medicine the benefit of 

structured data entry frequently outweighs the burden and medical application developers 

are increasingly designing their systems around structured data.  

The use of coded medical vocabularies greatly facilitates this approach.  Coded 

vocabularies consist of a set of concepts, each of which has a unique identifier or code.  

The code “254837009“ in the SNOMED-CT[SC98] coded vocabulary, for example, rep-

resents the concept “breast cancer.”  Often the coded vocabularies organize concepts into 

logical generalization/specialization hierarchies.  For example, concepts for “penicillin” 

and “erythromycin” are specializations of the concept for “antibiotic.”  Frequently, the 

coded vocabularies also provide other information about each concept such as synonyms, 

definitions, and relationships with other concepts.  A concept in a coded vocabulary 

is called a coded concept.  In this thesis we will represent coded concepts in the form, 

<code | code system | text>.  For example, we will refer to the concept for breast cancer 

in SNOMED-CT as <254837009 | SNOMED-CT | breast cancer>.

Coded concepts facilitate a consistent representation for medical information.  

This makes it easier to share information between different systems while maintaining 

meaning.  Coded concepts are convenient for automated medical applications because 

they are less prone to lexical errors such as misspellings or one phrase having more 

than one meaning depending on its context.  For example, the word “fundus” may be 

associated with a portion of the eye, the stomach, or the uterus, depending on the con-

text in which it is used.  For each of these uses, the coded vocabulary would define a 

distinct concept with its own identifier.  In SNOMED-CT the concepts are: <65784005 

| SNOMED-CT | fundus of eye>, <414003 | SNOMED-CT | fundus of stomach>, and 

<27485007 | SNOMED-CT | fundus of uterus>.
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2.2 - Detailed Clinical Models

While coded vocabularies provide much of the raw material needed to describe 

clinical information, they are not sufficient alone.  If we want to state that a patient has 

a diagnoisis of breast cancer, we could store the concept, <254837009 | SNOMED-CT | 

breast cancer>, in her electronic medical record.  If we wanted to state that the patient had 

a family history of breast cancer, we could store the concept, <275862002 | SNOMED-

CT | family history of breast cancer>, in her record.  Suppose now that we wanted to store 

the fact that it was the patient’s sister that had breast cancer.  Currently SNOMED-CT 

does not have a concept for this.  Although a coded vocabulary like SNOMED-CT could 

add concepts like this, it is not a practical solution.  It would require the maintainers of 

the vocabulary to create concepts for most combinations of disease and family members.

A solution to this problem is to use detailed clinical models.  A detailed clinical 

model is a data model that defines relationships between coded concepts or other data 

values to describe information of clinical interest.  For example, a detailed clinical model 

may define a diagnosis as something that has a type and a subject as in Figure 8.  This 

defintion states that a “diagnosis” has two fields.  The first field is named “type” and 

contains a value that is a coded concept.  This field is required.  The second field is named 

“subject,” meaning the subject of the diagnosis, or who has this diagnosis.  The value of 

Figure 8 - Psuedocode definition for a detailed clinical model for a diagnosis.

diagnosis:
 has-required-field:
  name = “type”
  type = coded concept
 has-optional-field:
  name = “subject”
  type = coded concept
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this field is also a coded concept.  This field is optional; if it is not present, the subject of 

the diagnosis is assumed to be the patient.  Figure 9 shows two data instances.  The first 

one asserts that the patient has a diagnois of breast cancer, and the second one asserts that 

the patient’s sister has a diagnosis of breast cancer.  By defining and using detailed clini-

cal models, we are able to combine coded concepts into meaninful expressions. This al-

lows us to efficiently describe clinical information.  We make extensive use of both coded 

concepts and detailed clinical models in the Concept Mapping process shown in Step 2 in 

Figure 1.

2.3 - Intermountain Health Care’s Electronic Medical Record

The target electronic medical record for this project is Intermountain Health 

Care’s Clinical Data Repository (CDR)[CDR].  Intermountain Health Care (IHC) is a 

regional, nonprofit, integrated health system based in Salt Lake City, UT.  The CDR is the 

result of a joint development effort between IHC and 3M Health Information Systems.  

The CDR is a robust electronic medical record system which makes extensive use of 

coded vocabularies and detailed clinical models.  

The detailed clinical models used by the CDR are defined using Abstract Syntax 

Notation One (ASN.1)[HRS+98].  ASN.1 is an ISO standard for describing electronic 

messages[ASN].  As its name implies, ASN.1 provides a syntax for describing messages 

Figure 9 - Psuedocode instances of detailed clinical models.

diagnosis:
 type: <254837009 | SNOMED-CT | breast cancer>

diagnosis:
 type: <254837009 | SNOMED-CT | breast cancer>
 subject: <27733009 | SNOMED-CT | sister>
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that is abstract from any specific encoding.  However, in addition to the abstract specifica-

tion, ASN.1 also defines multiple specifications for specific encodings, including binary 

and XML encodings.  Thanks to its flexibility and efficiency, ASN.1 is  used in many dif-

ferent areas ranging from telecommunications to genome databases.

The best analogies for understanding what ASN.1 is and how it works are nested 

structs in the C programming language and XML.  All three are tools for defining nested 

data structures where each field in the structure can have a name and a type.  All three 

tools have distinct concepts for definitions and instances.  The biggest difference be-

tween ASN.1 and the others is that the defintions specify an abstract model independent 

of a given representational technology.  This means that while instances of C structs are 

always regions of memory and instances of XML are always text documents, instances 

of ASN.1 can be represented in many different forms depending on the chosen encoding 

rules.  Since all of the encodings are representationally complete with respect to the ab-

stract model, they are interchangable.  Figure 10 gives an example of an ASN.1 definition 

for a simple detailed clinical model.  This figure also illustrates that the type of each item 

in an ASN.1 definition may be a primitive (e.g. REAL) or it may be the result of another 

definition (e.g. a CodedConcept).

