
Chapter 4

Mapping Conceptual Models to
Database Schemas

David W. Embley and Wai Yin Mok

4.1 Introduction

The mapping of a conceptual-model instance to a database schema is fun-
damentally the same for all conceptual models. A conceptual-model instance
describes the relationships and constraints among the various data items.
Given the relationships and constraints, the mappings group data items to-
gether into flat relational schemas for relational databases and into nested
relational schemas for object-based and XML storage structures.

Although we are particularly interested in the basic principles behind the
mappings, we take the approach of first presenting them in Sections 4.2 and
4.3 in terms of mapping an ER model to a relational database. In these
sections, for the ER constructs involved, we (1) provide examples of the
constructs and say what they mean, (2) give rules for mapping the constructs
to a relational schema and illustrate the rules with examples, and (3) state the
underlying principles. We then take these principles and show in Section 4.4
how to apply them to UML. This section on UML also serves as a guide to
applying the principles to other conceptual models. In Section 4.5 we ask
and answer the question about the circumstances under which the mappings
yield normalized relational database schemas. In Section 4.6 we extend the
mappings beyond flat relations for relational databases and show how to map
conceptual-model instances to object-based and XML storage structures. We
provide pointers to additional readings in Section 4.7. Throughout, we use
an application in which we assume that we are designing a database for a
bed and breakfast service. To illustrate all conceptual-modeling features of

David W. Embley
Brigham Young University, Provo, Utah 84602, USA, e-mail: embley@cs.byu.edu

Wai Yin Mok
University of Alabama in Huntsville, Huntsville, Alabama 35816, USA, e-mail:
mokw@uah.edu

1



2 David W. Embley and Wai Yin Mok

 

Room 

RoomNr 

Type 

occupies Guest
is 

signed up 
for

Activity 

GuestNr 

Address Name 

Description 

Duration 

ExtraCharges Time 

Rate 

Date 

RoomName 

(a) ER Diagram.

Activity(Description, Duration)

Guest(GuestNr, Name, Address)
Room(RoomNr, RoomName, Type, Rate, GuestNr, ExtraCharges)
IsSignedUpFor(GuestNr, Description, Date, Time)

(b) Generated Schemas.

Fig. 4.1 Basic Mappings: ER Diagram and Generated Schemas.

interest, we take the liberty of poetic license in imagining what features might
be of interest to the application.

This chapter assumes a solid understanding of several other chapters in this
handbook: The Entity-Relationship Model (Chapter 3), The Enhanced Entity-
Relationship Model (Chapter 4), The Unified Modeling Language (Chapter
5), and Functional Dependencies and Normalization (Chapter 6). We do not
extensively discuss any of these topics. We do, however, add enough commen-
tary about these topics to make this chapter reasonably self contained. This
chapter also assumes a minimal understanding of Chapter 8 (Relational Data
Model), Chapter 10 (SQL), Chapter 14 (Object-Oriented Databases), Chap-
ter 15 (Object-Relational Databases), and Chapter 16 (XML Databases). We
make no explanatory comments about these topics.

4.2 Entity-Relationship Model Mappings

4.2.1 Basic Mappings

We give an ER diagram in Figure 4.1a and the database schema generated
from the ER diagram in Figure 4.1b. In our bed and breakfast application, as
modeled in Figure 4.1, registered guests occupy rooms and are signed up for
activities such as golf, tennis, and horseback riding. Although there may be
other occupants of a room in a registered guest’s party, in this initial example,
we only capture each registered guest (presumably the ones who are paying
the bill). Further, in this example we only allow a registered guest’s party as
a whole to sign up various activities.



4 Mapping Conceptual Models to Database Schemas 3

Notationally, each box in Figure 4.1a represents an entity set, e.g., Room,
Guest, and Activity. The diamonds with lines connected to entity sets rep-
resent relationship sets among the connected entity sets, e.g., occupies and
is signed up for. The ovals represent attributes, e.g., RoomNr, Date, and
Duration, which may be connected either with entity sets (boxes) or rela-
tionship sets (diamonds).

Cardinality constraints for binary relationship sets are one of

1. many-many, indicated by the absence of arrowheads on the lines con-
necting entity sets and relationship sets, e.g., is signed up for;
2. many-one, indicated by an arrowhead on the one side, e.g., occupies is
many-one from Room to Guest, and thus there can be only one registered
guest’s party occupying a room, although the registered guest’s party may
occupy one or more rooms;
3. one-many, which is the same as many-one only in the opposite direc-
tion, e.g., occupies is one-many from Guest to Room; and
4. one-one, indicated by arrowheads on both sides, e.g., occupies would
be one-one if the bed and breakfast had the policy that a guest’s party
could occupy at most one room.

Cardinality constraints for attributes are many-one from entity set to
attribute or from relationship set to attribute. If an entity-set attribute is
a key, however, as indicated by underlining the attribute name, then the
cardinality is one-one. Thus, for example, Type is many-one from Room
to Type so that many rooms can be of the same type (e.g., the bed and
breakfast can have several single rooms, several double rooms, and several
suites). RoomNr, on the other hand, is a key attribute for Room, and thus
each room has one room number and each room number designates one room.
RoomName is also a key for Room (each room has a name such as the
“Gold Room” or the “Penthouse Suite”). Although rare, relationship sets
may also have keys designated by an underline (e.g., a guarantee number
for a guest’s reservation for a room). Relationship sets, of course, have keys,
often a composite of the keys for its related entity sets (e.g., {GuestNr,
Description}, which is a composite key1 for the relationship set is signed up
for). The standard ER model, however, provides no way to directly designate
composite keys for relationship sets.

ER Mapping Rule #1. An entity set E with n key attributes A1, ..., An

and m non-key attributes B1, ..., Bm maps to the relational schema E(A1,
..., An, B1, ..., Bm). The underlines designate keys for the relational schema.
If there is only one key, it is the primary key; if there are several keys, one
is designated as the primary key. ER Mapping Rule #1 applies when E is
a regular entity set (i.e., not a weak entity set) and has no entity set E′

1 Here and throughout the chapter “composite key” always designates a minimal key, so
that if any of the attributes of the key is removed, the remaining attribute(s) no longer
provide the unique identification property of a key.



4 David W. Embley and Wai Yin Mok

connected to E by a relationship set that is one-one or is many-one from E
to E′.

ER Mapping Rule #1 applies to Activity in Figure 4.1a. Activity is a reg-
ular entity set (as are all entity sets in Figure 4.1a), and its only connected
relationship set is many-many. When we apply ER Mapping Rule #1 to
Activity, since Description is a key attribute and Duration is a non-key
attribute, we obtain Activity(Description, Duration), which is the first re-
lational schema in Figure 4.1b. ER Mapping Rule #1 also applies to Guest,
yielding the second relational schema in Figure 4.1b. ER Mapping Rule #1
does not apply to Room because the connected relationship set occupies is
many-one from Room to Guest.

ER Mapping Rule #2. Let E be a regular entity set with n key at-
tributes A1, ..., An, m non-key attributes B1, ..., Bm, and p many-one-
connected entity sets whose primary keys are C1, ..., Cp and which have q
attributes D1, ..., Dq associated with the p many-one relationship sets. As-
suming E has no one-one-connected entity sets, E maps to E(A1, ..., An,
B1, ..., Bm, C1, ..., Cp, D1, ..., Dq).

ER Mapping Rule #2 applies to Room in Figure 4.1a. Room has two
key attributes (RoomNr and RoomName), two non-key attributes (Type
and Rate), and one many-one-connected entity set with a primary key
(GuestNr) and with an attribute (ExtraCharges) on its connecting relation-
ship set (occupies). Thus, applying ER Mapping Rule #2 to Room, we ob-
tain, Room(RoomNr, RoomName, Type, Rate, GuestNr, ExtraCharges),
the third relational schema in Figure 4.1.1

ER Mapping Rule #3. Let E and E′ be two regular entity sets con-
nected by a single one-one relationship set R between them. Let E have n
key attributes A1, ..., An, m non-key attributes B1, ..., Bm, and p many-
one-connected entity sets whose primary keys are C1, ..., Cp and which have
q attributes D1, ..., Dq associated with the p many-one relationship sets. Let
E′ have n′ key attributes A′

1, ..., A′
n′ , m′ non-key attributes B′

1, ..., B′
m′ ,

and p′ many-one-connected entity sets whose primary keys are C′
1, ..., C′

p′

and which have q′ attributes D′
1, ..., D′

q′ associated with the p′ many-one
relationship sets. And let R have r attributes R1, ..., Rr. Then, E, E′, and R
together map to the single relational schema R(A1, ..., An, A′

1, ..., A′
n′ , B1,

..., Bm, B′
1, ..., B′

m′ , C1, ..., Cp, C′
1, ..., C′

p′ , D1, ..., Dq, D′
1, ..., D′

q′ , R1, ...,
Rr).

ER Mapping Rule #3 does not apply to the ER model instance in Fig-
ure 4.1. It would apply if occupies were one-one, which would mean that
a guest’s party would occupy one room and could only occupy one room.
If occupies were one-one, then we would map Room, Guest, and occupies
together to occupies(RoomNr, RoomName, GuestNr, Type, Rate, Name,
Address, ExtraCharges). Furthermore, there would be no separate schemas

1 Unless otherwise explicitly stated, the first key listed in a relational schema is is the
primary key— RoomNr in this example.



4 Mapping Conceptual Models to Database Schemas 5

for Room and Guest schema since both would be entirely included in this
occupies schema.

It becomes unwieldy to formally specify further generalizations of ER Map-
ping Rule #3. Furthermore, these generalizations seldom arise in practice.
The generalizations involve adding more and more entity sets in a one-to-one
correspondence with the entity sets already in a one-to-one correspondence. In
principle, we just combine together into a single relational schema all the at-
tributes of these entity sets, of their connecting one-one relationship sets, and
of their connecting many-one relationship sets (but not their connecting one-
many and many-many relationship sets), and all the primary-key attributes
of their connecting many-one relationship sets. Unfortunately, however, we
have to be careful. Basically the connected one-one relationship sets have to
all have mandatory participation; and if there are cycles in the set of entity
sets in the one-to-one correspondence, the one-one relationship sets have to
all be semantically equivalent.2

ER Mapping Rule #4. Let R be a many-many binary relationship set
with attributes A1, ..., An. Let E and E′ be the entity sets connected by
R, and let P be the primary key attribute of E and P ′ be the primary key
attribute of E′. Then, R maps to R(P, P ′, A1, ..., An).

ER Mapping Rule #4 applies to is signed up for, a many-many re-
lationship set whose attributes are Date and T ime. Its connected entity
sets are Guest and Activity, whose primary keys are respectively GuestNr
and Description. Thus, when we apply ER Mapping Rule #4, we obtain
IsSignedUpFor(GuestNr, Description, Date, T ime), which is the last re-
lational schema in Figure 4.1b.

General Principle #1. In general, mappings of conceptual models to
relational schemas are about finding key attributes and composite key at-
tributes and grouping these attributes together into relational schemas along
with attributes that directly depend on them. Finding key attributes and
composite key attributes is about observing cardinality relationships among
attributes (one-one, one-many, many-one, and many-many). Finding directly
dependent attributes is about finding attributes that functionally depend on
keys, but only on keys within the group of attributes mapped together into a
relational schema (i.e., never on some non-key attribute or attribute group,
never on a proper subset of a composite key, and never on a combination
of a proper subset of a composite key and non-key attributes). Functional
dependency arises from cardinality constraints— an attribute B functionally
depends on another attribute A if there is a many-one (or one-one) relation-
ship from A to B. More generally, an attribute B functionally depends on a
set of attributes A1A2...An if there is a many-one (or one-one) relationship
from the n-tuples in A1A2...An to B.

General Principle #2. Graphical instantiations of conceptual models
dictate cardinality relationships among attributes. Sometimes the graphical

2 We refer the interested reader to the additional readings in Section 4.7 for these esoteric
mappings.



6 David W. Embley and Wai Yin Mok

instantiations of conceptual models are insufficient to express all needed car-
dinality relationships. In this case, we express the missing cardinality con-
straints we need using a formal constraint language when one is defined for
the conceptual model or notes in the absence of a defined formal constraint
language.

General Principle #3. The following algorithm generally applies to all
conceptual models.

