
Populating Ontologies with Data from OCRed Lists

Thomas L. Packer
Brigham Young University

Provo, Utah, USA
Email: tpacker@byu.net

David W. Embley
Brigham Young University

Provo, Utah, USA
Email: embley@cs.byu.edu

Abstract—A flexible, accurate, and efficient method of auto-
matically extracting facts from lists in OCRed documents and
inserting them into an ontology would help make those facts
machine searchable, queryable, and linkable and expose their
rich ontological interrelationships. To work well, such a process
must be adaptable to variations in list format, tolerant of OCR
errors, and careful in its selection of human guidance. We propose
a wrapper-induction solution for information extraction that is
specialized for lists in OCRed documents. In this approach, we
induce a regular-expression grammar that can infer list structure
and field labels in sequences of words in text. We decrease the
cost and improve the accuracy of this induction process using
semi-supervised machine learning and active learning, allowing
induction of a wrapper from a single hand-labeled instance per
field per list. To further reduce cost, we use the wrappers learned
from the semi-supervised process to bootstrap an automatic
(weakly supervised) wrapper induction process for additional lists
in the same domain. In both induction scenarios, we automatically
map labeled text to a rich variety of ontologically structured facts.
We evaluate our implementation in terms of annotation cost and
extraction quality for lists in historical documents.

I. INTRODUCTION

Family history books and other machine-printed documents
present much of their valuable content in data-rich lists. The
50,000+ family history books held by FamilySearch.org are
full of lists containing hundreds of millions of fact assertions
about people, places, and events. Figure 1 shows examples
of lists found on Page 154 of The Ely Ancestry [2]. These
lists make many assertions about family relationships (Samuel
Holden Parsons was a child of Deborah Mather and Ezra Lee)
and dates, and of life events (Samuel Holden Parsons was
born in 1772 and died in 1870). Our goal is to develop a
means to extract the diverse kinds of facts from lists in OCRed
documents that is robust to OCR errors and relies on as little
human effort as possible.

To be most useful to downstream search, query, and data-
linking applications, the knowledge extracted from text must
be expressive and well structured. Ontologies are a machine-
readable and mathematically specified conceptualization of a
collection of facts. They are expressive enough to provide a
framework for storing more of the kinds of assertions found
in lists than the typical output of named entity recognition
and most other information extraction work. If we could
populate user-specified ontologies with predicates representing
the facts in OCRed lists, this richer, more expressive, and
versatile information could better contribute to a number of
applications in historical research, database querying, record
linkage, automatic construction of family trees, and question
answering.

Fig. 1. Lists in The Ely Ancestry, Page 154

In this paper we propose ListReader, a robust, general,
and efficient solution to the challenge of extracting diverse
types of facts from lists in OCRed documents. We have
implemented and tested an early prototype of ListReader that
populates a user-defined ontology with the assertions found
and labeled automatically in OCRed lists. A ListReader user
constructs an ontology for a list by building a data-entry
form in a custom web interface and fills in the form with
the information from the first record of a list. Taking this
minimal amount of information, ListReader induces a regular-
expression wrapper and automatically generalizes it enough to
extract asserted information from the remaining records of the
list. Only when ListReader encounters a new field in a later
record must it ask the user to update the form to accommodate
the new field and insert the field value to provide additional
training data. This is the minimum amount of training data
conceivable as the user begins to train ListReader to recognize
information in a new domain and document type. We call this
process semi-supervised wrapper induction. After ListReader
has begun inducing grammars and extracting information from
a document, it can switch into a weakly supervised or transfer
learning mode in which it uses its store of knowledge to
effectively label its own training data for other lists, potentially
removing the human user from the process.

Researchers have studied information extraction [17], and
wrapper induction as an approach to information extraction [7],
[13], [16], for more than a decade. Similar to the wrapper-
induction work of Dalvi, et al. [7] and Kushmeric [13],
we attempt to improve efficiency in terms of human effort



by inducing wrappers from training data that is generated
automatically, given little if any domain knowledge. However,
unlike our work, theirs relies on the layout of HTML text
that is relatively regular and consistent, not considering list
records containing OCR errors and frequently missing fields,
and lacking consistent field landmarks. Further, their work
relies on pre-assembled dictionaries and regular-expression
recognizers, which we avoid.