Figure 10 - A simple ASN.1 definition for a laboratory result.

LabResult ::= SET {
 labTestname  [0] CodedConcept,
 labTestValue  [1] REAL,
 unitsOfMeasure [2] CodedConcept }

CodedConcept ::= SET {
 code  [0] VisibleString (SIZE (1..20)),
 codeSystem [1] VisibleString (SIZE (1..255)),
 text  [2] VisibleString (SIZE (1..255)) }
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All coded concepts in the CDR are drawn from IHC’s Healthcare Data Diction-

ary (HDD)[RHHW94], another technology jointly developed by IHC and 3M.  The HDD 

is effectively a large coded vocabulary (over 800,000 concepts with over 4 million syn-

onyms) containing both locally defined concepts and concepts from other coded vocabu-

laries.  The names of all the detailed clinical models used in the CDR and the fields they 

contain are defined as concepts in the HDD.  The result is that all data stored in the CDR 

can be viewed as name-value pairs.  The name portion of the pairs are always coded con-

cepts.  The values can be either primitive data types or other detailed clinical models.  For 

example, given the following coded concepts:

 <1155 | HDD | Lab Observation>

 <552 | HDD | Lab Test Name>

 <10220 | HDD | Serum Sodium>

 <90753 | HDD | Lab Test Value>

 <1110 | HDD | Units of Measure>

 <1729 | HDD | mEq/L>

a lab result for a serum sodium could be represented as:

{ Lab Observation : {

 {Lab Test Name : Serum Sodium},

 {Lab Test Value : 140},

 {Units of Measure : mEq/L} } }

or by replacing the text names with the appropriate codes we simply have: 

{1155 : {{552 : 10220},{90753 : ‘140’},{1110 : 1729}}}.

Note that this is not an actual ASN.1 encoding.  IHC uses the ASN.1 Basic En-

coding Rules (BER) to encode its clinical data.  BER is a binary encoding.  The example 

above is an approximate textual representation for the binary encoding.  This encoding 

can be viewed as a series of name-value pairs.  The values immediately preceding the 
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colons are concepts from the HDD and are the “name” portion of the name-value pairs.  

Whatever comes after the colon is the “value” portion.  Notice that the value can be a 

coded concept from the HDD, a primitive data type such as a numeric value or a string, 

or a composite of other name-value pairs.

The CDR is made up of a database and a set of services that operate on the data-

base.  For the most part, data in the database is only accessed through the services.  The 

services perform a couple of functions.  First, they provide a common access mechanism 

to ensure consistent security, auditing, and error handling.  Equally important is the way 

Detailed
Clinical
Model

Detailed Clinical
Model Table

Relational Tables
for Indexing

X

Z
Y

X

X

X

X
X

X

X

Figure 11 - How detailed clinical models are stored in IHC’s CDR.
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the services handle detailed clinical models.  To applications built on the services, the 

CDR behaves more like an object-oriented database than a relational database.  The ap-

plications pass instances of detailed clinical models to the services and get other instances 

of detailed clinical models back.  Internally, the data is actually stored in a relational 

database, but this fact is almost completely hidden from any application.

Although the underlying database is relational, the data is not stored in a tradi-

tionally normalized relational manner.  Instead the CDR has one table where the services 

store each instance of a detailed clinical model, formatted as an ASN.1 BER string.  Ev-

ery row in this table has a binary field that holds a BER string.  Other fields in each row 

provide information for indexing purposes such as a patient identifier.  In addition, the 

services shred the BER strings into another small set of tables.  These tables are used for 

indexing purposes.  In effect, all of the data in the CDR is stored twice, once in the BER 

string and once in the relational tables, as Figure 11 illustrates. This allows the services 

to do fast indexed searches in the relational tables to identify the detailed clinical models 

of interest.  They can then read back the entire instance with a single row read instead of 

the large number of joins it would take to reconstitute the models if they were stored only 

in a normalized relational format.  This is advantageous because applications commonly 

need the entire detailed clinical models rather than just the information present in a single 

row of a relational table.

2.4 - Arden Syntax

One of the outputs of Step 2 in Figure 1 is executable logic in Arden Syntax.  Ar-

den Syntax [HCP+90] was developed in 1990 as a language for encoding medical knowl-

edge.  It was developed in an attempt to address the need to share medical knowledge 

between hospitals and other medical institutions.  Arden Syntax is currently maintained 

by the Health Level Seven (HL7) Arden Syntax Special Interest Group and is an ANSI 
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standard.  Many vendors of electronic medical records have implemented Arden compil-

ers in their systems.

Arden Syntax is written in units called medical logic modules (MLMs).  Each 

MLM contains the logic necessary for making one medical decision.  Portions of an 

MLM are shown in Figure 4.  An Arden Syntax MLM is made up of categories and slots.  

The three categories in Arden Syntax are the maintenance category, the library category, 

and the knowledge category.  Each category contains a list of slots.  The slots in the main-

enance category contain information related to knowledge base maintenance and change 

control.  The maintenance category does not contain any clinical information.  The slots 

in the library category describe the sources of information used in creating the MLM, 

keywords, and related information.

The knowledge category of an MLM is where the clinical logic is represented.  

The most significant slots in this category are the data slot and the logic slot.  The data 

slot contains mappings of symbols used in an MLM to data in the target electronic medi-

cal record.  The logic slot, as its name implies, contains the logic that operates on the 

data.  Figure 12 shows an outline of the structure of an MLM.