Step 1 Group keys, which may be single-attribute keys or composite-
attribute keys, into sets in which the keys in a set are all in a one-to-one
correspondence with each other. (In practice, these key sets will often be
singleton sets.)

Step 2 In each key set, designate one of the keys (or the only key) to be
the primary key for the key set.

Step 3 To each key set, add all directly dependent non-key attributes, plus,
from among other key sets, the attributes of all directly dependent primary
keys.

Step 4 For each group of attributes formed in Step 3, select a name and
form a relational schema. (Name selection is often obvious. Since keys are
for entity sets or relationship sets, we typically use the entity-set name or
the relationship-set name.)

If we apply General Principle #3 to the ER diagram in Figure 4.1a,
Step 1 yields the set of key sets: {{Description}, {GuestNr}, {RoomNr,
RoomName}, {GuestNr Description}}.1 In Step 2 we designate RoomNr
as the primary key for the key set {RoomNr, RoomName}. All other key
sets are singleton sets and thus each key in these singleton sets is a primary
key. In Step 3 we group attributes, and in Step 4 we select names for these
attribute groups and form relational schemas. For the key set {Description},
the only directly dependent attribute is Duration. Hence, we add it, yielding
(Description, Duration). Based on the diagram in Figure 4.1a, the obvi-
ous name for this attribute group is Activity. Thus, Activity(Description,
Duration) becomes the relational schema for the key set {Description}. This
is the first relational schema in Figure 4.1b. The key set {GuestNr} has two
directly dependent attributes: Name and Address. Thus, with the addition
of the obvious schema name, Guest(GuestNr, Name, Address) becomes the
relational schema for the key set {GuestNr}. This is the second relational
schema in Figure 4.1b. The key set {RoomNr, RoomName} has three di-
rectly dependent non-key attributes: Type and Rate from the entity set Room
and ExtraCharges since it is an attribute of occupies, the many-one rela-
tionship set from Room to Guest. From among the other key sets, GuestNr

1 Here, we make use of the common set notation in the relational database literature
that lets a sequence of attribute names designate a set. Thus, {GuestNr Description}
is a key set with a single composite key consisting of two attributes whereas {RoomNr,
RoomName} is a key set with two keys.



4 Mapping Conceptual Models to Database Schemas 7

is the only primary key directly dependent on RoomNr.1 Thus, with the
addition of the obvious schema name, Room(RoomNr, RoomName, Type,
Rate, GuestNr, ExtraCharges) becomes the relational schema. This is the
third relational schema in Figure 4.1b. Finally, for {GuestNr Description},
which is the key set for the relationship set is signed up for, the only di-
rectly dependent attributes are Date and T ime.2 Thus, with the addition
of the obvious schema name, IsSignedUpFor(GuestNr, Description, Date,
T ime) becomes the relational schema.

Observe that ER Mapping Rules #1–#4 are simply special cases of the
general principles written specifically for the ER model. ER Mapping Rule
#1 gathers together key attributes and non-key attributes from a single reg-
ular entity set that has no connecting functionally dependent entity sets. ER
Mapping Rule #2 gathers together key attributes and non-key attributes
from a single regular entity set along with directly functionally dependent
attributes that are not keys and the attributes of a primary key from each
entity set functionally dependent on the single regular entity set for which
we are constructing the relational schema. ER Mapping Rule #3 and its gen-
eralizations gather together all attributes from all entity sets in a one-to-one
correspondence, plus all attributes connected to any of the relationship sets
forming the one-to-one correspondence, plus all primary key attributes of all
the entity sets connected by a many-one relationship set from any one of
the entity sets in a one-to-one correspondence, plus all attributes of these
many-one relationship sets. ER Mapping Rule #4 identifies the special case
when the composite key for a relationship set consists of primary key at-
tributes of its connecting entity sets. The attributes from these two primary
keys along with any attributes connected to the relationship set form the
relational schema.

4.2.2 Complex Key Attributes

Key identification is a central component of mapping conceptual models to
database schemas. Conceptual models commonly provide a direct way to
identify keys via diagramming conventions. For the ER model, it is common to
underline key attributes for entity sets as Figure 4.1a shows. This convention
along with cardinality constraints imposed over relationship sets provides

1 Note that although Name and Address functionally depend on RoomNr and also on
RoomName, they do not directly functionally depend on either RoomNr or RoomName
because they functionally depend on GuestNr, which is not a key attribute for the key set
{RoomNr, RoomName} for which we are building a relational schema.
2 Note that Duration functionally depends on Description, but since Description is a
proper subset of GuestNr Description, we exclude Duration. Similarly, we exclude Name
and Address since GuestNr is a proper subset of GuestNr Description.



8 David W. Embley and Wai Yin Mok

 

Room  

Room Nr 

Rate 

has 
reservation 

for 
Guest 

is 
signed up

for
Activity 

Address Name

Description 

Duration

Date 

NrInParty

Date Tim e

Name Address  Guest 
Room Nr Date  Name Address Rate 
Name Address Date Tim e  Description NrInParty 

(a) ER Diagram.

Room(RoomNr)
Guest(Name, Address)

Activity(Description, Duration)

HasReservationFor(RoomNr, Date, Name, Address, Rate)

IsSignedUpFor(Name, Address, Date, Time, Description, NrInParty)

(b) Generated Schemas.

Fig. 4.2 Mappings for Complex Key Attributes: ER Diagram and Generated Schemas.

sufficient information for identifying many keys for entity and relationship
sets — indeed most keys in practice.

ER diagramming conventions, however, are not sufficient to allow us to
identify all keys. Two common cases are (1) composite keys for entity sets and
(2) keys for relationship sets not derivable from information about entity-set
keys coupled with relationship-set cardinality constraints. The ER diagram
in Figure 4.2a. gives examples of these two cases.

1. The entity set Guest in Figure 4.2a has no key attribute. Neither
Name alone nor Address alone uniquely identifies a guest. Many different
people with the same name may make reservations, and we may wish
to make it possible for different people with the same address to make
reservations. Name and Address together, however, may uniquely identify
Guest, and we may designate that this must hold in our database so that
Name Address becomes a composite key. If no diagramming convention
or other formal convention provides a way to designate composite keys for
an entity set,1 it is best to record this information in a note. In our notes
here, we use standard functional dependency (FD) notation, allowing both
attribute names and entity-set names to appear as components of left-hand

1 There are many ER variants, and some have conventions to designate composite keys for
entity sets (e.g., a connecting line among underlined attributes of an entity set).



4 Mapping Conceptual Models to Database Schemas 9

and right-hand sides of FDs. To say that Name Address is a key for Guest,
we write the FD Name Address → Guest as Figure 4.2a shows.
2. Since only one guest’s party can occupy a room on any given date,
RoomNr and Date uniquely identify a reservation. Thus RoomNr and
Date constitute the composite key for the many-many relationship set has
reservation for. This is contrary to the usual convention, which would
have the key consist of the primary keys from the connecting entity sets.
It is easy to see, however, that RoomNr Name Address cannot be the
key because it would allow multiple parties to occupy the same room on
the same day. We designate the key for a relationship set by including
all the primary-key attributes of all connecting entity sets and all the
attributes of the relationship set in an FD. Thus, for example, we write
RoomNr Date → Name Address Rate as Figure 4.2a shows. Similarly, we
write Name Address Date T ime → Description NrInParty to designate
Name Address Date T ime as a composite key for is signed up for, i.e.,
a guest’s party can only sign up for one activity at a given time on a given
date.

Figure 4.2b shows the relational schemas generated from Figure 4.2a. We
obtain these relational schemas by following the algorithm in General Prin-
ciple #3. In Step 1 we generate keys for each of the entity sets and each of
the many-many relationship sets. This step yields the set of key sets {{Name
Address}, {Description}, {RoomNr Date}, {Name Address Date T ime},
{RoomNr}}. Since each key set has only one key, it becomes the primary key
called for in Step 2. Next we add all directly dependent non-key attributes
and needed directly dependent primary-key attributes as called for in Step 3
and select names as called for in Step 4. The result consists of the relational
schemas in Figure 4.2b.2

ER Mapping Rule #1′, ER Mapping Rule #2′, and ER Mapping
Rule #3′. The mapping rules for entity sets with possible composite keys are
straightforward generalizations of ER Mapping Rules #1–#3. Their formal
statement, however, is quite complex. Basically, instead of just simple single-
attribute keys, we must also allow for composite keys. Thus, for example,
for ER Mapping Rule #1′ (the generalization of ER Mapping Rule #1), we
include all attributes that are keys, all attributes that are parts of composite
keys, and all non-key attributes in the generated relational schema. It is
possible, though rare, that composite keys overlap. For example, if we had
kept RoomName from Figure 4.1a in our example for Figure 4.2a, we would
also have the composite key RoomName Date grouped with the composite
key RoomNr Date. In this case, the mapping rule should only generate three

2 Whether we should keep a relation for Room here is an interesting question. Observe
that its data may be completely recorded in the relation HasReservationFor. If so, we can

discard it. In our application, however, it is possible (even likely) that there is no current
reservation for some of the rooms. Thus, to preserve all room numbers in our database, we
keep it.



10 David W. Embley and Wai Yin Mok

attributes (not four) for these two composite keys. The single occurrence of
Date in the relational schema would be part of both composite keys.

ER Mapping Rule #4′. For any relationship set, we gather together
all attributes constituting primary keys of all related entity sets plus all at-
tributes of the relationship set. We then determine, from among these at-
tributes, which attributes and attribute sets are keys. This becomes the re-
lational schema for the relationship set, except in two special cases having
to do with ER Mapping Rules #2′ and #3′. If the primary key of one and
only one of the connected entity sets E of the relationship set R is a key
for R, then as part of Mapping Rule #2′, all the attributes of the relational
schema for R become part of the relational schema for E; there is no separate
relational schema for R. If the primary keys of two or more of the connected
entity sets E1, ..., En of the relationship set R is each a key for R, then as
part of ER Mapping Rule #3′, all the attributes from the relational schemas
for E1, ..., En, and R are all combined to form a single relational schema for
the database.

4.2.3 Recursive Relationship Sets & Roles

To be understood, recursive relationship sets require roles. Figure 4.3a shows
an example. The role Connecting Room helps us understand that the rela-
tionship set denotes adjoining rooms with a doorway between them: a Room
is connected with a Connecting Room.

 

Connecting
Room

Room 

RoomNr

Type 

is 
connected
with

(a) ER Diagram.

Room(RoomNr, Type)
IsConnectedWith(RoomNr, ConnectingRoomNr)

(b) Generated Schemas.

Fig. 4.3 Mappings for Roles: ER Diagram and Generated Schemas.

Roles also help us choose attribute names for recursive relationship sets.
We map a recursive relationship set to a relational schema in the same way we
map regular relationship sets to a relational schema. One-one and many-one



4 Mapping Conceptual Models to Database Schemas 11

recursive relationship sets become part of the relational schema for the entity
set, and many-many recursive relationship sets become relational schemas by
themselves. In all cases, however, there is one difference — we must rename
one (or both) of the primary-key attributes. Because the regular mapping
for a recursive relationship set would make the primary key of the entity set
appear twice, and since a relational schema cannot have duplicate attribute
names, we must rename one (or both) of them. The role helps because it usu-
ally gives a good clue about what one of the names should be. As Figure 4.3b
shows, we map the many-many recursive relationship set to the relational
schema with attribute names RoomNr and ConnectingRoomNr.

We can also use roles in this same way even when a relationship set is
not recursive. For example, we could have added a role Occupied Room to
the Room side of occupies in the ER diagram in Figure 4.1a. In this case
we could have generated Room(OccupiedRoomNr, OccupiedRoomName,
Type, Rate, GuestNr, ExtraCharges) in which OccupiedRoomNr replaces
RoomNr and OccupiedRoomName replaces RoomName in the relational
schema in Figure 4.1b. Using the role name in this way is optional, but may
be useful for distinguishing the roles attributes play when we have more than
one relationship set between the same two entity sets. For example, we could
have also had has reservation for in addition to occupies as a relationship
set between Room and Guest in Figure 4.1a.

4.2.4 Weak Entity Sets

A weak entity set is an entity set with no key among its directly associated
attributes. If we augment our bed and breakfast example to a chain of bed and
breakfast establishments as Figure 4.4a shows, the room number no longer
uniquely identifies a room. Every bed and breakfast in the establishment
likely has a Room #1 and a Room #2 and probably more. Thus, Room has
no key among its directly associated attributes, and it becomes a weak entity
set.

