
Cost-Effective Information Extraction from Lists
in OCRed Historical Documents

Thomas L. Packer
Department of Computer Science

Brigham Young University
Provo, Utah 84602

thomaspacker@gmail.com

David W. Embley
Department of Computer Science

Brigham Young University
Provo, Utah 84602

embley@cs.byu.edu

ABSTRACT
To work well, machine-learning-based approaches to infor-
mation extraction and ontology population often require a
large number of manually selected and annotated exam-
ples. In this paper, we propose ListReader which provides
a way to train the structure and parameters of a Hidden
Markov Model (HMM) without requiring any labeled train-
ing data. The induced HMM is a wrapper—a function that
hides within it the complexities of low-level processing—in
ListReader’s case the complexities of information extrac-
tion from OCRed historical documents. The HMM wrap-
per is capable of recognizing lists of records in text docu-
ments and associating subsets of identical fields across re-
lated record templates. The algorithmic training method
we employ is based on a novel unsupervised active grammar-
induction framework. The training produces an HMM wrap-
per and uses an efficient active sampling process to com-
plete the mapping from wrapper to ontology by requesting
annotations from a user for automatically-selected exam-
ples. We measure performance of the final HMM in terms
of F-measure of extracted information and manual annota-
tion cost and show that ListReader learns faster and better
than a state-of-the-art baseline and an alternate version of
ListReader that induces a regular-expression wrapper.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Language parsing and understanding ; H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and In-
dexing

Keywords
information extraction, wrapper induction, list, unsuper-
vised learning, active learning, grammar induction, OCR,
ontology population, HMM, Hidden Markov Model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HIP Š15 August 22, 2015, Nancy, France
c© 2015 ACM. ISBN 978-1-4503-3602-4/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2809544.2809547

1. INTRODUCTION
FamilySearch [7] has scanned, OCRed, and placed on line

more than 150,000 historical documents, mostly family his-
tory books, and continues to add to its every-growing col-
lection at the rate of about 25,000 per year. Automatically
extracting information from these historical documents is a
major challenge. Much of the information in these docu-
ments is semi-structured in list-like structures, for which we
propose ListReader, an unsupervised active wrapper induc-
tion tool that learns Hidden Markov Models (HMMs) capa-
ble of extracting detailed information from OCRed historical
documents and populating richly-structured ontologies.

ListReader processes text documents that comprise an
OCRed collection of page images from a scanned book such
as the Kilbarchan Parish Register [8], a partial page of which
appears in the right side of Figure 1. To begin ListReader
processing, a user constructs a data entry form for the de-
sired information such as the form on the left side in Fig-
ure 1. ListReader translates the form into an ontology schema
into which the extracted information will be stored. Then,
without anything more than the given text document, List-
Reader applies an unsupervised process to automatically dis-
cover and align records and train the structure and parame-
ters of an HMM. It then actively requests labels for selected
strings of text from the user, highlighting the strings it se-
lects for the user to label and allowing the user provides
labels by filling in the data entry form. Figure 1 shows the
filled-in form for the highlighted text. ListReader uses the
structure of the form to generate specialized labels for the
field strings in the text document that specify the mapping
of the strings to ontology predicates.

The ListReader approach to wrapper induction, which is a
combination of unsupervised learning and active learning, is
unique in comparison with other wrapper-induction tools.
Because we apply ListReader to OCRed historical docu-
ments, it cannot rely on consistent, error-free landmarks
available in machine-generated HTML pages, assumed by
previously developed wrapper-induction systems (e.g. [1, 3,
5, 6, 11, 14, 15]). Indeed, we show in our evaluation of
ListReader (Section 5) that an adaptation of likely the best
of these wrapper-induction prototypes does not perform as
well as ListReader. Furthermore, to keep the cost of la-
beled training down, we must use unsupervised machine-
learning techniques to the extent possible. ListReader takes
a markedly different approach from other unsupervised learn-
ing systems [6, 9, 11] because it must work with input that is
less-consistently formatted and OCR-error-prone and with
output that is more richly-structured.

http://dx.doi.org/10.1145/2809544.2809547

Figure 1: Kilbarchan Parish Register Page and KilbarchanPerson Filled-in Form

Our ListReader research makes the following contribu-
tions. (1) We give an algorithm to train both the model
structure and the parameters of an HMM for list informa-
tion extraction that requires no hand-labeled examples (Sec-
tions 2 and 3). This algorithm is linear in time and space
with respect to the input text length, the discovered pat-
tern length, and output label alphabet. (2) We define an
efficient active sampling process to complete the HMM as
a data-extraction wrapper that can map the data in lists
to an expressive ontology schema (Section 4). Active sam-
pling is an active-learning-like process that requests labels
of selected examples from the user without modifying the
internal wrapper structure. (3) In an experimental evalu-
ation, we show that a ListReader-induced wrapper outper-
forms two alternatives in terms of a metric that combines
precision, recall, and annotation cost (Section 5).