While Arden Syntax is the best option currently available for sharing medical log-

ic across institutions, it suffers from what is known as the “curly braces problem.”  Arden 

Syntax does not specify a notation for referencing data elements in the target electronic 

medical record (EMR).  Rather, such references are written in a form that is understood 

by the native EMR and placed inside curly braces (e.g. the curly braces may contain a 

SQL statement specific to a given EMR).  This means that while the logic of the module 

should be portable from one EMR to the next, the references to the data in the EMR are 

not portable.  One proposed solution to the “curly braces problem” is to use and abstrac-

tion call the virtual medical record (VMR) .
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Figure 12 - An outline of the categories and slots that make up an Arden Syntax MLM.
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2.5 - The Virtual Medical Record

A VMR is an abstraction of a data model for a medical record [PRC+04].  It is 

intended that decision logic can be written against a VMR and then distributed to any 

number of healthcare organizations, each possibly using a different EMR.  Each EMR 

would have a mapping to the VMR and would therefore be able to translate VMR logic 

into native queries.  In the MLM in Figure 4, curly braces follow the “READ” keyword.  

In this case the curly braces contain an abbreviated snippet of XML representing a VMR 

query. The specification of a standard VMR is a current effort of the Clinical Decision 

Support Technical Committee of HL7.

The VMR that we use in this project is based on some early work from HL7.  

This VMR consists of a small set of classes that describe clinically relevant information.  

These classes include Observation, SubstanceAdministration, and Encounter.  Each class 

has a number of attributes.  For example the Observation class has a “code” attribute that 

specifies the type of the observation, a “value” attribute, and other attributes for capturing 

information such as the timing and status of the observation.  In this project we limit our 

VMR queries to queries on the code and value attributes of the Observation class.  This 

small subset of the VMR captures a large majority of the information needed to determine 

clinical trial eligibility.
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The focus of this thesis is the process of transforming first order predicate formu-

las describing clinical trial eligibility criteria into an executable form.  This corresponds 

to Step 2 of Figure 1, Executable Generation.  As we describe the design of the system 

in this chapter, we touch briefly on Step 1 of Figure 1, Extraction and Formula Genera-

tion, as it provides the input for Step 2.  Similarly we briefly describe Step 3 of Figure 1, 

Evaluation, because it illustrates a strategy for using the output of Step 2.  However, the 

bulk of this chapter is devoted to describing our focus, Step 2.

3.1 - Overview of Extraction and Formula Generation

Step 1 of Figure 1 shows a two-part process[Tus04] for taking a web page de-

scribing a clinical trail, extracting the eligibility criteria, and transforming them into a 

set of first order predicate formulas.  The first part, Criterion Extraction, takes a web 

page describing a clinical trial as input.  For this thesis we used clinical trials from 

ClinicalTrials.gov, an internet site sponsored by the National Institutes of Health and the 

National Library of Medicine[CT].  We created a Python script that reads the web page 

describing a trial and extracts the eligibility criteria as well as available context informa-

tion.  The context information consists of items such as whether a criterion is an inclusion 

criterion or an exclusion criterion.  The output of this part is an XML document contain-

ing the criteria and context information.  Adapting the system to work with trials from 

3 - System Design
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other sources would involve modifying the Python script to understand the format of the 

new source.

The second part of Step 1, Formula Generation, takes the XML document with 

the extracted criteria as an input.  This process parses each criterion using a link grammar 

parser[ST91].  From this it then creates a first order predicate calculus formula represent-

ing each criterion as Figure 3 illustrates.  This process relies paritally on recognizable 

sentence or phrase structure.  Since the authors of clinical trials sometimes use telegraph-

ic or ungrammatical phrasing, and since the link grammar parser we are using in this 

work is not familiar with many medical terms and syntactic constructs, the system is not 

able to correctly parse some criteria into predicate formulas.

Figure 3 shows an example of the output of the Extraction and Predicate Genera-

tion step.  The root element of this XML document is labeled “criteria”.  This element 

contains a “trial” attribute whose value is the URL of the clinical trial.  The “criteria” 

element contains a sequence of “criterion” elements.  Each of these “criterion” elements 

contains a sequence of “text” elements followed by a “formula” element.  The “text” 

elements contain text that the system extracts from the trial document.  The last “text” 

element in a sequence contains the eligibility criterion of interest.  The preceding “text” 

elements contain available context information.

The “formula” element contains the predicate calculus formula generated in the 

second part of Step 1.  In this formula, ampersand symbols representing the ‘and’ of 

terms in the formula, are encoded as “&amp;” as dictated by the rules for encoding XML.  

Most of the labels for the terms in the formulas are lower case forms of words or phrases 

from the original eligibility criterion.  Where labels consist of more than one word, the 

words are joined by an underscore character.  Some of the labels do not come directly 

from words in the original criterion, but rather are generated by the Formula Generation 

process to represent implied semantics.  For example, when the structure of a criterion is 
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consistent with what the Formula Generation process expects for a numeric measurement, 

the system creates terms with labels such as “measurement”, “magnitude”, and “units” to 

make explicit the structure of the measurement.

The parameters of the predicate terms are most often variables.  The naming 

convention for these variables is an upper case letter followed by a number.  In addition, 

some of the parameters may be string or numeric values.  If a parameter is a string it 

begins with a lower case letter.  Numbers are represented without modification as param-

eters.  Figure 13 diagrams the parts that make up a predicate formula.

Part of the processing done by the link grammar parser leverages part of speech 

information about the words being processed.  We found this information to be useful 

in the concept mapping process described below.  We therefore made the system able to 

include this information in the XML file output from Step 1.  When this information is 

included, a string indicating the part of speech is prepended to the label of a term with a 

separating pound-sign symbol.   For example, the criterion “active neoplasms” would be 

represented as ADJ#active(N1) &amp; N#neoplasms(N1).