In an ER diagram, we designate a weak entity set by enclosing the name of
the weak entity set in a double box. In addition, we add a special relationship
set connecting the weak entity set to the entity set on which the weak entity
set depends for its key. We designate these special relationship sets by a
double diamond and by adding an arrowhead on the side connecting to the
entity set on which the weak entity set depends. Adding the arrowhead is
appropriate since there is always a many-one relationship from the weak
entity set to the entity set on which the weak entity set depends. The ER
model does not, by the way, preclude the entity set on which a weak entity
set depends from itself being a weak entity set.

Figure 4.4a is an ER diagram showing the three situations in which we nor-
mally find weak entity sets. Weak entity sets typically arise (1) when there is



12 David W. Embley and Wai Yin Mok

is for

is forRoom  Room Nr 

Type 

Guest 

Activity 

GuestNr

NrPersons 

Name 

Description 

Duration 

BedAndBreakfast 

is for Reservation 

Nam e

Location

YearOpened

GuaranteeNr 

Date Time Age

Person 
Activity 

Registration 

Name Location  BedAndBreakfast 
Name Location RoomNr  Room 
GuestNr Nam e  Person 
GuestNr Nam e Date Time  ActivityRegistration 

(a) ER Diagram.

BedAndBreakfast(Name, Location, YearOpened)

Room(Name, Location, RoomNr, Type)

Reservation(GuaranteeNr, Name, Location, RoomNr, GuestNr)

Guest(GuestNr, NrPersons)

Person(GuestNr, Name, Age)

Activity(Description, Duration)

ActivityRegistration(GuestNr, Name, Date, Time, Description)

(b) Generated Schemas.

Fig. 4.4 Mappings for Weak Entity Sets: ER Diagram and Generated Schemas.

an organizational subdivision (e.g., Room is an organizational division of the
BedAndBreakfast chain), (2) when one entity depends on the existence of
another (e.g., for the bed and breakfast database, Person depends on the ex-
istence of a registered Guest), and (3) when we wish to view relationship sets
as entity sets (e.g., an Activity Registration rather than just a relationship
set between Person and Activity).1

The general principles tell us how to map weak entity sets to relational
schemas. We first identify keys. In every case in which we find a weak entity
set, the identity of entities in the weak entity set depends on the key for some
other one or more entity sets. The identity of a room depends on the bed
and breakfast in which the room is located. The key for BedAndBreakfast,

1 Note, by the way, that the entity set Reservation is not weak, even though it is certainly
a relationship set we view as an entity set. When we turned it into an entity set, we gave
it a key, GuaranteeNr, so that it did not become a weak entity set.



4 Mapping Conceptual Models to Database Schemas 13

which for our example is the composite key Name Location,2 plus a RoomNr
uniquely identify a room. Thus, the key for Room is the composite of all three
attributes, namely, Name Location RoomNr. For Person, names are not
unique identifiers, but are usually unique within a family, which often con-
stitutes a registered guest’s party. In our example, we require unique names
within a registered guest’s party, and thus the key for the weak entity set
Person is the composite of GuestNr and Name (of Person). A person
can sign up for only one activity at a given time on a given date. Thus,
to uniquely identify an ActivityRegistration, we need the key of Person,
which is GuestNr Name, as well as Date and T ime to all be part of the key.
Thus, the composite key for ActivityRegistration is GuestNr Name Date
T ime.

After identifying keys for a weak entity set (and designating one to
be the primary key in case there are several), we add all directly depen-
dent non-key attributes and directly dependent primary-key attributes. We
then choose a name — usually the name of the weak entity set— and form
a relational schema. Figure 4.4b shows the result for the ER diagram in
Figure 4.4a. For the weak entity set Room, the only directly dependent
attribute is Type. Thus, since the key is the composite Name Location
RoomNr, the relational schema is Room(Name, Location, RoomNr, Type),
the second relational schema in Figure 4.4b. Similarly, for Person, since
Age is the only directly dependent attribute, the relational schema for the
weak entity set is Person(GuestNr, Name, Age). For the weak entity set
ActivityRegistration, Description is a directly dependent primary-key at-
tribute. Thus, since the composite key is GuestNr Name Date T ime, we
generate the last relational schema in Figure 4.4b.

ER Mapping Rule #5. Let W be a weak entity set, let E, entity set
on which W depends (E may itself be weak), and let F1, ..., Fm be the m
other entity sets (if any) in a many-one relationship from W to Fi (1 ≤
i ≤ m). Form a relational schema called W with attributes consisting of
all the attributes of W , the primary-key attribute(s) of E, all the primary-
key attributes of F1, ..., Fm, and all the attributes (if any) of the many-one
relationship sets from W to each Fi (1 ≤ i ≤ m). From among the attributes,
determine the keys for W and designate one as the primary key. Each key of
W is formed from by adding one or more attributes of W to the primary key
for E.3

2 Location is meant to be a simple city or town or other designated place. Sev-
eral bed and breakfast establishments can be in the same location (e.g., Boston),
but each establishment in the same location must have a different name. Thus,
Name Location → BedAndBreakfast.
3 Typically, as in our examples here, W has only one key. But, for example, if we also had
RoomName for the weak entity set Room, we would have a second key for Room, namely
Name Location RoomName.



14 David W. Embley and Wai Yin Mok



 

Room  

Room Nr 

Rate 

has 
reservation 

for 
Guest 

is 
signed up

for
Activity 

Name Description Duration 

Date 
RoomNr Date  GuestNrRate 

Current 
Guest 

Future 
Guest 

HighCost 
Activity

Single 

Double 

Suite 

  

GuestNr

Free 
Activity 

Returning
Guest

CreditCardNr CreditCard 
Expiration

ExtraCharges NrOfReservations 

Discount

Cost 

DownPaym ent 

Advance 
Reservation 
Requirement 

Equipment
Deposit 

Notification 
Requirement 

(a) ER Diagram.

Room(RoomNr, RoomType)

Guest(GuestNr, Name, ExtraCharges?, CreditCardNr?, CreditCardExpiration?,

NrOfReservations?, Discount?)
Activity(Description, Duration)

HighCostActivity(Description, Cost, DownPayment, AdvanceReservationRequirement)

FreeActivity(Description, EquipmentDeposit, NotificationRequirement)

HasReservationFor(RoomNr, Date, GuestNr, Rate)

IsSignedUpFor(GuestNr, Description)

(b) Generated Schemas.

Fig. 4.5 Mappings for ISA Hierarchies: ER Diagram and Generated Schemas.

4.3 Extended Entity-Relationship Model Mappings

Extended ER models include generalization/specialization or ISA hierarchies,
with possible union, disjoint, overlapping, partition, and intersection con-
straints. They also include compound attributes, multi-valued attributes,
computed attributes, and designations for mandatory and optional partic-
ipation. In this section, we consider mappings for each of these extensions.



4 Mapping Conceptual Models to Database Schemas 15

4.3.1 ISA Mappings

Figure 4.5a shows an ER diagram with several ISA constructs. Graphically,
triangles denote ISA constructs, which fundamentally designate entity sets as
subsets and supersets.1 An entity in a subset entity set is also an entity in its
superset entity set—thus the “ISA” designation. The apex of a triangle con-
nects to superset entity sets, and the base connects to subset entity sets. In
Figure 4.5a both CurrentGuest and FutureGuest are subsets of Guest, and
ReturningGuest is a subset of both CurrentGuest and FutureGuest. We
can constrain the subsets by placing symbols in the triangles: ∩ for intersec-
tion, ∪ for union, + for mutual-exclusion, and � for partition. An intersection
constraint requires that the subset entity set be exactly the intersection of
the superset entity sets (e.g., in Figure 4.5a ReturningGuest is exactly the
intersection of CurrentGuest and FutureGuest). Without the intersection
constraint (triangle with no special constraint inside it) the subset entity
set could be a proper subset of the intersection. Union requires that the
superset is exactly the union of the subsets (e.g., Guest is defined to be
exactly the union of those guests who are currently at the bed and break-
fast and those who will be future guests). Mutual-exclusion requires that
the subsets pairwise have an empty intersection (e.g., HighCostActivity and
FreeActivity have an empty intersection). Partition requires both union and
mutual-exclusion (e.g., a room must be a single room, a double room, or a
suite).

Figure 4.5b shows the relational schemas generated from the ER diagram
in Figure 4.5a. For ISA hierarchies, there are three basic mappings, which we
label as ER Mapping Rules #6.1–#6.3. (Combinations over multiple-level
hierarchies are also possible.)

ER Mapping Rule #6.1. Make a relational schema for all entity sets
in the hierarchy. Although not always best, this is the most straightforward
mapping for ISA hierarchies. The mapping for an entity set in an ISA hierar-
chy that has no generalization is the same as the mapping for any entity set.
The mapping for a specialization is also the same except that the primary-key
attribute(s) of the generalization(s)2 are also added to the relational schema.
In general any key for the specialization can be the primary key. Normally,
however, there will be only one key, the inherited primary key. In Figure 4.5

1 In this context, we call subset entity sets “specialization entity sets” or just “specializa-
tions” and call superset entity sets “generalization entity sets” or just “generalizations.”
2 Since all specializations in an ISA hierarchy are subsets of their generalizations, entities in
the specializations inherit their identity from their generalization(s). In most common cases
there is only one generalization. When a specialization has more than one generalization,
it inherits its identity from all generalizations. Often, however, all generalizations have
the same identifying attribute inherited from some root generalization. ReturningGuest
in Figure 4.5a inherits its identity from both CurrentGuest and FutureGuest, but these
entity sets, in turn, both inherit their identity from Guest. Thus, GuestNr becomes the
one and only key attribute that identifies returning guests.



16 David W. Embley and Wai Yin Mok

we map the ISA hierarchy rooted at Activity in this way. The relational
schema for Activity in Figure 4.5b is the same as it would be without the
ISA hierarchy. HighCostActivity and FreeActivity, however, both inherit
the primary key Description from Activity and include it as the primary key
for their relational schemas along with all directly dependent attributes.

ER Mapping Rule #6.2. Make a relational schema for only root entity
sets. For this mapping, we collapse the entire ISA hierarchy to the entity set
of the root generalization,3 so that all attributes of specializations become
attributes of the root and all relationship sets associated with specializations
become relationship sets associated with the root. We then map this single
entity set to a relational schema in the usual way. After doing the mapping,
we determine which attributes are nullable. All attributes that would not have
been in the mapping if we had not collapsed the ISA hierarchy are nullable.
In our relational schemas, we mark nullable attributes with a question mark.
When we transform generic relational schemas to SQL create statements for
implementation, we allow nullable attributes to have the value NULL; non-
nullable attributes may not have the value NULL. In Figure 4.5 we map the
ISA hierarchy rooted at Guest in this way. When collapsing the ISA hierarchy,
the attributes of the three specializations, all become nullable attributes of
Guest. As Figure 4.5b shows, these five attributes all have an appended
question mark.

We might wonder if this mapping causes us to lose track of which guests
are current guests, which are future guests, and which are returning guests.
For this example we do not lose the information. According to the seman-
tics of the ER model instance in Figure 4.5a only returning guests will have
Discount values whereas current and future guests who are not returning
guests will not have Discount values. Future guests will have a value for
NrOfReservations whereas current guests will not. Similarly, current guests
will have extra charges, credit card numbers, and credit card expirations
whereas future guests will not. Sometimes, however, it is not possible to know
the specialization categories based on attribute values, and even when it is
possible, we may wish to have a way to record the specialization categories.
The following two additions to Mapping Rule #6.2 show us how we can pro-
vide attributes in which we can record this information about specializations.

• ER Mapping Rule #6.2a. Add a new attribute for each specialization.
When mapping the generalization entity set to a relational schema, gen-
erate an additional attribute for every specialization entity set. Values
for these attributes are Boolean, saying for each record of the relational
schema whether the entity the record represents is or is not in the spe-
cialization. If we were to add these additional attributes for Guest, the
relational schema for Guest in Figure 4.5b would instead be:

Guest(GuestNr, Name, ExtraCharges?, CreditCardNr?,

3 Although rare, if there are multiple roots, we collapse the hierarchy to all roots. Any
entity set that is the specialization of multiple roots collapses to all of them.