2. PATTERN DISCOVERY
ListReader begins its discovery of patterns by abstract-

ing text to tokenize and chunk the text which in turn im-
proves tolerance of many common OCR errors and the nat-
ural variations among fields of the same type. Text abstrac-
tion rules consist of (1) joining tokens split by end-of-line
hyphens; (2) abstracting dashes of varying lengths to single-
length dashes; (3) replacing digits with a digit designator
(“Dg”); (4) replacing white space with a newline (“\n”) or

space symbol (“[Sp]”); (5) removing spaces that occur on
the “wrong side” of certain punctuation characters because
of an OCR or typesetting error, such as immediately be-
fore a period; (6) abstracting space/newline-delimited letter
sequences of capitalized words (“[UpLo]”), upper-case words
(“[Up]”), camel-case words (“[LoUp]”), and lower-case words
(“[Lo]” or, as a user-selected option, not abstracted); and
(7) punctuation, which is not abstracted. As an example,
the text strings of child records for the Elizabeths, Agnes, a
Margaret, and Francis in Figure 1 all generalize to:

[\n][UpLo],[Sp][Dg][Sp][UpLo].[Sp][DgDgDgDg].[\n]

To find record-like patterns, ListReader builds a suffix tree
from the abstracted text and searches it for repeated pat-
terns that satisfy our record-selection constraints: records
must begin and end with a valid record delimiter, must occur
at least twice, and must contain at least one numeral or cap-
italized word. The abstracted text is the single long string of
symbols from the first abstract symbol for the first token on
the first page of the book to the last abstract symbol on the
last page. Each edge in the suffix tree is labeled by the sub-
string of symbols it represents (e.g. the sequence of abstract
symbols above for Elizabeth and James). ListReader con-
structs a suffix tree in linear time and space using Ukkonen’s
algorithm [21]. It also finds and collects record-like patterns
within the suffix tree in linear time and space by iterating
over the edges of the suffix tree and checking for strings

terminating in each edge that adhere to the properties spec-
ified for a record. In Figure 1 ListReader finds, for example,
that the child record pattern for Elizabeth and James also
pertains to Grissel, the second Elizabeth, and Agnes, but
not the first Robert, since his christening date “May” is not
abbreviated and thus is not followed by a period.

ListReader next discovers parts of records—field groups—
that recur among different record clusters. These correspon-
dences will be represented later in the HMM and used to
reduce the number of necessary hand-labeled fields. The in-
tuition is that a field value like a birth year or marriage year
that follows a specific field group delimiter like“born”or“m.”
can be identified and labeled the same even when found in
different record clusters. In the Kilbarchan parish record,
“born” designates birth dates like those for Margaret and
John Sandilands in Figure 1, rather than christening dates,
which are unmarked, and “m.” denotes marriage dates, like
the marriage date for Robert and Katherine in Figure 1.

ListReader constructs field group templates from the text
appearing between field group delimiters and associates a
field group template with the delimiter on its left. Field
group templates consist of a field group delimiter, whose
text (like “born” is not abstracted in the template, followed
by one or more variations of the field group itself, whose
text is consists of abstract symbols. For example, the ini-
tial delimiter, “\n” has the following variations for the text
comprising the first three families in Figure 1:

\n[UpLo],[Sp][UpLo]
\n[UpLo],[Sp][DgDg][Sp][UpLo].[Sp][DgDgDgDg]
\n[UpLo],[Sp][DgDg][Sp][UpLo][Sp][DgDgDgDg]
\n[UpLo],[Sp][Dg][Sp][UpLo].[Sp][DgDgDgDg]

A few more variations appear on the page and still more
in the full book. A field group template for a final record
delimiter is just the delimiter itself as no field follows it.