Figure 13 - Parts of a predicate calculus formula.

acute(N1) & renal_failure(N1)
Parameter ParameterPredicate

Name

Term

Predicate Calculus Formula

Word Word Word

Term

Predicate
Name
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3.2 - Concept Mapping

The process outlined in Step 2 of Figure 1 takes the XML file described above 

as input.  It attempts to map each criterion to concepts and data structures in the target 

electronic medical record.  For each criterion that is successfully mapped we generate 

executable code for determining if a patient meets the criterion.  We discuss the concept 

mapping portion of this process in this section and discuss the code generation portion in 

the next section.

As discussed in Chapter 2, IHC’s CDR (Clinical Data Repository) stores clini-

cal data as instances of detailed clinical models that can be viewed as a series of nested 

name-value pairs. Recall also that all of the pair names are coded concepts, as are some 

of the pair values.  Since all of these coded concepts are in the HDD (Healthcare Data 

Dictionary), the mapping task consists largely of trying to match words and phrases from 

the eligibility criteria to concepts in the HDD that represent either names or values in 

detailed clinical models.

The HDD contains many concepts that are irrelevant for our purposes.  To en-

hance performance and to make the system more portable, we created a database with 

the subset of HDD content consisting of concepts that are either names or values in the 

detailed clinical models that are stored in the CDR.  The content of the HDD is stored in 

a normalized relational fashion and we kept the same relational structure in our working 

subset.  This way our system could easily use the live HDD or our subset of the HDD by 

merely changing a configuration parameter.  In addition, we created an abstraction of the 

HDD for our system with a TerminologyServer interface that defines a set of methods for 

making vocabulary related queries.  We then created an implementation of this interface 

against the HDD.

The Concept Mapping portion of the system iterates through each criterion, and 

attempts to map it to coded concepts from the HDD used in the CDR’s detailed clinical 
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Figure 14 - Flow chart of matching process.
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models.  The system uses multiple matching strategies to generate these mappings.  These 

strategies are executed sequentially, and once a match is found, subsequent matches are 

not sought.  Figure 14 is a flow diagram outlining the matching process.  Each of the 

seven decision points in the diagram represents a matching strategy, which we describe in 

detail below.

As with the TerminologyServer interface, the concept mapping application is 

made up of a generic interface that can use specific implementations.  For this thesis we 

created an implementation of the Mapper interface that is specific to IHC’s database and 

uses the IHC specific terminiology server.  To apply this system to a different electronic 

medical record would require creating the appropriate implementations of these inter-

faces.  The system chooses which implementation to use by reading a Java properties file 

on invocation.

The first step in the matching process is to look for and handle special cases. 

ClinicalTrials.gov represents information about the eligible ages and genders for a trial 

differently from other eligibility criteria.  Age and gender information is in a consistent 

location and format across all trials.  As a matter of efficiency, and to build a mechanism 

for special case handling into our system, we chose to handle age and gender as special 

cases.  To do this we created specific methods to look for and interpret these criteria.  

These methods use string comparisons and regular expression matching to determine if a 

criterion is one of the special cases.

The second matching technique the system uses is to try to match the raw text of 

a criterion against the database.  We retrieve the raw text from the last “text” element of 

the current criterion in the XML input to this step.  We remove any leading or trailing 

whitespace, and retain word order and stopwords.  Thus, for example, we try to directly 

map “LDL-C 130-190 mg/dL” from the first criterion in Figure 3, “ Heart disease” from 
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the second, and “No plans to move from the area over the next 9 months” from the third.  

The query for this match and the queries in all subsequent steps are case-insensitive.

Since these first two mapping strategies rely only on the text of the criterion and 

do not require a predicate calculus formula, they are executed for every criterion.  The 

remaining steps are executed only for criteria that are successfully parsed into predicate 

calculus formulas.

The next matching method tries to match all of the labels of the terms in the predi-

cate calculus formula describing the criterion.   For example, the criterion “heart disease” 

may be described by the formula: heart(x) & disease(x).  In this stage the mapper would 

look for coded concepts in the HDD that contain both the word “heart” and the word 

“disease”.  From the resulting concepts, the system selects the one with the fewest extra 

characters as a match.  In this phase, stopwords are removed and the order of the words is 

ignored.  If we do not find any concepts containing all of the significant words, no match 

is found and the system moves on to the next matching strategy.

In the next matching strategy, the system tries to match the predicate as a numeric 

measurement.  Numeric measurements have a name, a numeric value and units of mea-

sure.  The predicate generation process handles numeric measurements that it is able to 

recognize in a consistent manner.  For this match to succeed, the predicate must have all 

of the elements of a numeric measurement listed above.  In addition, the name portion of 

the measurement must map to a coded concept in the target database.   Without the name 

mapping to a known concept, the value portion is of little use.  For example, the first 

predicate calculus formula of Figure 3 has a “measurement” term because the process in 

Step 1 recognized the criterion as a measurement.  It has a magnitude, “130-190,” and 

units, “mg/dL.”  Finally, this criterion is mapped as a measurement because the system 

can map “LDL-C” to a concept in the HDD.
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If all of the previous methods fail to find a match, the system finally looks for 

partial matches and matches that involve more than one concept.  The first step in this 

process is to find the best partial possible match.  We do this by matching every word in 

the label of every term for the current criterion against the HDD individually.  From all 

of the coded concepts that match, we select the one that corresponds to the most words in 

the criterion, and contains the fewest extra (i.e. non-matching) characters.  In doing this 

we also take into account the part of speech of each word in the criterion.  For example, 

consider the criterion “active neoplasms” from the trial in Figure 2.  If the concept map-

per cannot find one concept containing both of the words, “active” and “neoplasms”, but 

it can match each word individually in separate concepts, then it would use the part of 

speech information to chose a concept corresponding with “neoplasms” in preference to a 

concept corresponding with “active” as a match.  This helps the mapper choose terms that 

are more likely to be significant in evaluating eligibility.