4 Mapping Conceptual Models to Database Schemas 17

CreditCardExpiration?, NrOfReservations?, Discount?,
CurrentGuest, FutureGuest, ReturningGuest)

If we wish, we could omit ReturningGuest and just compute its value for
a record as yes if both values for CurrentGuest and FutureGuest are yes
and as no otherwise.

• ER Mapping Rule #6.2b. Add only one new attribute representing all
specializations. This mapping only applies when the specializations are
mutually exclusive. If so, when mapping the generalization entity set to
a relational schema, we only need to generate one additional attribute to
represent all specializations. The specialization entity-set names can be
the values for this new attribute. In Figure 4.5a, Room has three mutually
exclusive specializations that designate the room type. We therefore gen-
erate a new attribute, RoomType, for the generalization entity set Room.
The values for this attribute can be the names of the specialization en-
tity set. The generated relational schema for Room in Figure 4.5b has
the attributes RoomNr and RoomType. Values for RoomType would be
“Single”, “Double”, and “Suite” or any other designating value to say
that the room is a single room, a double room, or a suite.

ER Mapping Rule #6.3. Make a relational schema for only the leaves
in the hierarchy. The leaf entity sets inherit all attributes and all relationship
sets from parents along a path all the way back to the root.3 This mapping
only applies when union constraints are present all along all paths. If a union
constraint were missing, there could be members of the entity sets in the
hierarchy that would not appear in the leaf entity sets and thus would be
lost in the implementation. Further, we usually only apply this mapping
when mutual-exclusion is also present along all paths. If not, then members
of the entity sets could appear in more than one leaf entity set and thus would
appear as duplicates in the implementation, once for each leaf entity set in
which a member appears. As an example, assume that there are only high-cost
activities and free activities and thus that the constraint for the ISA hierarchy
rooted at Activity in Figure 4.5a is a partition (�) constraint rather than
a mutual-exclusion (+) constraint. Applying the mapping in which we only
represent the leaves of the ISA hierarchy, we would replace the three relational
schemas Activity, HighCostActivity, and FreeActivity in Figure 4.5b by the
following two relational schemas:

HighCostActivity(Description, Duration, Cost, DownPayment,

AdvanceReservationRequirement)
FreeActivity(Description, Duration, EquipmentDeposit,

NotificationRequirement)

Observe that both HighCostActivity and FreeActivity include the at-
tribute Duration as well as Description and that the connection to the
IsSignedUpFor relational schema is accounted for through the Description

3 If there are multiple roots, the leaves inherit from all roots.



18 David W. Embley and Wai Yin Mok

attributes. When we make a relational schema for only the leaves in an ISA
hierarchy, we must account for all attributes and relationship-set connections
of all ancestors of each leaf entity set.

General Principle #4. Map ISA hierarchies to relational schemas by
choosing to make a relational schema for (1) all entity sets in an ISA hierar-
chy, (2) only root entity sets, or (3) only leaf entity sets. Although there are
guidelines that typically indicate which of the three mappings to use, making
the best choice is often application dependent. Deciding among the possibil-
ities depends on the ISA constraints and the number of attributes involved.
Designers use the following rule-of-thumb guidelines.

• Select (1) when the generalizations and specializations all have many at-
tributes.

• Select (2) when the specializations collectively have few attributes.
• When the specializations have no attributes, select (2a) either for an ISA

union constraint or for an ISA with no constraint.
• When the specializations have no attributes, select (2b) either for an ISA

partition constraint or for an ISA mutual-exclusion constraint.
• Select (3) for an ISA partition constraint, especially when there are many

attributes for the specializations and few for the generalizations.

Often there is no obvious best choice. In this case the developer must choose
one. Furthermore, in some complex cases, especially with large hierarchies, it
may be best to make a separate choice for each individual ISA configuration
in the hierarchy. In the end the mappings must account for representing all
possible entities in every entity set in the ISA hierarchy and all possible
relationships and attributes of these entities.

4.3.2 Mappings for Complex Attributes

Extended ER models allow for several types of complex attributes. Fig-
ure 4.6a includes examples for each type.

• A multi-valued attribute is an attribute whose values are sets of values. In
an extended ER diagram, we denote a multi-valued attribute by a double
oval. In Figure 4.6, ActivityInterest is a multi-valued attribute. Guests
may be interested in several activities— one guest may be interested in the
set of activities {golf, horseback riding, canoeing} while another guest may
be interested in the set of activities {chess, hiking, canoeing}. V iew is also
a multi-valued attribute, whose sets might be {Ocean, CityOverlook} or
just {Ocean} depending on what can be seen by looking out the window(s)
of a room in the bed and breakfast establishment.

• A compound attribute is an attribute with component parts each of which
is also an attribute. In an extended ER diagram, we denote compound at-
tributes by attaching component attributes directly to the compound at-



4 Mapping Conceptual Models to Database Schemas 19

 

Room

RoomNr

Guest 

Address Nam e

ActivityInterest 

NameAndAddress 

StreetNr 

Rate 
City 

StateOrCountry 

PostalCode 

Discount

has 
reservation 

for 

Date 

RackRate View 

Currency

RoomNr Date  Guest 
(Date Room).Rate 
    = (1 – GuestNr.Discount/100)Room.RackRate 
Currency.FCAmount 
    = (1 + Fee/100)[Amount]Currency.ExchangeRate 

FCAmount 
Fee 

Foreign 
Currency 
Rate 

Exchange Rate

GuestNr

View: Ocean, M ountain, CityOverlook 

(a) ER Diagram.

Guest(GuestNr, Name, StreetNr, City, StateOrCountry, PostalCode, Discount)

GuestActivityInterest(GuestNr, ActivityInterest)

Room(RoomNr, RackRate, Ocean, Mountain, CityOverlook)

HasReservationFor(RoomNr, Date, GuestNr, Rate)

ForeignCurrencyRate(Currency, ExchangeRate)

Fee(Fee)

(b) Generated Schemas.

Fig. 4.6 Mappings for Complex Attributes: ER Diagram and Generated Schemas.

tribute. In Figure 4.6a, NameAndAddress is a compound attribute whose
component attributes are Name and Address. The component attribute
Address is also compound; its component attributes are StreetNr, City,
StateOrCountry, and PostalCode.

• A computed attribute is an attribute whose value can be computed. In an
extended ER diagram, we denote a computed attribute by a dashed oval.
In Figure 4.6a, FCAmount and Rate are computed attributes.

• An entity-set attribute, called in other contexts a class attribute, is an
attribute whose value is the same for all entities in the entity set and thus
can be thought of as applying to the entire set of entities rather than each
individual entity in the set. In an extended ER diagram, we denote an
entity-set attribute by a small circle. In Figure 4.6a, Fee is an example.



20 David W. Embley and Wai Yin Mok

It is a percentage and is meant to be the fee collected by the bed and
breakfast establishment for accepting payment in a foreign currency.

Figure 4.6b shows how we map the various complex attributes in Fig-
ure 4.6a to relational schemas. Basically, the mappings are straightforward
applications of the general principles. The cardinality constraints for multi-
valued attributes make them have the properties of many-many relationship
sets. The collapsing of compound-attribute trees make the leaves of these
trees have the properties of directly dependent attributes. Computed at-
tributes are the same as regular attributes except we may not need to store
them. Although entity-set attributes could be treated as regular attributes,
their singleton property makes them amenable to a different kind of mapping,
making entity-set attributes an exception to the general principles.

ER Mapping Rule #7. Fundamentally, multi-valued attributes are in
a many-many relationship with the entity set to which they are connected.
Each entity in an entity set E with a multi-valued attribute A relates to n
values v1, ..., vn of A, and each value of A relates to m entities e1, ..., em in
E. Thus, unless the number of values in A, |A|, is fixed and small, we treat
A as if it were another entity set E′ in a many-many relationship with E;
E′’s only attribute, and therefore its primary-key attribute, is A. When |A|
is fixed and small, it is possible to treat it as |A| attributes v1, ..., v|A| of E,
whose values are Boolean stating whether an entity e relates to that value or
does not relate to that value.

• ER Mapping Rule #7a. If entity set E has a multi-valued attribute A,
then if P is the primary key of E, generate the relational schema N(P, A).
If the primary key of E happens to be composite, P represents the attribute
list for the composite primary key. N is a chosen name—often a con-
catenation of the name of E and the name of A. The relational schema
GuestActivityInterest in Figure 4.6b is an example. A guest can be in-
terested in may different activities, and an activity can be of interest to
many different guests. Thus, since GuestNr is the primary key of Guest,
we generate GuestNr and ActivityInterest as the attributes and as the
composite key for the relational schema.

• ER Mapping Rule #7b. As an exception to ER Mapping Rule #7a, if
entity set E has a multi-valued attribute A, n is the size of A, and n is fixed
and small, then if A = {V1, ..., Vn}, add V1, ..., Vn as Boolean attributes
to the relational schema formed for E. The relational schema Room in
Figure 4.6b is an example. As specified in a note in the diagram, a room
can have only up to three views (Ocean, Mountain, or CityOverlook).
Thus, for the multi-valued attribute V iew of Room, we add these three
view names, Ocean, Mountain, and City as attributes to the relational
schema. Values for these attributes are Boolean: if a front corner room has
all three views, all three attribute values would have the value yes, and if
a back center room looks out only on the mountains, the Mountain value
would be yes and the Ocean and cityOverlook values would be no.



4 Mapping Conceptual Models to Database Schemas 21

ER Mapping Rule #8. Treat each leaf attribute of a compound attribute
tree T of an entity set E as an attribute of E; then map E in the usual way.
In addition, if any non-leaf node N of T is a key for E, form a composite
key from the leaf attributes of the subtree rooted at N . In Figure 4.6a Guest
has a compound attribute NameAndAddress. Its leaf attributes are Name,
StreetNr, City, StateOrCountry, and PostalCode. Thus, for Guest we form
a relational schema with these attributes along with the regular attributes
GuestNr and Discount. (Being multi-valued, ActivityInterest is not a reg-
ular attribute and is not included — neither are the non-leaf attributes of the
compound attribute tree, NameAndAddress and Address.) Further, since
the non-leaf attribute NameAndAddress is a key for Guest, we form a com-
posite key from all its leaf attributes as Figure 4.6b shows.

ER Mapping Rule #9. If a computed attribute is to be stored in the
database, treat it as a regular attribute for the purpose of mapping it to a
relational schema. When values for attributes are computed, we may or may
not want to store their values in the database. If computed values serve to
initialize a field and the field value may later change, we store the values.
In this case, there must be an attribute for it in the generated relational
schema. On the other hand, if the value is computed from other existing
values whenever we need it, we need not store it. In this case, we ignore it
when generating relational schemas. In our example in Figure 4.6a, Rate is
an initial value, which depends on a guest’s discount and the room’s rack rate
but which can be set to another value. Thus, we generate an attribute for
Rate in the relational schema for HasReservationFor, the place it would go
if it were a regular attribute. FCAmount, however, is only computed when
a guest wants to know how much to pay if the amount owed is to be paid in
a foreign currency. Thus, we do not generate an attribute for FCAmount in
any relational schema.

ER Mapping Rule #10. For an entity-set attribute A, we either ig-
nore it or map it to a single-attribute, single-valued relation A(A). Values
for entity-set attributes may be constants established in the program code,
may be values accepted as input values when needed, or may be stored in the
database and updated occasionally. In our example, we store the fee value
as a percentage number in the database and thus need the relational schema
Fee(Fee) as Figure 4.6b shows.

4.3.3 Mappings for Mandatory/Optional Participation

Figure 4.7a illustrates mandatory and optional participation in an ER di-
agram. We designate optional participation by placing a small “o” near a
connection for attributes and relationship sets, and we designate mandatory
participation by the absence of an “o.” Optional participation for an attribute
A means that an entity in an entity set need not have a value for A; manda-



22 David W. Embley and Wai Yin Mok

 

has 
favorite

Room  

Room Nr 

Type 

occupies Guest 

GuestNr 

Address Name

Rate 

has 
reservation 

for 

Date 

RoomNr Date  Guest 

(a) ER Diagram.

RoomAndOccupant(RoomNr, Type, GuestNr?)