At this point ListReader almost has what it needs for
HMM creation. With some additional adjustments, List-
Reader will have identified record and field group templates
from which it can directly construct an HMM that will ex-
tract the fields in the records. The adjustments include dis-
carding record patterns that do not resolve into a clean se-
quence of field group templates and grouping record clusters
that satisfy the same sequence of field group templates and
then splitting some of the individual field group templates
into alternate template groups depending on whether there
is enough variation to warrant a split. Among many oth-
ers, ListReader finds the record and field group templates in
Figure 2 in the Kilbarchan parish record.

3. HMM CONSTRUCTION
An HMM is a probabilistic finite state machine consisting

of a set of hidden states S, a set of possible observations W ,
an emission model P (w|s) associating a state with a set of
observable events, and a transition model P (st|st−1) associ-
ating one state with the next. States are initially “hidden”
and must be inferred during application of the HMM from
the observable events in the text. In our work, each event
is a word-sized chunk of text (a token), including alphabetic
words, numerals, spaces including newlines, and punctua-
tion characters. Inferring the correct state associated with
each word token is the main task done in extracting infor-
mation from the text and is guided by the parameters of
the HMM. Using the Viterbi algorithm, ListReader selects
the most probable sequence of states given the words of the
input text and the HMM’s parameters. The emission model
is a categorical distribution—a table of conditional proba-

[[\n-Segment][\n-End-Segment]]
[\n-Segment]
\n[UpLo],[Sp][DgDg][Sp][UpLo][Sp][DgDgDgDg]
: \nRobert, 12 May 1661

\n[UpLo],[Sp][UpLo] : \nAllasoun, Richard
\n[UpLo] : \nLochwinnoch

[\n-End-Segment]
.\n : .\n
\n : \n

[[\n-Segment][born-Segment][\n-End-Segment]]
[\n-Segment]
\n[UpLo] : \nJanet

[born-Segment]
,[Sp][born][Sp][DgDg][Sp][UpLo].[Sp][DgDgDgDg]
: , born 23 Oct. 1752

[\n-End-Segment]
.\n : .\n
\n : \n

Figure 2: Record and Field Group Templates (sam-
ple text snippets have been added following the
colon to aid in readability)

bilities indicating which observation w can be emitted from
which hidden state s and with what probability given s. The
transition model is also a categorical distribution—a table
of conditional probabilities indicating which hidden state st
at position t can follow which other hidden state st−1 at po-
sition t− 1 and with what probability given st−1. The two
kinds of probabilities are the parameters of the HMM. The
set of states and the transitions that have non-zero prob-
abilities in the transition model determine the structure of
the state machine of the HMM. The processing described
in Section 2 provides what ListReader needs to produce the
set of hidden states and both the transition and the emission
model for our application.

To construct the HMM, ListReader transforms each field
group template into a linear sequence of HMM states, one
HMM state for each token in the field group segment. The
HMM fragment for the [born-Segment] in Figure 2, for ex-
ample, has ten states, one for each word token in the tem-
plate. In addition to one state per word token in a field group
template, ListReader generates an insertion state between
every pair of consecutive word states. These insertion states
allow for inconsistent punctuation and noise in pattern de-
limiters and for random comments that sometimes appear
in otherwise structured text. The main transitions among
the states form a straight line through the template. Tran-
sitions to and from insertion states allow for text-addition
deviations from a typical record. Transitions that skip over
one or more states are also added; these transitions allow for
text-omission anomalies.

ListReader gives every state both a syntactic and a seman-
tic ID. The syntactic ID ensures that each state is unique
within the complete HMM. The semantic ID of an HMM
state identifies the field group template to which the states
of the field group apply and also the position of the token
within the field group template. The semantic ID, therefore,
represents both a type of field group segment and a token’s
position within that field group segment and is purposefully
not unique within an HMM. States that share a semantic ID
(and in turn the words they match) should be labeled the
same because they have the same relationship with the pri-
mary object of their respective records. For example, all “m.

<date>” constructs in the entire Kilbarchan Perish Record
are marriage dates and should be labeled as such regardless
of the record template in which they are found.