This part of speech heuristic relies on the assumption that words of certain parts 

of speech are more discriminating or important than others when making a match.  Cur-

rently, the system only considers two part of speech categories, nouns and everything 

else, and gives precedence to nouns.  For example, when we have a phrase consisting of 

an adjective and a noun that do not map to a single concept in the target database, con-

cepts containing the noun are generally better matches than concepts containing the ad-

jective.  Although this heuristic is generally useful, it is not always correct.  For example, 

in the concept “renal disease,” the adjective “renal” is probably more discriminating than 

the noun “disease.”

If a partial match is found, we then attempt to make some sense out of the remain-

der of the predicate formula.  This process has three possible outcomes.  The first possi-

bility is that we cannot match any other part of the criterion.  In this case we simply map 

to the partial match.  The second possibility is that we can determine that the remaining 
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portion of the predicate is related to the partial match in a name-value pair relationship.  

For example, the words in the criterion “diagnosis of appendicitis” do not occur together 

in a single concept in the HDD, but both “diagnosis” and “appendicitis” map individually 

to concepts in the HDD.  In addition, we can determine from the HDD that “diagnosis” is 

a valid name for clinical observation and “appendicitis” is a valid value for a clinical ob-

servation.  Given this information we determine that the separately mapped pieces could 

represent a name-value pair in the CDR.  In this case we map to the name-value pair.

The third possible outcome is that we can determine that the remaining portion of 

the predicate calculus formula is a conjunction or disjunction of more than one criterion.  

For example, the criterion, “Hyperthyroidism or hypothyroidism” from Figure 2 is a 

disjunction of two separate criteia, “hyperthyroidism” and “hypothyroidism.”  In this case 

we map the individual pieces and relate them with a conjunction or disjunction.

If none of the strategies above create a mapping to the target database, we deter-

mine that we cannot map this criterion and move on to the next criterion.  We keep track 

the the criteria that are not successfully parsed into predicate formulas, and those for 

which we receive a predicate formula but are unable to generate a mapping.  This infor-

mation can be passed along in a format such as that illustrated in Figure 5, or by passing 

references to objects in memory if Step 3 is executing as part of the same process.  This 

Figure 15 - A sample VMR query.

<VMRQuery class=”Observation”>
 <value op=”equals”>
  <cd code=”1450395” displayName=”heart disease”/>
 </value>
</VMRQuery>
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information can be useful to the user of the system when evaluating the final output of the 

system.

3.3 - Code Generation

The second part of Step 2 is Code Generation.  In this part we take the output of 

the Concept Mapping process and use it to generate executable code.  The code that we 

generate for this project is an Arden Syntax MLM (Medical Logic Module).  As described 

in Chapter 2, we use VMR queries (Virtual Medical Record queries) within Arden’s curly 

braces for data access.

Generating code for determining eligibility occurs in two steps.  The first step 

takes place in tandem with the mapping process described above.  When the system 

can establish a database mapping for a criterion, it generates a query against the VMR 

and associates it with the criterion.  Figure 15 shows an example of a VMR query.  In 

the opening “VMRQuery” tag we specify the VMR class that this query is against.  As 

mentioned in Chapter 2, all VMR queries in this project are against the Observation class.  

In this example, the criterion is mapped to the coded concept “heart disease” in the target 

EMR (Electronic Medical Record).  Using metadata from the target EMR, the system 

determines that “heart disease” is valid in the value part of a name-value pair.  Thus, the 

Figure 16 - A sample Arden Syntax read statement containing a VMR query.

Criterion1 := READ {
 <VMRQuery class=”Observation”>
  <value op=”equals”>
   <cd code=”1450395” displayName=”heart disease”/>
  </value>
 </VMRQuery>
};
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“VMRQuery” element contains a “value” element.  If the mapped concept serves as the 

name part of a pair, then a “code” element replaces a “value” element in the query.  The 

“op” attribute of the “value” element specifies a comparison operation for the value.  The 

valid values of this attribute depend on the type of the element that is contained within 

the “value” element.  In this case the “value” element contains a “cd” element repre-

senting a coded concept.  The comparison operations that are valid for a coded concept 

include “equals” and “isa.”  If the contents of the “value” element represented a numeric 

value, then numeric comparison operators such as “equals,” “less than,” and “greater 

than” would be applicable.

The second step in generating code to determine eligibility takes place after all of 

the criteria have been considered for mapping.  In this step we generate the Arden Syntax 

MLM.  The MLM we generate is focused on the executable logic.  Even though the vast 

majority of slots in an MLM are required by the specification, only a handful are use-

ful for machine execution.  Most of the remaining slots are intended for human perusal.  

Therefore, for this project we populate only the small number of slots that are useful for 

automated processing.  We do not generate any slots in the maintenance category.  In the 

library category we populate the links slot with the URL of original clinical trial.  In the 

knowledge category we populate the type, data, and logic slots.  The only valid value for 

the type slot is “data-driven,” so we populate it appropriately.

To generate the data slot, we iterate through the eligibility criteria.  For each 

criterion that does not have a mapping to the target electronic medical record, we gener-

ate a comment stating that this criterion could not be mapped, but we do not generate any 

executable code.  For the criteria that do have mappings, we generate an Arden Syntax 

“read” statement.  We assign the value of this statement to a variable as Figure 16 shows.  

The VMR queries that we generate are stated in such a way that a non-empty return value 
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means the criterion was satisfied, and an empty return value means the criterion was not 

satisfied.