GuestAndFavoriteRoom(GuestNr, Name, Address?, RoomNr?)

HasReservationFor(RoomNr, Date, GuestNr, Rate)

(b) Generated Schemas.

Fig. 4.7 Mappings for Mandatory/Optional Constructs: ER Diagram and Generated
Schemas.

tory participation means that an entity must have a value. In Figure 4.7a a
Guest need not provide an Address when registering (i.e., the database sys-
tem will allow the Address field in a record for a Guest to be null). Optional
participation for a relationship set R means that an entity in an entity set
need not participate in the relationship set; mandatory participation means
that it must participate. For example, a Room in Figure 4.7a need not be
occupied, need not be anyone’s favorite, and need not be reserved by any-
one. Similarly, someone recorded as a Guest in the database need not have
a reservation, need not occupy a room, and need not have a favorite room.
The database would allow, for example, a record to be kept for someone who
had been a guest, but is not currently occupying a room, has no reservation,
and has no particular favorite room.

Figure 4.7b shows how we consider optionality when we map to relational
schemas. As before, the question mark means that an attribute is nullable.
When attributes are optional, they are nullable; when they are mandatory,
they are not nullable. Thus, for example, Address has an appended ques-
tion mark in GuestAndFavoriteRoom whereas Name does not. When at-
tributes of a relationship set plus the primary-key attributes of the associ-
ated entity sets are mapped into a relational schema for an entity set, if
participation in the relationship set is optional, these imported attributes
are all nullable. When participation is mandatory, these attributes are not
nullable. Thus, for example, GuestNr is nullable in RoomAndOccupant. Be-



4 Mapping Conceptual Models to Database Schemas 23

cause occupies is many-one from Room to Guest, the primary key for Guest,
which is GuestNr, becomes one of the attributes of RoomAndOccupant, and
because participation of a Room in the occupies relationship set is optional,
GuestNr is imported as a nullable attribute. Similarly, RoomNr is nullable
in GuestAndFavoriteRoom since the has favorite relationship set is many-
one from Guest to Room and Guest optionally participates in has favorite.
Observe that the relationship set has reservation for is many-many and is
not imported into either Room or Guest. Thus, there is no special mapping
based on the optionality of reservations for rooms and guests.

ER Mapping Rule #11. Mark all nullable attributes in generated re-
lational schemas. Attributes that are the primary key of a relational schema
or that are in the composite primary key of a relational schema are never
nullable. All other attributes may be nullable and should be so marked if their
value for a record can be NULL.

This rule is a little different from all other rules. It is written with respect
to generated schemas. Thus, it does not say how to generate schemas, neither
does it say exactly how to decide which attributes are nullable. Rather, it says
which attributes are and are not potentially nullable, and it says that among
those that are potentially nullable the database designer should decide which
ones should allow null values. The reason for writing the rule this way is
twofold:

1. Many ER diagrams never specify mandatory/optional participation
(sometimes because the notation does not allow it, and sometimes just be-
cause it is not commonly done). Thus the nullable properties of attributes
in relational schemas are often not derivable from the ER diagram.
2. When mandatory/optional participation can be specified in an ER
diagram, even if someone specifies that an attribute that turns out to
be part of the primary key of some relational schema should be nullable,
it cannot be nullable. Relational database systems do not allow nulls in
primary keys.

To illustrate Reason #1, we can consider the ER diagrams in Figures 4.1–
4.6 in which no optional participation explicitly appears. One view we can
take for all these diagrams is that there is no optional participation. In this
case, all generated relational schemas remain as they are. This point of view,
however, does say something about the semantics of the schemas. For exam-
ple, in the Room schema in Figure 4.1b, we can only record room numbers,
type, and rate for occupied rooms. If we want to store this information for
unoccupied rooms, we would be forced to enter some bogus GuestNr (e.g.,
−1) and some bogus value for ExtraCharges (e.g., 0). It may be better to
simply allow these attributes to be nullable. The same is true for address
of a guest in the Guest schema in Figure 4.1b. Even if the guest is in the
process of moving and has no address to give, or if the guest refuses to give
an address, something (e.g., “none”) must be entered.



24 David W. Embley and Wai Yin Mok

To illustrate Reason #2, consider what it would mean if RoomNr for
RoomAndOccupant in Figure 4.7b were marked as optional and thus allowed
to be nullable. This means that some rooms would have no identifier— no
room number. Suppose we try to store information about several no-number
double rooms that currently have no occupants. Even if the database would
let us store the room number as null, we would have trouble since we could
not distinguish the rooms from one another. We would not even know how
many unoccupied double rooms we have. This motivates the rule: Attributes
of primary keys in a relational schema may not be null. Note that this rule
does not say that key attributes cannot be null — only that primary-key at-
tributes cannot be null. Suppose, for example, that a guest can have a guar-
antee number (GuaranteeNr) that uniquely identifies the guest in addition
to a guest number (GuestNr). We could then add GuaranteeNr as a key at-
tribute to the attributes already in GuestAndFavoriteRoom in Figure 4.7b
and let it be nullable so that not all guests would have to have a guarantee
number. Note also that this rule does not say that primary-key attributes
imported into a relational schema cannot be null. Indeed, GuestNr is nul-
lable in RoomAndOccupant, where it is not the primary key, even though it
is the primary key for GuestAndFavoriteRoom.

General Principle #5. Make attributes nullable if they can have NULL
as their value. Attributes of primary keys in a relational schema are not
nullable.

4.4 UML Mappings

In this section, we explain how to generate relational schemas from UML
class diagrams. We base our procedure on the general principles, and thus
this explanation serves as an example of how to develop mapping rules to
map any conceptual model to relational schemas. In general, we first need
to understand the syntactic features of the conceptual model and determine
which corresponding ER features or extended ER features they denote. We
can then map them to relational schemas in the same way we map ER features
to relational schemas.

We illustrate our UML mappings using the class diagram in Figure 4.8 as
an example. We begin by pointing out several syntactic features of this class
diagram and explain how they correspond to (extended) ER features. First,
UML does not provide a graphical notation for specifying keys.4 UML does,
however, provide an Object Constraint Language (OCL), in which we can
express FDs. Figure 4.9 shows an example of how to specify the FD name
location → BedAndBreakfast. Thus, to derive keys of classes in a class di-

4 UML does not use underlines to denote keys for classes; rather it uses underlines to
denote static attributes —attributes that belong to classes, not attributes applicable to
instances of classes.



4 Mapping Conceptual Models to Database Schemas 25

 

1 

2..* 

1..* 

1

1 
1 

1 

*

*

*

*

*

*

*

*

{incomplete, disjoint} 

connecting 
Room 

BedAndBreakfast 
 
name 
location 
yearOpened 

Reservation 
 

rate = calcRate( ) 
 
calcRate( ) 

DateDiscount
 

date 
discount 

M ailingAddress
 

name 
streetNr 
city 
stateOrCountry 
postalCode 

Room 
 

roomNr 
type 
rackRate 

FavoriteRoom Activity 
 

description 
duration 

Guest 
 

guestNr 
nameAndAddress: 
    M ailingAddress 
nrPersons 
activityInterest [0..*] 

Activity 
Registration 

 
date 
time 

Person 
 

name 
age [0..1] 

HighCost 
Activity 

Free 
Activity 

Fig. 4.8 UML Class Diagram

agram, we consult the OCL expressions associated with the class diagram.
Second, we can use attribute multiplicity in class diagrams to specify optional
attributes and multi-valued attributes. In Figure 4.8, age is an optional at-
tribute and activityInterest is a multi-valued attribute. Third, UML allows
the definition of a class to rely on the definition of another class. This allows
us to specify a compound-attribute groups. For example, MailingAddress
is a compound attribute group on which the class Guest depends. Fourth,
UML allows operations to be defined in class diagrams. For example, rate,
a computed attribute for the association Reservation, takes on the result of
the operation calcRate() as its initial value.

Based on the general principles, we now present a high-level algorithm that
generates relational schemas from a UML class diagram. As an example, we
show how the UML diagram in Figure 4.8 along with the OCL constraints in
Figure 4.9 map to the relational schemas in Figure 4.10.

Step 1 Based on General Principles #1 and #2, identify keys for each class.
In our example, the UML OCL provides us with these keys. The left-hand-



26 David W. Embley and Wai Yin Mok

context BedAndBreakfast
inv: BedAndBreakfast.allInstances()->forAll(b1, b2 |

b1.name = b2.name and b1.location = b2.location implies b1 = b2)
-- name location → BedAndBreakfast

... -- roomNr name location → Room

... -- guestNr → Guest

... -- date → DateDiscount

... -- name guestNr → Person

... -- description → Activity

... -- name guestNr date time → ActivityRegistration

Fig. 4.9 OCL for an FD Plus Other FDs Declared for Classes in Figure 4.8.

BedAndBreakfast(name, location, yearOpened)

Room(roomNr, name, location, type, rackRate)

ConnectingRoom(roomNr, name, location, connectingRoomNr)

Guest(guestNr, name, streetNr, city, stateOrCountry, postalCode, nrPersons)

GuestActivityInterest(guestNr, activityInterest)

FavoriteRoom(roomNr, name, location, guestNr)

DateDiscount(date, discount)

Reservation(roomNr, name, location, date, guestNr, rate)

Person(name, guestNr, age?)

Activity(description, duration, costLevel?)

ActivityRegistration(name, guestNr, date, time, description)

Fig. 4.10 Schemas Generated from Figures 4.8 and 4.9.

side of each FD in Figure 4.9 is the key for the class on the right-hand-side
of the FD.

Step 2 Based on General Principles #1 and #2, identify keys for each as-
sociation. Usually multiplicity constraints of associations along with keys
for classes determine these additional FDs. For example, if A is an n-ary
association that connects n classes C1, ..., Cn whose primary keys are re-
spectively P1, ..., Pn and the maximum value of the multiplicity for Cn in
this association is 1, then the FD P1...Pn−1 → Pn holds for A. In our ex-
ample, we have roomNr name location date → GuestNr for the ternary
association Reservation in Figure 4.8. When an association has no max-1
multiplicity constraints, the key is the composite of the primary keys for
all associated classes. For example, roomNr name location guestNr is
the key for FavoriteRoom.

Step 3 Based on General Principle #4, determine how generalization/spe-
cialization should be mapped. Since the ISA constraints for the only gen-
eralization/specialization in Figure 4.8 are incomplete and disjoint and
since there are no associations for the specializations, we choose to intro-



4 Mapping Conceptual Models to Database Schemas 27

duce one new attribute, costLevel representing all specializations as ER
Mapping Rule #6.2b suggests.

Step 4 Based on General Principle #3, map classes to relational schemas.
We generate a relational schema R for a class C as follows. R has the
following attributes:

• all the attributes of C except (1) those whose multiplicity is greater
than one (e.g., activityInterest in Figure 4.8) and (2) those compound
attributes that reference another class (e.g., nameAndAddress in Fig-
ure 4.8);

• all leaf attributes of compound attributes (e.g., name, streetNr, city,
stateOrCountry, and postalCode are all included in the relational
schema for Guest);

• all attributes included in the primary key for C, if not already included
(e.g., name and location from the class BedAndBreakfast are included
in the relational schema for Room); and

• for each association A, if a key of A is also a key of R, then (1) all
attributes of A, if any, and (2) for each class C′ connected to C by A,
the primary-key attributes of C′ (e.g., description, the primary key of
Activity, belongs in the relational schema for ActivityReservation).

Step 5 Based on General Principle #3, map remaining associations to re-
lational schemas. An association remains after Step 4 only if it is not
one-one and not one-many or many-one. We generate a relational schema
R for each remaining association A as follows. For each class C connected
by A, R includes the primary-key attributes of C. FavoriteRoom and
Reservation in Figure 4.10 are examples.

Step 6 Based on General Principle #3, map multi-valued attributes to re-
lational schemas. For each multi-valued attribute M in a class C, generate
a relational schema that includes M and the primary-key attributes of
C. The multi-valued attribute activityInterest in Guest in Figure 4.8 is
an example, which yields the relational schema GuestActivityInterest in
Figure 4.10.

Step 7 Based on General Principle #5, identify nullable attributes. In our
example age is nullable because it is a single-valued, optional attribute of
Guest, and costLevel is nullable because the ISA hierarchy in Figure 4.8
has an incomplete constraint.