ListReader sets the emission and transition parameters
using maximum likelihood estimation (MLE). That is, they
are set by normalizing the sums of counts of discovered text-
phrase patterns. These parameters must allow for flexible
alignment of an induced HMM with text containing natural
differences from the text on which the HMM is trained, such
as word substitutions, insertions, and deletions. Beyond
MLE, we also smooth these parameters using pseudo-counts
(Dirichlet priors, which we chose after thoughtful consid-
eration) to allow for combinations of events not present in
the training data. For example, a word with abstract text
“[DgDgDgDg]” receives a count of 1.0 for “[DgDgDgDg]”, a
pseudo-count of 0.01 for “[Dg]”, “[DgDg]”, “[DgDgDg]”, and
“[DgDgDgDgDg]” and a pseudo-count of 0.001 for “[UpLo]”,
“[LoUp]”, “[Up]” and “[Lo]”. These counts and pseudo-
counts are then summed and normalized to obtain the emis-
sion probabilities. In general, ListReader’s construction of
emission models promotes better alignment of similar words,
especially words of the same character class (e.g. character
and digit sequences like those just listed), despite the small
amount of training data provided and despite possible OCR
errors and other variations.

Figure 3 shows a schematic diagram of the HMM List-
Reader builds for the Kilbarchen Parish Record. As shown in
the figure, ListReader generates page-level states for the be-
ginning (PageBeginning) and ending (PageEnding) of each
page and connects them to states for non-list text (Non-
List) and for list-record text (RecordDelimiter), the begin-
ning state for all record-template HMMs. Also shown is
how ListReader connects its record-delimiter state to every
HMM record template—all 47 of them for our example run
of the Kilbarchen Parish Record. One of the record-template
HMMs is open, showing the interconnections of the HMM
fragments for the “born” record template in Figure 2. No-
tice that the field group template “[\n-End-Segment]” for
the “born” record template in Figure 2 has two templates,
one for “.\n” and one for “\n”. Whenever a field group tem-
plate has multiple component templates, ListReader gener-
ates parallel HMM fragments, one for each component tem-
plate. A field group template has an HMM fragment of the
form of the field-template HMM for “[born-Segment]” de-
scribed earlier as having ten word-token states with an inser-
tion state between each, and transitions between and around
these states. Figure 3 shows this HMM fragment with only
its first and last state. The “...” in Figure 3 stands for
the remaining eight states of the “[born-Segment]” HMM
fragment and its nine insertion states, 27 transitions asso-
ciated with these insertion states, and 36 transitions mod-
eling the possibility of anomalous deletions. Each HMM
fragment requires connections to all prior and subsequent
HMM fragments as Figure 3 shows, and also connections
from the RecordDelimiter state to the first HMM fragment
for every record template and from the end of the HMM
fragments back to the RecordDelimiter state. ListReader
determines the transition probabilities for the transitions to
HMM record templates based on the size of the cluster of
records identified in the document for each record template.

The emission model of PageBeginning and PageEnding
are fixed to contain only the special character that ListReader
artificially inserts into the text sequence at the beginning

and ending of each page to represent page breaks. The emis-
sion model of RecordDelimiter is fixed to contain the set of
allowable record delimiters, which for the Kilbarchan Parish
Record contains only the newline character. For these fixed
emission models, the probability of the allowable character
is 1.0 and all other probabilities are 0.0. The emission model
of NonList state is not fixed. Rather, it is set as the MLE
estimate of all word tokens in the input text that were not
covered by any candidate records during unsupervised wrap-
per induction. The emission model for the NonList state in
Figure 3 lists several of these word tokens and their prob-
abilities based on actual occurrence counts in our run of
ListReader on the Kilbarchan Parish Record. The emission
model for states in the record templates are as described
earlier (and are not shown in Figure 3).

4. LABELING AND FINAL EXTRACTION
After ListReader constructs an HMM, it is fully capable

of extracting the information in the discovered patterns. It
does not know, however, what the information means. To
give the information meaning, a user creates an ontology, a
conceptualized knowledge structure, and shows ListReader
how to match the information with the ontology. Cost-
effectiveness—the reduction of time and effort expended by
a user—is paramount. Conceptual effort is reduced because
ontology creation consists of and only of creating a form
such as the form in Figure 1, and labeling consists of and
only of filling in the form for ListReader-selected text snip-
pets. User time is reduced because ListReader effectively
minimizes the number of labelings required to maximize the
amount of information mapped to the ontology via its inno-
vative active sampling process.