Finally we generate the logic slot.  We first initialize an integer variable to zero 

and use it as a counter to keep track of how many criteria are met.  We then iterate 

through each criterion.  For each of the criteria that have mappings to the target database, 

we generate code that checks the value of each variable declared in the data slot and 

increments the value of the counter variable if the data variable has a value.  After iterat-

ing through the criteria, we generate code that writes out the results.  Figure 4 in Chapter 

1 illustrates the generated code.

Although we have chosen to use Arden Syntax as the language of our execut-

able code, we constructed the code generation subsystem using the same separation of 

interface and implementation that we used in other areas.  Therefore generating code in a 

different language would only require the interested party to supply an appropriate imple-

mentation of the generator interface.

3.4 - Evaluation

The medical logic module that we generate could be used in a number of differ-

ent ways.  One possible strategy is to incorporate it in a process that searches through a 

large collection of patient records, looking for candidates for the trial.  In this scenario the 

process could set a threshold for the percentage of criteria that need to be determined to 

suggest a patient for further consideration.  An alternative approach would be to set the 

threshold on the number of patients to suggest instead of on the number of criteria met.  

This would present to the user a set number of patients that are most likely to be eligible.

Another use of the MLM would be to incorporate it in a process that works on 

patients who are scheduled for office visits.  When the appointment is scheduled, or at 

some set time prior to the appointment, the scheduled patient could be evaluated against a 
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number of trials in which the clinicians in that office are participating.  Patients who meet 

a certain level of likelihood would be flagged for further evaluation during their visit.

In addition to the numeric results that the MLM delivers, the information it pro-

vides about each criterion could also be useful in pre-screening patients.  For example, 

the clinician may know that a certain type of medical data is only rarely stored electroni-

cally.  Therefore, if a criterion related to that type of data is not met by looking in the 

electronic medical record, the clinician may discount this item and base their judgment 

about whether to seek further evaluation of the patient on other criteria.  Figure 6 gives an 

example of a report that provides this type of information.
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In this chapter we describe the experiment that we performed.  We discuss the re-

sults of the experiment and attempt to give some insight into what worked well and what 

improvements could be made.

4.1 - Experiment

To evaluate the system, we randomly chose one hundred clinical trials from 

www.clinicaltrials.gov and ran them through Steps 1 and 2 in Figure 1.  For the trials that 

successfully completed these steps the system automatically generated a report including 

the following information:

• the number of criteria extracted;

• the number of criteria parsed into predicate calculus formulas;

• the number of criteria that were parsed but not successfully mapped to queries 

against the target system; and

• the number of queries generated.

In addition, the generated reports listed the text of the original criteria as well as 

the associated predicate calculus formulas and generated queries where applicable.  We 

then manually inspected each report, looking at the generated queries, and categorizing 

them into four groups:

• queries that correctly and completely represented the original criterion;

4 - Experimental Results
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• queries that did not exactly represent the original criterion, but that would still 

return information useful in evaluating the criterion;

• queries that were not useful in evaluating the criterion, but were correct repre-

sentations of the predicate calculus formula generated in Step 1; and

• queries that were incorrect and not useful in evaluating the criterion.

We tallied these numeric results and present them in Section 4.2.  In addition, 

while inspecting each report we noted examples of things that worked well and items that 

illustrated opportunities for improvement.  We discuss these items in detail in Section 4.3.

4.2 - Results

Table 1 lists the results of the experiment.  Eighty-five of the one hundred trials 

selected successfully completed both Steps 1 and 2.  The system identified 1,545 eli-

gibility criteria to evaluate from these eighty-five trials.  In Step 1, the system success-

fully generated one predicate calculus formula each for 473 of the criteria.  In Step 2 we 

generated queries against the target electronic medical record (EMR) for all but 49 of the 

criteria with predicate calculus formulas.  In addition, since some of the query generation 

Trials evaluated 100
Trials successfully completing Steps 1 & 2 85
Criteria extracted 1545
Criteria parsed into predicate calculus formulas 473
Criteria parsed but not mapped into queries 49
Queries generated 520
Completely correct queries 140
Other useful queries 113
Technically correct queries 4
Incorrect queries 263

Table 1 - Results
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strategies do not require a predicate calculus formula, we generated queries for 96 other 

criteria, for a total of 520 queries.

Upon inspection of the 520 generated queries, we determined that 140 of these 

completely and exactly represented their original eligibility criteria.  Of these, 120 were 

the result of special case handling for age and gender.  Another 113 of the queries, while 

not being either correct or complete enough to fully represent the meaning of the original 

criteria, were still close enough to yield information that would be useful for a clinician 

in evaluating the criteria.  We also note four cases where the generated query correctly 

represented the associated predicate calculus formula but not the intent of the original 

criteria.  In total, 257 queries were either completely correct, usefully correct, or techni-

cally correct.  The remaining 263 queries were neither correct nor useful in determining 

eligibility.

4.3 - Discussion

In this section we will discuss the results of our experiment.  In Section 4.3.1 we 

briefly discuss the performance of the Step 1, Extraction and Formula Generation.  While 

these are outside the immediate scope of this thesis, the quality and quantity of input that 

they provide for our system is critical.  In section 4.3.2 we discuss the concept mapping 

and code generation portion of the system, the focus of this thesis.   We touch on things 

that worked well, areas where the system could improve, and aspects of the problem that 

are not easily remedied.

4.3.1 - Input Preparation

The process of extracting criteria from the HTML trial documents relied mostly 

on structural cues to distinguish criteria from surrounding contextual information.  The 

process was good, but not perfect.  It would sometimes identify a contextual statement 
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such as “Exclusion criteria:” or “Patient has one of the following:” as criteria.  Since the 

creators of the trial documents have considerable freedom in the way they can enter the 

criteria, and since they do not always use structural cues such as colons or indentation 

consistently to separate context from criteria, it is nearly impossible to extract the cri-

teria without error.  That said, a rough visual inspection of the extracted criteria and the 

original trial documents suggested an accuracy of about 90%.  This is reasonable since, 

despite the freedom available for entering the criteria, most of the criteria were in rather 

simple lists and most of the visual cues that the authors used to provide context for people 

who would read the trial were structurally discernible. 