Other information extraction papers target lists [9], [10],
[14], but very few target OCRed lists. Those that target non-
OCRed lists target HTML lists and generally rely on consistent
landmarks (e.g. HTML tags) that are not available in OCR
text. Furthermore, and perhaps more importantly relative to
our work, they do not target the diverse semantic distinctions
in the rich ontological structures that we do. Most information-
extraction work targeting OCRed lists is specific to certain kind
of lists. Belaı̈d [3] [4] and Besagni, et al. [5] [6] extract records
and fields from lists of citations, but rely primarily on hand-
crafted knowledge that is specific to bibliographies. A paper
by Adelberg [1] and one by Heidorn and Wei [12] target lists
in OCRed documents in a general sense. They, however, use
supervised wrapper induction that we believe will not scale as
well as our semi-supervised or weakly supervised approaches
when encountering the “long tail” of list formats. Also, the
extracted information is limited in ontological expressiveness.

In this paper, we make the following contributions. (1)
We establish a formal correspondence among list wrappers,
ontologies, data-entry forms, and in-line annotated text. This
correspondence provides the data flow for a processes in which
a user can annotate OCRed text as training data for wrapper
induction. It also enables even simple induced wrappers that
produce in-line or sequentially labeled text to extract rich
facts from lists and insert them into an expressive ontological
structure (Section II-A). (2) We demonstrate that it is possible
to perform wrapper induction for a list using only one human-
provided label per field (Section II-B). (3) We show one
way that automatic labeling can replace a human labeler in
providing input to wrapper induction by using wrappers previ-
ously induced from other lists (Section II-C). (4) We evaluate
extraction accuracy and show that ListReader outperforms a
general, state-of-the-art information extraction system with
high statistical significance (Section III). (5) We conclude that
we can benefit from a new line of research, state limitations
of our current approach, and identify opportunities for future
research into cheaply inducing accurate wrappers for general
OCRed lists (Section IV).

II. LIST WRAPPER INDUCTION

A. ListReader Overview

ListReader populates an ontology from lists in OCRed text
as follows:

First, a user selects an OCRed image (an OCRed PDF
page in our implementation) that contains a list (e.g. Figure 1).
Initially, when ListReader has no information in its knowledge
repository that would allow it to find and process lists on its
own, a user spots a list and, with ListReader’s form interface,
constructs a form for the data fields in the first record of the
spotted list and fills in the form with text from that first record.
For example, supposing the spotted list is the second child list

in Figure 1, the user would construct the form in Figure 2 and
fill it in—copying and pasting from the PDF page.

Second, from the empty form, ListReader creates the
schema of an ontology (e.g. Figure 3 for our example). It can
also populate the ontology with the information in the filled-in
form, but its main objective is to induce a wrapper for the list
and use the wrapper to populate the ontology with all the fact
predicates stated in the list.

Third, to induce a wrapper, ListReader uses the information
obtained from the filled-in form to label the fields within the
OCRed text as training data. Figure 4 shows the labeled text
for our example, which ListReader automatically labels and
processes as follows.

1) Because the form is filled in using a custom user
interface, ListReader knows the character offsets of
the text string for each field.

2) ListReader labels text strings within the OCRed doc-
ument with path expressions. Each path refers to a
path in the ontology hyper-graph from the root node
to a leaf node. The leaf node holds the extracted text
string as a named entity and corresponds to the field
in the filled-in form. The root node is the primary
node in the ontology, whose name is same as the
form title, that represents the main concept of each
record of the list (Person, in Figure 2). Thus, for
example, the full label for the year of Samuel’s birth
is <Person.BirthDate.Year>, which in Figure 4 ap-
pears in its abbreviated form as <BirthDate.Year>—
with prefix path segments omitted when there is no
ambiguity.