ListReader’s active sampling consists of a cycle of repeated
interaction with the user. On each iteration of the active-
sampling loop, ListReader selects and highlights text that
matches part of the HMM, and the user labels the fields in
highlighted text. In the labeling tool we have constructed
for ListReader (see Figure 1), labeling consists of merely
clicking on a text token in the pdf image of a document
page on the right to transfer the underlying OCRed text to
the form field in focus on the left. ListReader accepts the
labeled text via its web form interface and assigns labels to
the corresponding HMM states, which completes that part
of the HMM and enables it to become a “wrapper” that
extracts information from the text and maps it to the on-
tology. For example, placing the text token “1691” in the
marriage-year field in Figure 1 yields the path Kilbarchan-
Person.Spouse.MarriageDate.Year, which provides an im-
mediate mapping of the text token to the internal ontological
structure.

ListReader’s active sampling aims to minimize the num-
ber of required user labelings. (That it is effective is shown
in our evaluation in Section 5.) ListReader’s active sampling
cycle is a modified form of active learning, focusing on the
“active sampling” step and performing practically none of
the“model update”step [13]. The HMM training ListReader
does is fully unsupervised—no HMM structure or parameter
learning takes place under the supervision of a user either in-
teractively or in advance. Label renaming is the only change
ListReader makes to the HMM during active sampling. In
each cycle, ListReader actively selects the text for labeling
that maximizes the return for the labeling effort expended.
To initialize the active sampling cycle, ListReader applies

Figure 3: Schematic Diagram of ListReader-generated HMM

the HMM to the text of each page in the book. It labels the
strings that match each state with the aforementioned se-
mantic ID assigned during HMM construction. ListReader
saves the count of matching strings for each semantic ID. It
also records the page and character offsets of the matching
strings throughout the book and their associated semantic
IDs. ListReader uses the page and character offsets when
highlighting a span of text in the user interface for the user
to label. ListReader selects a span of text on each iteration
of active sampling using a query policy (explained next) that
is based on the counts of matching strings for each semantic
ID.

The string ListReader selects as “best” is a string that
matches the HMM fragment with the highest predicted re-
turn on investment (ROI). The ROI can be thought of as
the slope of the learning curve: higher accuracy and lower
cost produce higher ROI. The HMM fragments considered
are HMM record templates or contiguous parts thereof (e.g.
the HMM fragment for “[born-Segment]” illustrated in Fig-
ure 2). When more than one string matches the best HMM
fragment, ListReader selects the first one on whichever page
contains the most matches of that HMM fragment. List-
Reader computes the predicted ROI as the sum of the counts
of the strings matching each state in the candidate HMM
fragment divided by the number of states in the HMM frag-
ment—that is, the average match-count per state. Querying
the user to maximize the immediate ROI tends to maximize
the slope of the learning curve and has proven effective in

other active learning situations [12]. Once the user labels the
selected text, ListReader removes the counts for all strings
that match the corresponding states or that share the se-
mantic IDs of labeled states, recomputes the ROI scores of
remaining states, and issues another query to the user.

In our example run of the Kilbarchan Parish Record, List-
Reader selects the highlighted text in Figure 4. Its HMM
record template is composed of the first pattern for the first
“[\n-Segment]” field group template and the first pattern
for the first“[\n-End-Segment]”field group template in Fig-
ure 2. There are nine matching states in this HMM record
template, one for each word-level, non-record-delimiter sym-
bol,“[UpLo],[Sp][DgDg][Sp][UpLo][Sp][DgDgDgDg].”.The
hit count for the strings matching each state are:

[UpLo] 2680

, 2678

[Sp] 2691

[DgDg] 2680

[Sp] 2678

[UpLo] 2679

[Sp] 2682

[DgDgDgDg] 2683

. 3840
whose sum is 25,291 and whose ROI score is thus 25291/9
and is greater than the ROI score for any other HMM record
template. Intuitively, this makes sense because the most of-
ten occurring fact assertion in the Kilbarchan Parish Record
is statement of the form“<GivenName>, <Day> <Month>
<Year>”, which documents the christening of a child.