The fifteen trials that did not complete both Steps 1 and 2 failed for two main 

reasons.  The first reason was that the trials contained content that our system did not 

know how to interpret such as special HTML characters.  For instance, the HTML code 

“&#252;” represents the umlat u character, and was not understood by the system.  This is 

a consequence of having no control and almost no restriction on the possible input of the 

system.  By modifying the system to act appropriately each time such a condition occurs, 

errors like this could likely be reduced to minimal frequencies. 

The other reason for failure at this stage was related to the complexity of the 

criteria and available system resources.  The complexity of certain criteria required more 

system resources to complete the final matching step than were available.  Consequently 

they failed with an “out of memory” error.  Possible solutions to this problem include 

running the system in an environment with more available memory or implementing code 

to identify significantly complex criteria and skip the last matching step on these criteria.

From the 85 processable trials, these initial steps prepared 1,545 criteria, with 473 

associated predicate calculus formulas, as input for Step 2.  The trials varied in size and 

complexity, having from 3 to 71 criteria per trial.  They also varied widely in subject mat-

ter, covering conditions from cancer to infertility to gambling.
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4.3.2 - Concept Mapping and Code Generation

The concept mapping and code generation processes resulted in the creation of 

structured queries against the target EMR.  The strategies used in this process are outlined 

in Figure 14.  As one might expect, the special case handling strategy worked very well.  

While it considered only age and gender, it accounted for the vast majority of the perfect 

queries, and nearly half of all queries that were at least useful.  While age and gender 

were the only criteria that had a consistent representation across all trials, special case 

scenarios could be developed for other criteria as well.  In particular, many trials dealing 

with cancer shared a common structure.  This appears to be the result of most of these tri-

als being submitted by the same institution, namely the National Cancer Institute.  Special 

case handling could be developed to take advantage of this commonality as well as from 

common structure from other large submitters.

As previously described, most clinical data can be handled as a series of name-

value pairs.  A large number of the remaining successfully generated queries matched 

the name portion of some of the more well-structured name-value pairs.  In particular, 

the system matched the names of many laboratory tests.  One reason for this is that the 

value space for names is more limited and more constrained than the value space for 

values.  Consider a lab test for hematocrit.  As referenced in an eligibility criterion, the 

name of the test would likely be limited to the string “hematocrit” or a synonym such as 

the abbreviation, “HCT”.  The possible values, however, range from all physiologically 

possible numeric values (e.g. 23 & 52.4) with their associated operators (e.g. equals, 

less than, not less than) to a variety of qualitative terms including “normal”, “abnormal”, 

“high”, “low”, “seriously low”, and “anemic”.  In addition, we note that the name portion 

of the pair is usually more helpful.  For a criterion such as “hematocrit greater than 39”, 

if an exact query is not generated, it would be much more useful to return all hematocrit 

measurements than it would be to return all observations with a value of 39.
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To further illustrate this, in multiple instances, the system correctly mapped the 

name portion of a pair, but ended up with a query that was not useful because it incor-

rectly mapped the value portion.  For example, consider the criterion “blood products 

or immunoglobulins within 6 months prior to entering the study”.  The system found a 

mapping to a concept, “blood products used” which is used as a name in the target EMR.  

It also found a mapping to the concept, “months” which is present as a value in the EMR.  

However “months” is not a valid value for “blood products used”.  If the mapping had 

simply stopped with “blood products used”, the resulting query would have brought back 

information useful in evaluating the criterion.  However, as the query is currently formu-

lated, it is guaranteed to never return anything.  While simplifying the mapping process to 

stop after finding a name is one solution to the problem described above, the more elegant 

and useful solution would be for the system to determine which values are appropriate for 

a given criterion, and only allow queries that conform.

As alluded to above, the system also found frequent success in the use of syn-

onyms.  Due to the many synonyms in the data dictionary, the system was able to recog-

nize concepts with many different representations and generate the appropriate queries.  

However, this success was limited somewhat by the use of ambiguous, often spontaneous 

or novel, abbreviations.  While a human can often disambiguate such abbreviations by 

context, regulatory bodies have recently made a significant effort to ban their use.  For 

example, in the trials that we considered, we mapped the abbreviation “PCP” to the drug 

“phencyclidine” while the trial intended “pneumocystic carinii pneumonia”, a disease that 

commonly afflicts patients with AIDS.  In another example, we mapped PG to “phospha-

tidyl glycerol” while the trial used that abbreviation for “pathological gambling”.

From the 473 predicate calculus formulas, the system was not able to generate 

virtual medical record (VMR) queries for 49.  Most of these 49 formulas were relatively 

simple in structure and did not contain any concepts in common with the target data dic-
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tionary.  For example, an experimental medication, by its very nature, may be referenced 

in a clinical trial, but may be unlikely to appear in the data dictionary of a normal hospital 

EMR until it has been evaluated by several trials and has begun to gain wider, non-exper-

imental use.  More complex formulas were more likely to result in VMR queries because 

the last of the mapping steps creates a query if it can match any portion of the formula.  

Thus more terms in the formula results in more chances to match something.

One possibility for increasing the number of matches is to use additional sources 

of clinical concepts such as the National Library of Medicine’s Unified Medical Lan-

guage System[Lin90] or a database of experimental drugs.  However, the increase in 

matches by doing this would not result in an increase in our ability to determine eligibil-

ity since the absence of a concept from the target data dictionary implies the associated 

EMR would not have such a concept stored in any of the patient records.