Once we have relational schemas for the database, like the ones in Fig-
ure 4.10, we can derive SQL DDL for a relational database. We illustrate
here5 how to turn generated relational schemas into SQL table creation state-
ments. Figure 4.11 shows our SQL DDL for the first three relational schemas
in Figure 4.10. The translation is straightforward.

5 We could have illustrated the derivation of SQL DDL for all earlier generated schemas
as well as this one, but we only illustrate this derivation once.



28 David W. Embley and Wai Yin Mok

1. Obtain the name and basic attribute structure for the tables to
be created directly from the generated schemas. As Figure 4.11 shows,
the BedAndBreakfast table has the attributes name, location, and
yearOpened. We can rename attributes to make them more understand-
able. BandBname and BandBlocation are preferable to name and location
in Room (otherwise most people would read name in Room as the name
of the room and location as the location of the room).
2. Represent the constraints captured in the diagram and generated
schemas. The primary-key constraints come directly from the relational
schemas, as do other uniqueness constraints. The foreign-key constraints
come indirectly from the relational schemas. An attribute or attribute
group that is not a key in a relational schema R but is a key in a rela-
tional schema S is a foreign key for R that references S. BandBname and
BandBlocation, for example, constitute a composite foreign key in Room
that references the composite key name and location in BedAndBreakfast.
As may be desirable, we also add check constraints, such as roomNr !=
connectingRoomNr. These constraints, however, are not derivable from
the relational schemas we generate.
3. Add type declarations, which are usually only implicit in the conceptual-
model instance. The types varchar, number, and money are examples.
4. Reflect the null properties of the relational schemas in the SQL DDL.
Primary-key attributes are not null by default. All other attributes are
nullable unless otherwise specified by a not null constraint.

4.5 Normal Form Guarantees

When mapping conceptual models to database schemas, the question of nor-
malization naturally arises. Are generated relational schemas fully normal-
ized? By “fully normalized,” we mean they are in PJNF— Project-Join Nor-
mal Form— which also implies that they are in 4NF, BCNF, 3NF, 2NF, and
1NF. Interestingly, we can answer “yes” for conceptual-model diagrams that
are canonical.

Although circular, the easiest way to define canonical is that when mapped
according to the mapping rules or algorithms, every relational schema is fully
normalized. In practice, many (if not most) diagrams are canonical.6 Giving
a general statement that characterizes canonical for all types of conceptual
models (or even for one type of conceptual model) is difficult especially if the
characterization is to be given in the least constraining way. Many conceptual
model instances, however, satisfy stronger than necessary conditions, and it

6 Many argue that if conceptual-model diagrams are not canonical, they are not good
quality diagrams.



4 Mapping Conceptual Models to Database Schemas 29

create table BedAndBreakfast(name varchar(20),
location varchar(20),
yearOpened number(4) not null,
primary key (name, location));

create table Room(roomNr number,
BandBname varchar(20),
BandBlocation varchar(20),

type varchar(10) not null,
rackRate money not null,
primary key (roomNr, BandBname, BandBlocation),
foreign key (BandBname, BandBlocation)

references BedAndBreakfast (name, location));
create table ConnectingRoom(roomNr number,

BandBname varchar(20),
BandBlocation varchar(20),
connectingRoomNr number,
primary key (roomNr, BandBname, BandBlocation, connectingRoomNr),
foreign key (roomNr, BandBname, BandBlocation) references Room,
foreign key (connectingRoomNr, BandBname, BandBlocation)

references Room (roomNr, BandBname, BandBlocation)),
check (roomNr != connectingRoomNr));

...

Fig. 4.11 SQL for Generated Schemas.

is easy to see that they are canonical. We can see, for example, that an ER
model instance is canonical by checking the following criteria.

1. Each attribute is atomic (i.e., not decomposable into component at-
tributes we wish to access in the database).
2. Each entity set has one or more keys (possibly inherited if the entity
set is weak or in an ISA hierarchy), but has no other FDs among attributes
with left-hand sides that are not keys.
3. Each many-many relationship set has one or more keys, but no other
FDs among attributes with left-hand sides that are not keys.
4. Every n-ary relationship set (n ≥ 3) is fully reduced (i.e., we can’t
losslessly decompose it into two or more relationship sets).
5. There are no relationship-set cycles, or if there are cycles, then every
path from one entity set to another is non-redundant in the sense that we
cannot compute any relationship set as combinations of joins and projec-
tions of other relationship sets.

All the earlier ER diagrams in Sections 4.2 and 4.3 are canonical. Thus, all
the generated relational schemas are fully normalized. Based on a similar set
of criteria for UML, we can see that the UML diagram in Section 4.4 is also
canonical and that its generated database schema is thus fully normalized.

To see that not all diagrams are canonical, consider Figure 4.12. This ER
diagram violates the conditions listed above for being canonical. Supposing
that we wish to access the first name and last name of the registered guest,



30 David W. Embley and Wai Yin Mok

 

Type  RackRate 
RoomNr Date  GuestNr Rate Discount 
Date  Discount 
Rate = (1 – Discount/100)RackRate 
Includes = Package,Description(Has || IsSignedUpFor) 
IsSignedUpFor = GuestNr,Description(Has || Includes) 
HasReservationFor = ||(Package GuestNr, 
     GuestNr Description, RoomNr Date GuestNr Discount Rate) 

includes  

has 

Room

RoomNr 

Rate 

has 
reservation 

for 
Guest 

is 
signed up 

for 

Activity 

Nam e

Description 

Duration 

Date

NrInParty

Type 

Rack Rate 

Discount 

PackageDeal

GuestNr 

Package 

Fig. 4.12 ER Diagram with Constraints whose Standard Mapping will Yield Normal
Form Violations.

Name is not atomic and thus is an example of a violation of Condition #1.
The diagram violates Condition #2 because of the FD Type → RackRate,
whose left-hand side is not a key for Room. The diagram violates Condition
#3 because the left-hand side of the FD Date → Discount is not a key for
the relationship set has reservation for. (We are assuming for this example
that the discount amount depends on the date — i.e., whether it is a weekend,
weekday, holiday, during the off season, etc.) The diagram violates Condition
#4 because we can losslessly decompose has reservation for into three rela-
tionship sets: one between Package Deal and Guest (which also happens to
be equivalent to the has relationship set), one between Guest and Activity
(which also happens to be equivalent to the is signed up for relationship
set), and one between Room and Guest. (Perhaps this original quaternary
relationship set in Figure 4.12 arose because a designer was told that when
guests make reservations they always also sign up for a package deal which
includes certain activities.) The diagram violates Condition #5 because of
the cycle through the relationship sets has, includes, and is signed up for,
in which includes and is signed up for are computable from the other two
relationship sets in the cycle.

As we shall see in Section 4.5.1, if we use standard schema generation
procedures, we would generate relational schemas that are not normalized.



4 Mapping Conceptual Models to Database Schemas 31

We should then normalize them using standard normalization techniques dis-
cussed in Chapter 6. We will also see in Section 4.5.2, however, that we can
rearrange the diagram so that it has the same semantics but is canonical. If
we then use standard schema generation procedures, the resulting relational
schemas will be fully normalized. We will thus see that there are two ap-
proaches to ensure that generated relational schemas are fully normalized. (1)
We can first generate relational schemas and then normalize using standard
normalization techniques. (2) We can first canonicalize a conceptual-model
diagram and then generate relational schemas.

4.5.1 Map—Then Normalize

Room(RoomNr, Type, RackRate)

Guest(GuestNr, Name, NrInParty, Package)

Activity(Description, Duration)

HasReservationFor(RoomNr, Date, GuestNr, Rate, Discount, Package, Description)

IsSignedUpFor(GuestNr, Description)

Includes(Package, Description)

Fig. 4.13 Generated Relational Schemas —Not Normalized.

Figure 4.13 shows the relational schemas we would generate according
to the standard ER mapping rules in Sections 4.2 and 4.3. We must now
recognize the normal-form violations and fix them.

• Guest is not in 1NF because Name is not atomic. We replace Name
by FirstName and LastName in Guest, which yields Guest(GuestNr,
F irstName, LastName, NrInParty, Package).

• HasReservationFor is not in 2NF because of Date →
Discount. We decompose HasReservationFor, which yields
HasReservationFor(RoomNr, Date, GuestNr, Rate, Package,
Description) and a new relational schema DateDiscount(Date,
Discount).

• Room is not in 3NF because of Type → RackRate. We decompose
Room, which yields Room(RoomNr, Type) and a new relational schema
RoomType(Type, RackRate).

• The relationship set HasReservationFor is not in 4NF/PJNF because of
the join dependency �(Package GuestNr, GuestNr Description, RoomNr
Date GuestNr Rate). (Note that Discount is missing because we have al-
ready decomposed HasReservationFor in a step above.) We thus decom-
pose HasReservationFor according to the join dependency, which yields
three relational schemas: HasReservationFor(RoomNr, Date, GuestNr,



32 David W. Embley and Wai Yin Mok

Rate), one whose schema is (GuestNr, Description), and one whose
schema is (GuestNr, Package). Since (GuestNr, Description) is the same
as IsSignedUpFor, we discard it, keeping only IsSignedUpFor, and since
(GuestNr, Package) is embedded in Guest, we discard it, keeping only
Guest.

• Finally, we observe that the schema IsSignedUpFor is redun-
dant because IsSignedupFor = πGuestNr,Description(Has � Includes).
Note that although Includes is also redundant because Includes
= πPackage,Description(Has � IsSignedUpFor), IsSignedUpFor and
Includes mutually depend on each other. Thus, we can only remove one
of them.

Normalizing the relational schemas as described results in the database
schema in Figure 4.14.

Room(RoomNr, Type)
RoomType(Type, RackRate)

Guest(GuestNr, FirstName, LastName, NrInParty, Package)
Activity(Description, Duration)

HasReservationFor(RoomNr, Date, GuestNr, Rate)

DateDiscount(Date, Discount)
Includes(Package, Description)

Fig. 4.14 Normalized Relation Schemas.

4.5.2 Normalize—Then Map

In the alternative approach to normalization, we first make the conceptual-
model diagram canonical. We then map it to relational schemas. Because the
conceptual-model instance is canonical, the generated relational schemas will
be normalized.

To make a conceptual-model instance canonical, we check for and en-
sure compliance with the basic criteria for characterizing canonical model
instances presented earlier. We illustrate this process for ER model instances
by making the diagram in Figure 4.12 canonical.

1. Non-atomic attributes. Assuming we wish to have FirstName and
LastName for Guest, Name is not atomic. We add these attributes, mak-
ing Name a compound attribute as Figure 4.15 shows.
2. FDs whose left-hand sides are not keys. Recognizing the FD Type →
RackRate as an FD whose left-hand side is not a key, we create a new
entity set, RoomType, as Figure 4.15 shows. Type is a key attribute for
RoomType, and RackRate is a regular attribute. Further, as Figure 4.15



4 Mapping Conceptual Models to Database Schemas 33

 

Room Nr Date  GuestNr Rate 
Rate = (1 – Discount/100)RackRate

includes 

has

Room 

Room Nr 

Rate 

has 
reservation 

for 
Guest 

Activity

Name 

Description

Duration

Date 

NrInParty 

Rack Rate

Discount PackageDeal

GuestNr

Package

has

Room  
Type 

Type 

Date 
Discount 

LastName FirstName 

Fig. 4.15 ER Diagram Transformed to Generate Normalized Relation Schemas.

shows, because the FD Date → Discount is another FD whose left-hand
side is not a key, we create another new entity set, DateDiscount. Its
attributes are Date and Discount, with Date being a key attribute.
3. Reducible n-ary relationship sets. We can losslessly decompose the
relationship set has reservation for. After adding the new entity set
DateDiscount to this relationship set, the relationship set has reservation
for has become a 5-ary relationship set. We can decompose it losslessly
into two binary relationship sets and one ternary relationship set. Since
the two new binary relationship sets equate to the existing relationship
sets has and is signed up for, we discard them. This leaves us with the
ternary relationship set has reservation for in Figure 4.15.
4. Reducible cycles. The cycle of relationship sets from Guest to Package-
Deal to Activity and back to Guest is a reducible cycle. We can remove
either includes or is signed up for because either is computable from the
other two relationship sets. We cannot remove both, however, because we
need each one to compute the other. We choose to remove is signed up
for as Figure 4.15 shows.