Figure 4: First Active-Sampling User Query

When one HMM state receives a user-supplied label, all
states sharing the same semantic ID receive the same fi-
nal label. In the example in Figure 4 the user would label
“Marie”as KilbarchanPerson.Name.GivenName, “17”as Kil-
barchanPerson.ChristeningDate.Day, “June” as Kilbarchan-
Person.ChristeningDate.Month, and “1653” as Kilbarchan-
Person.ChristeningDate.Year. And, since given-name and
date fields in other christening record-templates have the
same semantic IDs, states for these fields are also labeled—
thousands of them due to the date variations (abbreviated/-
non-abbreviated months and single-digit/double-digit days)
that appear in the Kilbarchan Perish Record. Furthermore,
all delimiters are implicitly labeled whenever a user labels
the fields in a record as the text between labeled fields and
preceding the first labeled field and following the last labeled
field. In the example in Figure 4, the user implicitly labels
four delimiters: the comma and space between the name
and the day in the date, the two spaces within the date,
and the period following the year. The states for delimiters
also have semantic IDs, so ListReader propagates the labels
to all other states with identical semantic IDs—those that
have the same delimiter in the same position in the same
field group template.

ListReader’s label propagation across semantic IDs mini-
mizes the user’s labeling effort during active sampling. As an
example, Figure 5 shows ListReader’s second active-sampling
query for our example run of the Kilbarchan Parish Record.
The highlighting is multicolored: green for previously la-
beled fields (the GivenName “Robert”, the ChristeningDate.
Day “3”, the ChristeningDate.Month “Oct”, and the Chris-
teningDate.Year “1709”); red for previously labeled delim-
iters (“, ”, “ ”, “ ”, and “.”); and yellow for unlabeled text
(the period following “Oct” in Figure 5). ListReader does
not know, by what it has so far learned, whether the period
following“Oct”belongs to the Month field or to the delimiter
between “Oct” and “1709”. At this point, the user should di-
rect the form-field focus to the ChristeningDate.Month field
and click on the period in “Oct.” to append it to the al-
ready labeled and thus already appearing text “Oct” in the
ChristeningDate.Month field in the form.

As our Kilbarchan example shows, active sampling is im-
pactful from the first query. Furthermore, it improves recall
monotonically as it does not back-track or reverse labeling
decisions from one cycle to the next. Compared with typ-

Figure 5: First Active-Sampling User Query Requir-
ing Only Partial Labeling

ical active learning [19], it is not necessary for ListReader
to induce an intermediate model from labeled data before it
can become effective at issuing queries. This would be true
even if ListReader did update the HMM during active learn-
ing cycles, although it would necessitate ListReader having
to apply the HMM again on every cycle, which currently
it avoids. Furthermore, ListReader need not know all the
labels at the time of the first query. Indeed, it starts ac-
tive sampling without knowing any labels. The query policy
is similar to processes of novelty detection [16] in that it
effectively identifies new structures for which a label is un-
known and which most likely has the greatest effect on learn-
ing. Furthermore, the wrapper can be induced for complete
records regardless of how much the user annotates or wants
extracted, and ListReader is not dependent on the user to
identify record- or field-delimiters nor to label any field the
user does not want to be extracted.

5. EVALUATION
We evaluated ListReader with two historical books, the

Shaver-Dougherty Genealogy [20] and the Kilbarchan Parish
Register [8], and compared its performance to two base-
lines, an implementation of the Conditional Random Field
(CRF) and a previous version of ListReader that induced
regular-expression wrappers instead of HMM wrappers [18].
The regex version of ListReader is similar to the HMM ver-
sion except that it creates separate regular-expression wrap-
pers for every record pattern discovered during grammar in-
duction whereas the HMM version is selective about which
record and field group templates make it into the final HMM
wrapper. The motivation for creating the HMM version is
to overcome the brittleness of regular expressions, believing
that the more malleable HMM wrappers would yield better
recall results because of their ability to recognize variations
in text patterns without requiring an exact match and would
not hurt precision results too much because of ListReader’s
ability to create HMMs with a high degree of correlation to
the observed text.

The CRF implementation we applied is from the Mallet
library [17]. To ensure a strong baseline, we performed fea-
ture engineering work to select an appropriate set of word
token features that allowed the CRF to perform well on de-
velopment test data. We simulated active learning of a CRF

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

F-measure vs. Cost for ListReader and CRF

Hand Labeled Fields

Te
st

 F
-m

ea
su

re

●
●

●● ●

●
●

●
●

●
●● ● ●●

●
● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

● ListReader (HMM)
ListReader (Regex)
CRF (mean F-measure)
CRF (regression curve)

Figure 6: F-measure Learning Curves for the Shaver-Dougherty Genealogy

Table 1: Ground Truth Characteristics
Characteristic Shaver-Doughtery Kilbarchan
pages 498 143
labeled pages 68 3
labeled word tokens 14,314 852
labeled field instances 13,748 768
record instances 2,516 165
field types 46 12

using a random sampling strategy—considered to be a hard
baseline to beat in active learning research, especially early
in the learning process [2].