A significant number (113) of the generated queries could not directly determine if 

a patient met the criterion at hand, but provided some information that would be useful in 

making that determination.  An example of this is the criterion “women who are pregnant 

or lactating” which mapped to a query for “pregnancy”.  While knowing whether or not a 

patient is pregnant may assist in evaluating this criterion, it is not enough alone to always 

make the appropriate determination.  In another common scenario, the query is generated 

for a supertype or subtype of a concept in the criterion.  For example, the system mapped 

the criterion, “uterine papillary serous carcinoma”, to the concept “papillary carcinoma”.  

Finding “papillary carcinoma” in a patient’s record does not necessarily satisfy the crite-

rion, but it would suggest to clinicians that they look more closely to determine what type 

of papillary carcinoma the patient has.

While the results of this thesis leave significant room for improvement, it is im-

portant to note that the maximum accuracy of this type of system is limited.  The results 

of this system can be no better than the data stored in the target EMR.  If certain concepts 
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do not exist in the EMR, then it is impossible to query the EMR about criteria dependent 

on those concepts.  Examples of these criteria include, “plans to become pregnant during 

the study”, “male partners of women who are pregnant”, and “no life-prolonging therapy 

available”.

In addition to concepts that simply are not in the EMR, many criteria could be 

evaluated based on data in the EMR, but only through inferencing with external knowl-

edge.  For example, “meets psychiatric diagnostic criteria for depression” requires the 

system to know what these “diagnostic criteria” are before this criterion can be evaluated.

Another limitation stems from the fact that many items put forth by the trial 

authors as criteria are actually informational statements or instructions with little or no 

discriminating value.  An example of an informational statement is “Concurrent medica-

tions: Allowed: Dapsone”.  While this may be interesting for a clinician to note, in real-

ity whether the patient is taking dapsone has no bearing on their eligibility.  An example 

of an instruction posing as a criterion is “women of pregnancy potential must practice 

contraception”.†

Other limitations in our ability to automatically evaluate every criterion include 

the difficulties in working with natural language such as double negatives and other logi-

cally incorrect, yet humanly understood constructs.  Statements that imply information 

specified elsewhere in the trial document are also troublesome.  For example, the crite-

rion “duration of less than 10 years” does not explicitly state what it is that must have the 

specified duration.  This must be inferred from the context of the trial.

In summary, the system performed well when dealing with special cases and when 

mapping to the name portion of name-value pairs.  It is not reasonable to expect all the 

† As an aside, the author notes that the large number of criteria dealing with pregnancy in the example listed 
here is not based on a skewed data sample or a preoccupation with that health condition, but rather is due to 
the fact that researchers are very concerned about the possibility of a therapy or procedure adversely affect-
ing a fetus or nursing child.  As a result, the researchers commonly stipulate very specific eligibility criteria 
related to pregnancy and nursing.
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criteria to yield good queries without significant rigor on the part of the trial authors to 

eliminate ambiguity and logical errors.  Even then, all information needed to determine 

eligibility is not readily available in most EMR’s.  That said, we have illustrated a num-

ber of places where we could improve the system and generate a higher number of better 

quality queries.
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5.1 - Conclusion

This thesis demonstrates that some degree of automatic evaluation of eligibil-

ity criteria is feasible.  The initial steps of the process prepared about one-third of the 

eligibility criteria into predicate calculus formulas.  Given this input, the mapping and 

code generation functionality of the system generated useful queries for about half of the 

number of criteria that had formulas.

Improvements in the upstream processes, criteria extraction and formula genera-

tion, would provide a larger amount of better quality input for the system to work with.  

However, improvement in rigor and precision of authoring clinical trial eligibility criteria 

may have an even greater impact.  Moderating expectations, EMR implementers could 

reasonably develop a tuned version of this system that would not automatically determine 

eligibility, but rather present the clinician with a set of data that may be helpful in deter-

mining eligibility.

5.2 - Future Work

As described above, one of the more problematic areas in this process is getting 

from natural language statements that are adequate for clinicians to statements of the 

criteria that are computable.  One approach to this problem is to specify the eligibility 

criteria in a more precise and computable format at the time they are authored.  Another 

5 - Conclusion
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approach would be to build up a collection of medical knowledge in the form of ontolo-

gies and axioms that could be used to assist in bridging the gap.  The benefits of the sec-

ond approach include that the knowledge could then be used for problems beyond clinical 

trial eligibility and it does not place an additional burden on the authors of trials.  

For example we could create one or more ontologies describing diseases and their 

relationships to laboratory values.  Given this information, if we encountered a criterion 

of hypothyroidism, but could not find a coded concept for hypothyroidism in the EMR, 

looking in the ontology would tell us that certain laboratory values were sufficient for the 

diagnosis and we could then query the EMR for these laboratory values.

The system as presented was built on a general framework, but with a specific 

implementation for the target database.  The implementation could be generalized to 

allow for broader application.  For example, we could make use of the UMLS or other 

vocabularies in the mapping tasks.  Doing this may increase our chances of mapping a 

predicate to a known concept, but that concept would still need to be mapped into the 

target database.

Other possibilities for improving the system include:

•  Mapping criteria to more VMR classes than just the observation class.  This 

would facilitate more accurate queries against information such as procedures, 

demographics,  and medications.

•  Improving the handling of parts of speech.  Currently the code generation 

process only handles nouns in a special way.  By recognizing and using other 

parts of speech the system could better validate good queries from nonsensical 

ones.
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Appendix A

The trial in Figure 2 is from the ClinicalTrials.gov website at:

http://www.clinicaltrials.gov/ct/show/NCT00056511

The complete trial is shown on the following pages.
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