Figure 4.15 shows the resulting canonical ER diagram, and Figure 4.14 shows
the relational schemas generated from the canonical ER diagram. It should
not be a surprise that we obtain the same results whether we first generate
relational schemas and then normalize or we first canonicalize the diagram
and then generate relational schemas.

An alternative way to do conceptual-model-diagram canonicalization is to
(1) transform the conceptual-model diagram to a hypergraph whose nodes
are attributes and whose edges are relationship sets,7 (2) transform the hy-
pergraph to a canonical hypergraph, and (3) map the canonical hypergraph

7 Any ISA hierarchies remain intact without alteration.



34 David W. Embley and Wai Yin Mok

to relational schemas. There are several advantages of this approach: (1)
Transforming a conceptual-model diagram to a hypergraph lets us explicitly
add all connections among attributes. In particular, it lets us add the trou-
blesome FD connections among attributes that are only implicit in diagrams
that force attributes to be attached only to entity sets (e.g., ER) or classes
(e.g., UML).2 (2) Since all the constraints needed for normalization appear
directly in the diagram, the canonicalization process proceeds entirely with
the diagram alone. (3) Finally, this approach leads to more straightforward
mapping algorithms, and, as we shall see in Section 4.6, leads to mapping
algorithms for object-based schemas and XML schemas.

 

has 
reservation 

for 

is 
signed 
up for

includes 

Package 

NrInParty 

Duration

Rate = (1 – Discount/100)RackRate 
Includes = Package,Description(Has || IsSignedUpFor) 
IsSignedUpFor = GuestNr,Description(Has || Includes) 
HasReservationFor = ||(Package GuestNr, 
     GuestNr Description, 
     RoomNr Date GuestNr Discount Rate) 

Room 

RoomNr 

Rate

Guest

Activity

Name 

Description 

Date

Type 

RackRate 

Discount
PackageDeal 

GuestNr

Date Room  Guest PackageDeal Rate Discount 

Fig. 4.16 Hypergraph Generated from the ER Diagram in Figure 4.12.

We illustrate this approach beginning with the non-canonical ER diagram
in Figure 4.12, which we first convert to the non-canonical hypergraph in
Figure 4.16. We convert an ER diagram to a hypergraph as follows.

1. Make every attribute be a lexical node in the hypergraph. Lexical
refers to readable/writable data; lexical nodes represent the data we store
in a database. We represent lexical nodes by dashed boxes as Figure 4.16
shows.

2 Some conceptual models (e.g., ORM [Hal95] and OSM [EKW92]) are directly based
on hypergraphs and already include all connections among attributes. These conceptual
models need no transformation to hypergraphs. For these hypergraph-based conceptual
models, the canonicalization and mappings to relational schemas proceed as we describe
here.



4 Mapping Conceptual Models to Database Schemas 35

2. Make every entity set be a non-lexical node in the hypergraph. Non-
lexical refers to real-world objects that, if represented in a database, would
be represented by object identifiers. We represent non-lexical nodes by
solid boxes; Room, Guest, PackageDeal, and Activity are the non-lexical
nodes in Figure 4.16.
3. Make every relationship set be an edge in the hypergraph. The re-
lationship set has reservation for, for example, connects the four non-
lexical nodes that were originally entity sets and the three lexical nodes
that were originally attributes as Figure 4.16 shows. If there is a func-
tional relationship among all the nodes of the relationship set, we rep-
resent this functional relationship set by marking the functionally deter-
mined nodes with arrowheads. The has relationship set between Guest
and PackageDeal is an example. If there are other functional relation-
ships among some or all the nodes, we add an edge for each one. To keep
the diagram from becoming too cluttered, we may visually add these ad-
ditional edges as FDs (but they are nevertheless edges in the hypergraph).
Figure 4.16 includes the FD Date Room → Guest PackageDeal Rate
Discount, which is a functional edge relating all nodes of the 7-ary rela-
tionship set except Activity.
4. Make every connection between an entity set and its attributes be an
edge in the hypergraph. For multi-valued attributes, the edge is many-
many (non-functional). For compound attributes, the edge is functional
from entity set to leaf attribute, one edge for every leaf attribute. (Non-
leaf attributes are discarded.) For all other attributes, the edge is func-
tional from entity set to attribute. The functional edge from Activity to
Duration in Figure 4.16 is an example. For singleton key attributes we also
add a functional edge from attribute to entity. When we have a functional
edge between an entity set and an attribute in both directions, we combine
them as a single, bi-directional, one-one edge. In Figure 4.16, RoomNr for
Room, GuestNr for Guest, Package for PackageDeal, and Description
for Activity are all examples. For each composite key consisting of n at-
tribute nodes, we add an (n + 1)-ary functional edge from the n attribute
nodes constituting the composite key to the entity-set node. We also com-
bine the (n + 1)-ary functional edge with the n functional edges from the
entity set to these attribute nodes to form a single, one-one edge between
the entity-set node and the n attribute nodes constituting the composite
key.
5. For every FD among lexical nodes, add an edge. For our example, we
add the edges Type → RackRate and Date → Discount as Figure 4.16
shows.



36 David W. Embley and Wai Yin Mok

We next make a non-canonical hypergraph canonical in three main steps.8

We illustrate these steps by converting the non-canonical hypergraph in Fig-
ure 4.16 to the canonical hypergraph in Figure 4.17.

1. Decompose all hyperedges that can be losslessly decomposed. In Fig-
ure 4.16 we decompose the 7-ary edge along with the edge represented by
the FD to a 4-ary functional edge Room Date → Guest Rate plus several
other edges, all of which eventually turn out to be redundant. Figure 4.17
shows this 4-ary edge, but none of the redundant edges.
2. Remove all redundant edges and all redundant hyperedge components.
In addition to the redundant edges just generated and ignored, we also
remove the Room-RackRate edge and the Guest-Activity edge.
3. Merge each non-lexical node with its key (any one key, if there is
more than one choice). For example, we merge Room with its primary key
RoomNr, which, as Figure 4.16 shows, are in a one-one correspondence.
The result of this merge is the lexical node RoomNr, which has been
merged with Room as Figure 4.17 shows. Similarly, we merge Package
with PackageDeal, GuestNr with Guest, and Description with Activity.

 

room 
type 

has 
reservation 

for includes 
NrInParty 

Duration 
Rate = (1 – Discount/100)RackRate 

RoomNr 

Rate

GuestNr

Description 

Nam e Date 

Type 

RackRate 

Discount 

Package 

Fig. 4.17 Canonical Hypergraph.

8 Usually these three main steps are enough. Exceptions arise (1) when the hypergraph is
cyclic after redundancies have been removed and (2) when optional participation interferes
with our ability to capture all element values. An example of the first would be an additional
edge between Description and Duration where one means the average duration for an
activity and the other means the maximum allowable duration. In this case, we need to
qualify Duration to be, say, AveDuration and MaxDuration, and generate the relational
schema for Activity with three attributes, Duration, AveDuration, and MaxDuration.
An example of the second would be optional participation for Name where we might want
to keep all names of guests even if they have no guest number. In this case, we need a
separate table for Name alone since we cannot capture all names in the Guest relational
schema, which demands a GuestNr for every Guest. We can resolve both of these issues
by adding roles. See [Emb98] for details.



4 Mapping Conceptual Models to Database Schemas 37

Once we have a canonical hypergraph, the conversion to a relational
database schema is straightforward. With one mapping rule, we can obtain
a set of normalized relational schemas:

Every edge becomes a relational schema. If the edge is functional in
only one direction, the tail attribute(s) constitute the key. If the edge is
functional in both directions (from tail(s) to head(s) and from head(s)
to tail(s)), the head attribute(s) constitute a key as well as the tail at-
tribute(s). If the edge is not functional, all the connected attributes con-
stitute the key.

For example, RoomNr → Type is a functional edge whose generated rela-
tional schema is (RoomNr, Type), and RoomNr Date → GuestNr Rate is
another functional edge whose generated relational schema is (RoomNr, Date,
GuestNr, Rate). The edge between Package and Description is a non-
functional, and thus its generated relational schema is (Package, Description).
We have no edge that is functional in both directions. To illustrate a bidi-
rectional edge, suppose, as in Figure 4.1, that in addition to room numbers,
rooms in a bed and breakfast establishment also have identifying names. We
would then have another attribute RoomName in a one-to-one correspon-
dence with RoomNr. In this case, we would generate the relational schema
(RoomNr, RoomName) in which both RoomNr is a key and RoomName
is a key.

Although this single rule generates relational schemas that are all normal-
ized, it fragments the database into more relational schemas than necessary.
Thus, to finalize the relational schemas for the database, we merge as many
as we can without violating any normal form using the following simple rule:

Merge schemas that have a common key.

For example, we would merge (GuestNr, Name), (GuestNr, Package), and
(GuestNr, NrInParty), because they all have the key GuestNr. We also add
a name as we merge so that we have a standard relational schema. We would
thus obtain Guest(GuestNr, Name, Package, NrInParty). Note that we
would not merge (RoomNr, Type) and (RoomNr, Date, GuestNr, Rate) be-
cause they do not have a common key— RoomNr is not the same as the com-
posite key RoomNr Date. Forming the relational schemas from Figure 4.17
and then merging those that have a common key results in the relational
schemas in Figure 4.14, except that Name appears in place of FirstName
and LastName since we started with Name rather than FirstName and
LastName in Figure 4.12.

Note that we have said nothing about ISA hierarchies. This is because
there is no change to the way we map ISA hierarchies to relational schemas.
There is a change, however, when we convert non-canonical hypergraphs to
canonical hypergraphs. When we merge a non-lexical node with its key, we
propagate this merge all the way down the hierarchy. Thus, for example,
when we convert the ER diagram in Figure 4.5 to a canonical hypergraph,



38 David W. Embley and Wai Yin Mok

every node in the ISA hierarchy rooted at Guest becomes a lexical node with
the name GuestNr.9 If we choose to have a relational schema for every node
in the ISA hierarchy, we simply do not merge relational schemas in the ISA
hierarchy that share a common key. If we choose to have a relational schema
only for the root of the ISA hierarchy, we merge in the usual way. If we choose
to have relational schemas only for the leaves of the ISA hierarchy, we merge
along every path from the root to each of the leaves.

4.6 Mappings for Object-Based and XML Databases

In this section, we show how to generate generic hierarchical structures,
called scheme trees, from a canonical hypergraph. Since scheme trees are
generic hierarchical structures, it is straightforward to map scheme trees to
database schemas that support hierarchical data. As an example, we show
how to map scheme trees to object-relational database schema instances and
XML schema instances. Since object-oriented databases are similar to object-
relational databases, our example for object-relational databases serves for
object-oriented databases as well.

The central idea of generating scheme trees is to ensure that each instance
of a hyperedge in a canonical hypergraph only appears once in a scheme-
tree instance. To do so, our scheme trees observe the many-one and one-one
constraints in the hypergraph. We capture the essence of the idea in the
following algorithm.2

While there is an unmarked hyperedge, do:
Select a subset V of vertices in an unmarked hyperedge E

to be the root node of a new scheme tree T .
While we can add an unmarked hyperedge E to T , do:

(We can add an unmarked edge E if the following
conditions hold: E must have a nonempty intersection S
of vertices with T . A node N must exist in T such that
the set S is contained in the union of the nodes above or
equal to N and S functionally determines the union of
the nodes above or equal to N .)

Add E to T as follows:
If S functionally determines E − S

Add the vertices in E − S to the node N .
Else

9 To keep the various nodes straight, we should add comments to the diagram. Except
that these comments help us keep the nodes conceptually straight and may help us choose
names for relational schemas, we can ignore these comments.
2 The algorithm is a simplified version of the heuristic n-ary algorithm in [ME06], which

generates scheme trees from a canonical hypergraph.



4 Mapping Conceptual Models to Database Schemas 39

Make a node consisting of the vertices in E − S and
add it to the tree as a child node of N .

Mark E as used.