Since our aim is to develop a system that accurately ex-
tracts information at a low cost to the user, our evaluation
centers on a standard metric in active learning research that
combines both accuracy and cost into a single measurement:
Area under the Learning Curve (ALC) [2]. The curve of in-
terest for an extractor is the set of an extractor’s accuracies
plotted as a function of their respective costs. The ALC is
the percentage of the area, between 0% and 100% accuracy
and min and max cost, that is covered by the extractor’s
accuracy curve. ALC is equivalent to taking the mean of
the accuracy metric at all points along the curve over the
cost domain —an integral, which we computed for discrete
values using the Trapezoidal Rule. A sample of one of the
learning curves is in Figure 6.

The experimental results are based on a ground-truth,
whose characteristics are described in Table 1. Visually,
the learning curves in Figure 6 indicate that ListReader
(Regex and HMM) both outperform the CRF fairly consis-
tently over varying costs (varying numbers of human-labeled
fields). Tables 2 and 3 succinctly summarizes the results
and tell us that the difference among the three extraction
wrappers are statistically significant for most pairwise com-
parisons.

Table 4 shows the space and time characteristics of the

Table 2: Shaver-Doughterty ALC Metrics (%) (All
differences are statistically significant at p<0.05 us-
ing an unpaired t test except for the difference in
Recall of ListReader-Regex and the CRF.)

Prec. Rec. F1

CRF 50.63 33.95 38.82
ListReader (Regex) 97.60 32.55 48.78
ListReader (HMM) 69.59 42.84 52.54

Table 3: Kilbarchan ALC Metrics (%) (All differ-
ences are statistically significant at p<0.05 using an
unpaired t test except for the difference in Precision
of the two ListReaders and the difference in Recall
of ListReader-Regex and the CRF.)

Prec. Rec. F1

CRF 68.86 63.02 65.47
ListReader (Regex) 96.34 54.30 67.92
ListReader (HMM) 91.38 72.74 79.19

extraction wrappers. We ran all wrappers on a desktop
computer with Java (JDK 1.7), a 2.39 GHz processor, and
3.25 GB of RAM. The smaller number of states of the CRF
probably contributed to its faster running time and lower
accuracy compared to ListReader. ListReader’s time and
space complexity is linear in terms of the size of the input
text. Unlike the Regex version, which is also linear in its
time complexity, the HMM version is quadratic in the av-
erage size of a record and the size of the label alphabet.
The typical implementation of the training phase of a linear
chain CRF is quadratic in both the sizes of the input text
and the label set [4], [10].

6. CONCLUDING REMARKS
ListReader addresses the problem of extracting informa-

tion from OCRed lists for ontology population. It requires

Table 4: Space and Time Characteristics
ListReader CRF

HMM Regex
Extractor Size

states # chars. # states
Shaver-Doughtery 2,015 319,096 28
Kilbarchan 255 54,600 15

Running Time
Shaver-Doughtery 59m 18s 2m 47s 52s
Kilbarchan 2m 11s 26s 9s

little effort to apply to a new book, is specialized to recognize
and model list structures, and is tolerant of OCR errors.

Our HMM implementation of ListReader demonstrates a
novel way to set the structure and parameters of an HMM
automatically for the task of populating an expressive on-
tological conceptualization with information from lists in
OCRed text. It also demonstrates a way to minimize the
work necessary for completing the HMM wrapper by manu-
ally associating automatically-selected HMM states with on-
tology predicates. ListReader performs well in terms of ac-
curacy, user labeling cost, time and space complexity, and re-
quired knowledge engineering—outperforming the compar-
ison systems in terms of most criteria including the most
important measure: accuracy achieved relative to minimal
manual annotation cost.

In future work, we expect to be able to further reduce
the cost of manual labeling by a bootstrapping technique
that makes use of previously learned extraction patterns to
automatically propose labels.