If we select Package (a subset of the vertices in the edge GuestNr →
Package) as the root node, this algorithm generates the scheme tree in Fig-
ure 4.18a. Having selected {Package} as the root for T and E = {Package,
GuestNr} as the edge we are considering, we see that all conditions of the
while loop trivially hold (as they always do for the initial selection of a root
and an edge). Since S = {Package} does not functionally determine E − S
= {GuestNr} (it is actually the other way around), we add {GuestNr} as
a child node of the node {Package}. Continuing, we next consider the edge
GuestNr → Name. Here, the conditions of the while loop also hold with S
= {GuestNr}, N = {GuestNr}, and GuestNr → GuestNr Package. Since
S functionally determines E − S = {GuestNr, Name} − {GuestNr} =
{Name}, we add Name to the node containing GuestNr. Similarly, we add
NrInParty to this node, thus completing the second node in Figure 4.18a.
We next consider the edge RoomNr Date → GuestNr Rate. The intersection
S with T is {GuestNr}, which is contained in the node N we just created.
Further, GuestNr → GuestNr Name NrInParty Package so that it func-
tionally determines the union of N and the node above N (the root). Since
S does not functionally determine E−S (i.e., {GuestNr} does not function-
ally determine {RoomNr, Date, Rate}), we make a new node consisting of
{RoomNr, Date, Rate} and place it below N as Figure 4.18a shows. Con-
tinuing, we next consider the nonfunctional edge {Package, Description}.
The nonempty intersection S with the scheme tree T we have built so far is
{Package}. Since {Description} does not functionally determine {Package},
we form a new node consisting only of {Description} and add it as another
child node of {Package}, resulting in the scheme tree T in Figure 4.18a. Of
the remaining four edges, Type → RackRate has an empty intersection with
T , and the rest (Date → Discount, RoomNr → Type, and Description →
Duration) do not satisfy the functional-dependency condition of the while
loop for the scheme tree in Figure 4.18a.

Figure 4.18b shows the textual representation for the scheme tree in Fig-
ure 4.18a. In the textual representation, each node appears within paren-
theses with a star to indicate repetition; parenthesized nodes appear in line
according to their nested position in the scheme tree.

Choosing the best starting place to run the algorithm depends on the se-
mantics of the application. In our example, starting with Package is probably
not best. The main point of the application is to rent rooms to guests, not
about the activity packages they may choose. Thus, most of the processing
is likely to be about looking up guests. Hence, a likely better starting place
for our scheme-tree algorithm is to choose GuestNr as the root. When we
start with GuestNr as the root of the first tree and run the algorithm re-
peatedly until all edges are in some scheme tree, we obtain the scheme trees
in Figure 4.19.



40 David W. Embley and Wai Yin Mok

 

Package 

GuestNr, Nam e, NrInParty Description 

RoomNr, Date, Rate 

(a) Tree Representation.

(Package, (GuestNr, Name, NrInParty, (RoomNr, Date, Rate)* )*, (Description)* )*

(b) Textual Representation.

Fig. 4.18 Scheme-Tree Representations.

In Figure 4.19 we have marked keys in the usual way. In our example,
GuestNr, Date, Type, and Description values must all be unique in the usual
way we expect key values to be unique. Since RoomNr Date → GuestNr,
RoomNr-Date value pairs must be unique in the nested relation in which
they appear. Similarly, since RoomNr → Type, RoomNr values must also
be unique in the nested relation in which they appear.

(GuestNr, Name, NrInParty, Package, (RoomNr, Date, Rate)* )*

(Date, Discount)*

(Type, RackRate, (RoomNr)* )*

(Description, Duration, (Package)* )*

Fig. 4.19 Generated Scheme-Tree Forest.

Figure 4.20 shows an object-relational database schema instance derived
from the first scheme tree in Figure 4.19. The main idea of this derivation is to
scan a scheme tree bottom up and generate object types and collection types
as we go up the scheme tree. Specifically, consider a leaf node v whose parent
is u. We generate an object type tv for v such that tv has all the attributes
in v. Then, we create a collection type of tv. Afterwards, we generate an
object type tu for u such that tu has all the attributes in u and a field whose
type is the collection type of tv. We then continue this process up to the
root node of the scheme tree. Thus, for example, for the first scheme tree in
Figure 4.19, we create an object type called reservation that includes three
fields: roomNr, reservationDate, and rate. We then create a collection type
called collectionOfReservation, which is a variable length array that stores



4 Mapping Conceptual Models to Database Schemas 41

reservation objects. Finally, we create an object type called guest for the
root node. Note that there is a field called reservations in guest whose type is
collectionOfReservation. To store guest objects, we create tableOfGuest—
a table of this type. Unfortunately, declared key constraints are not typically
provided by object-relational databases. Thus, as for any constraint we wish
to enforce that is not directly supported by the database, we must provide
our own code to check and enforce it.

create type reservation as object (
roomNr integer,
reservationDate date,
rate number,
static function createReservation(roomNo integer, resDate date, rate number)

return reservation,
static function createReservation(roomNo integer, resDate date) return reservation);

create type body reservation is
static function createReservation(roomNo integer, resDate date, rate number)

return reservation is
begin

return reservation(roomNo, resDate, rate);
end;

static function createReservation(roomNo integer, resDate date) return reservation is
begin

return reservation(roomNo, resDate,
(1-discount.getDiscountRate(resDate)/100)
* roomType.getRackRate(roomNo));

end;
end;
create type collectionOfReservation as

varray(200) of reservation;
create type guest as object (

guestNr integer,
name varchar2(30),
nrInParty integer,
package varchar2(40),
reservations collectionOfReservation);

create table tableOfGuest of guest;

Fig. 4.20 Derived Object-Relational Database Schema Instance.

Figure 4.21 shows the first and last parts of a derived XML schema in-
stance for the generated scheme-tree forest in Figure 4.19. Several deriva-
tions are possible; Figure 4.21 shows one derived as follows. For each nesting
of a scheme tree we provide two names— one for describing the group and
one describing an individual in the group. Thus, for the scheme tree (Type,
RackRate, (RoomNr)* )* we introduce the name RoomTypes for the group,
RoomType for the individuals in the group, Rooms for the nested group,
and Room for the individuals in the nested group. We nest these names ap-



42 David W. Embley and Wai Yin Mok

propriately as Figure 4.21 shows. We then put the attributes in their proper
place— we nest Type and RackRate under RoomType and RoomNr un-
der Room. The type for Type is xs:ID making it unique throughout the
document. Since Type appears nowhere else in the scheme-tree forest in Fig-
ure 4.19, this simple declaration is sufficient. For RoomNr, which does ap-
pear in one other scheme tree, we scope the extent of uniqueness to be within
RoomTypes and make a key declaration as Figure 4.21 shows. Further, when
an attribute appears in more than one scheme tree, we use ref to reference
a single declaration for its type. RoomNr is an example; its type declaration
along with the type declarations for Date and Package which also appear in
more than one scheme tree appear globally at the end of the XML schema
instance in Figure 4.21. In the first part of the XML schema instance in
Figure 4.21, we have declarations for the roots of each of the scheme trees,
Guests, Activities, DateDiscounts, and RoomTypes all under the ultimate
root, Document. We allow each of them to be optional except RoomTypes.
(Although there may be no guests, activities, or date-discounts, if there are
no rooms, there is no bed and breakfast establishment.)

4.7 Additional Readings

From the beginning, mappings from conceptual-model instances to database
schemas have been an important part of the conceptual-modeling literature.
Peter Chen’s seminal article on the ER model includes an extensive discussion
of mapping the ER model to various database models [Che76]. Ever since the
appearance of this seminal article, discussions of mapping conceptual-model
instances to database schemas have continued. Notable, along the way, are
an ACM Computing Surveys article [TYF86] and a foundational book on
conceptual database design [BCN92]. Most current database text books (e.g.,
[UW02, EN04, SKS06]) contain chapters on mapping conceptual models to
database schemas.

Normalization concerns have also always been a part of mapping conceptual-
model instances to database schemas. Chen’s seminal article [Che76] ad-
dressed normalization, and his mappings did yield relations in 3NF under
his assumptions. Along the way other researchers have added insights about
normalization. Researchers have suggested both the map-then-normalize ap-
proach [TYF86] and the normalize-then-map approach [CNC81, Lin85]. In
[BCN92] the authors take the point of view that ER diagrams are not of good
quality unless they are canonical, and they talk about canonicalizing ER di-
agrams as one way to help create high-quality diagrams. The hypergraph
approach to normalization appeared initially in [EL89]; full details appeared
later in [Emb98].

Only recently have articles appeared that describe the process of mapping
conceptual models for object-based, object-oriented, and XML databases.



4 Mapping Conceptual Models to Database Schemas 43

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” elementFormDefault=”qualified”>

<xs:element name=”Document”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”Guests” minOccurs=”0”/>
<xs:element ref=”Activities” minOccurs=”0”/>

<xs:element ref=”DateDiscounts” minOccurs=”0”/>
<xs:element ref=”RoomTypes”/>

</xs:sequence>
</xs:complexType>

</xs:element>
...

<xs:element name=”RoomTypes”>
<xs:complexType>

<xs:sequence>
<xs:element name=”RoomType” maxOccurs=”unbounded”>

<xs:complexType>
<xs:sequence>

<xs:element name=”Rooms”>
<xs:complexType>

<xs:sequence>
<xs:element name=”Room” maxOccurs=”unbounded”>

<xs:complexType>
<xs:attribute ref=”RoomNr”/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name=”Type” type=”xs:ID”/>
<xs:attribute name=”RackRate” type=”xs:double”/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:key name=”RoomNrKey”>

<xs:selector xpath=”./RoomType/Rooms/Room”/>
<xs:field xpath=”@RoomNr”/>

</xs:key>
</xs:element>
<xs:attribute name=”RoomNr” type=”xs:integer”/>
<xs:attribute name=”Date” type=”xs:date”/>
<xs:attribute name=”Package” type=”xs:string”/>

</xs:schema>

Fig. 4.21 Derived XML Schema Instance.



44 David W. Embley and Wai Yin Mok

Some initial thoughts appeared in [Emb98, EM01]. Proofs that generated
scheme trees have no redundancy appeared later [ME06].

References

[BCN92] C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design: An Entity-
Relationship Approach. The Benjamin/Cummings Publishing Company, Inc.,
Redwood City, California, 1992.

[Che76] P.P. Chen. The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, March 1976.

[CNC81] I. Chung, F. Nakamura, and P.P. Chen. A decomposition of relations using the
entity-relationship approach. In Proceedings of the 2nd International Confer-
ence on Entity-Relationship Approach to Information Modeling and Analysis
(ER’81), pages 149–171, Washington D.C., October 1981.

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems Anal-
ysis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey,
1992.

[EL89] D.W. Embley and T.W. Ling. Synergistic database design with an extended
entity-relationship model. In Proceedings of the 8th International Conference on
Entity-Relationship Approach (ER’89), pages 118–135, Toronto, Canada, Octo-
ber 1989.

[EM01] D.W. Embley and W.Y. Mok. Developing XML documents with guaranteed
‘good’ properties. In Proceedings of the 20th International Conference on Con-
ceptual Modeling (ER2001), pages 426–441, Yokohama, Japan, November 2001.

[Emb98] D.W. Embley. Object Database Development: Concepts and Principles. Addison-
Wesley, Reading, Massachusetts, 1998.

[EN04] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Addison-
Wesley, Boston, Massachusetts, fourth edition edition, 2004.

[Hal95] T. Halpin. Conceptual Schema & Relational Database Design. Prentice Hall of
Australia Pty. Ltd., Sydney, Australia, second edition, 1995.

[Lin85] T.W. Ling. A normal form for entity-relationship diagrams. In Proceedings of the
4th International Conference on Entity-Relationship Approach (ER’85), pages
24–35, Chicago, Illinois, October 1985.

[ME06] W.Y. Mok and D.W. Embley. Generating compact redundancy-free XML doc-
uments from concptual-model hypergraphs. IEEE Transactions on Knowledge
and Data Engineering, 18(8):1082–1096, August 2006.

[SKS06] A. Silberschatz, H.F. Korth, and S. Sudarshan. Database System Concepts.
McGraw-Hill, New York, New York, fifth edition, 2006.

[TYF86] T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for relational
databases using the extended entity-relationship model. ACM Computing Sur-
veys, 18(2):197–222, June 1986.

[UW02] J.D. Ullman and J. Widom. A First Course in Database Systems. Prentice Hall,
Upper Saddle River, New Jersey, second edition edition, 2002.