7. ACKNOWLEDGMENTS
We would like to thank FamilySearch.org for supplying

data from its scanned book collection and for their encour-
agement in this project. We would also like to thank the
members of the BYU Data Extraction Research Group, and
particularly Stephen W. Liddle and Christopher Almquist,
for coding the user interface used for ground truthing and for
interactively supplying labels for ListReader and for provid-
ing additional tools and resources for completing our List-
Reader project.

8. REFERENCES
[1] N. Ashish and C. A. Knoblock. Semi-automatic

wrapper generation for internet information sources.
In Proceedings of the Second IFCIS International
Conference on Cooperative Information Systems,
1997. COOPIS ’97, pages 160–169, 1997.

[2] G. C. Cawley. Baseline methods for active learning.
Journal of Machine Learning Research-Proceedings
Track, 16:47–57, 2011.

[3] C.-H. Chang, C.-N. Hsu, and S.-C. Lui. Automatic
information extraction from semi-structured web
pages by pattern discovery. Decision Support Systems,
35:129–147, 2003.

[4] T. A. Cohn. Scaling conditional random fields for
natural language processing. PhD thesis, Citeseer,
2007.

[5] N. Dalvi, R. Kumar, and M. Soliman. Automatic
wrappers for large scale web extraction. Proceedings of
the VLDB Endowment, 4:219–230, 2010.

[6] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting
relational tables from lists on the web. Proceedings of
the VLDB Endowment, 2:1078–1089, 2009.

[7] FamilySearch. https://familysearch.org/.

[8] F. J. Grant, editor. Index to the Register of Marriages
and Baptisms in the Parish of Kilbarchan, 1649 -
1772. Scottish Record Society. J. Skinner and
Company, Ltd., Edinburgh, Scotland, 1912.

[9] T. Grenager, D. Klein, and C. D. Manning.
Unsupervised learning of field segmentation models for
information extraction. In Proceedings of the
Forty-third Annual Meeting on Association for
Computational Linguistics, pages 371–378, Ann Arbor,
Michigan, USA, 2005.

[10] Y. Z. Guo, K. Ramamohanarao, and L. A. F. Park.
Error correcting output coding-based conditional
random fields for web page prediction. In Web
Intelligence and Intelligent Agent Technology, 2008.
WI-IAT’08. IEEE/WIC/ACM International
Conference on, volume 1, pages 743–746. IEEE, 2008.

[11] R. Gupta and S. Sarawagi. Answering table
augmentation queries from unstructured lists on the
web. Proceedings of the VLDB Endowment, 2:289–300,
2009.

[12] R. A. Haertel, E. K. Ringger, J. L. Carroll, and K. D.
Seppi. Return on investment for active learning. In
Proceedings of the Neural Information Processing
Systems Workshop on Cost Sensitive Learning, 2008.

[13] W. Hu, W. Hu, N. Xie, and S. Maybank.
Unsupervised active learning based on hierarchical
graph-theoretic clustering. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics,
39(5):1147–1161, Oct. 2009.

[14] N. Kushmerick. Wrapper induction for information
extraction. PhD thesis, University of Washington,
Seattle, Washington, USA, 1997.

[15] K. Lerman, C. Knoblock, and S. Minton. Automatic
data extraction from lists and tables in web sources.
In IJCAI-2001 Workshop on Adaptive Text Extraction
and Mining, volume 98, 2001.

[16] S. Marsland. Novelty detection in learning systems.
Neural computing surveys, 3(2):157–195, 2003.

[17] A. K. McCallum. MALLET: A machine learning for
language toolkit, 2002.

[18] T. L. Packer and D. W. Embley. Scalable recognition,
extraction, and structuring of data from lists in
OCRed text using unsupervised active wrapper
induction. Technical report, Department of Computer
Science, Brigham Young University, Provo, Utah,
2014. (Submitted to TKDD).

[19] B. Settles. Active learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning,
6(1):1–114, June 2012.

[20] H. E. Shaffer. Shaver/Shafer and Dougherty/Daughery
Families also Kiser, Snider and Cottrell, Ferrell,
Hively and Lowe Families. Gateway Press, Inc.,
Baltimore, MD, 1997.

[21] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249–260, 1995.

	Introduction
	Pattern Discovery
	HMM Construction
	Labeling and Final Extraction
	Evaluation
	Concluding Remarks
	Acknowledgments
	References