3) The in-line labeled text provides enough information
to map stated facts to and from a filled-in form and
an ontology populated with fact predicates.

4) The in-line labeled text also provides enough infor-
mation for ListReader to induce an information ex-
traction wrapper for the whole list, effectively reduc-
ing the ontology populating problem to a machine-
learned sequential labeling problem as we explain in
Section II-B.

Fourth, the induced wrapper labels the remaining records
in the list with labels like those provided in its training data.

Finally, ListReader saves the induced wrapper and ontology
in its knowledge repository and uses it to find and process
similar lists in other OCRed document images. In this case,
the user needs neither to create a form to generate the ontology
nor to fill in the form to label any of the fields of any of the
records. We explain how this works in Section II-C.

The formal correspondence among form, ontology, and
text labels provides for, on the one hand, ease of use for
ontology creation and annotation of text, and, on the other
hand, inducing a wrapper from labeled training data such that
when executed it can properly map identified instances to the
ontology structure. The metaphor of form fill-in for obtaining
information is familiar to most users as is form creation from
the set of primitives we provide: single-entry blanks (e.g. Year
in Figure 2), multiple-entry blanks (e.g. Name), and check
boxes and radio buttons for role designators (e.g. Child). Form-
field nesting is fully recursive so that any form structure can
be nested within any other structure to any depth.



Fig. 2. Filled in Form for Samuel Holden Parsons Record

Fig. 3. List Ontology for Samuel Holden Parsons List

These form primitives, along with nesting, provide for a
rich set of ontological structures. Each named form primitive
corresponds to an object set, and each nesting corresponds
either to to a relationship set or to a role specialization.
Object sets are unary predicates and relationship sets are
n-ary predicates (in practice most relationship sets are bi-
nary, n = 2, but n > 2 is also possible). Instantiated
predicates are fact assertions. In connection with our claim
of ontological richness in the kinds of facts ListReader can
extract, we mention five points of expressiveness: (1) tex-
tual vs. abstract entities (e.g. Name(“Elias”) vs. Person(p1)),
(2) n-ary relationships among two or more entities instead
of strictly unary and binary relationships (e.g. Husband-
married-Wife-in-Year(p1, p2, “1771”)), (3) ontology hyper-
graph with arbitrary path lengths from the root instead of
just one as in named entity recognition or data frame filling
(e.g. <Person.Spouse.SpouseName.Surname>, (4) functional
and optional constraints on relationship sets (e.g. A person
has one birth event vs. zero or more marriage events), (5)
generalization-specialization hierarchies, including, in particu-
lar, role designations (e.g. Child isa Person).

B. Semi-supervised Wrapper Induction

In the semi-supervised wrapper induction setting,
ListReader begins learning from nothing more than the text

<ChildNumber>1</ChildNumber>. <Name>Samuel</Name>
<Name>Holden</Name> <Name>Parsons</Name>
, b. <BirthDate.Year>1772</BirthDate.Year>
, d. <DeathDate.Year>1870</DeathDate.Year>
, m. <FirstName>Elizabeth</FirstName>
<Surname>Sullivan</Surname>.

Fig. 4. Labeled Samuel Holden Parsons Record

Final Regex
Label Initial Regex RecordType1 RecordType2
RecordDelimiter (\n) (\n) (\n)
ChildNumber (\d) (\d) (\d)
FieldDelimiter (\.\s) (\.\s) (\.\s)
Name (\w{6,6}) (\w{5,9}) (\w{5,9})
FieldDelimiter (\s)
Name (\w{3,8})
FieldDelimiter (,\sb\.\s) (,\sb\.\s) (,\s[bh]\.\s)
BirthDate.Year (\d{4,4}) (\d{4,4}) ([i0-9]{4,4})
FieldDelimiter ([\.,]\sd\.\s)
DeathDate.Year (\d{4,4})
FieldDelimiter (\.) (\.) (\.)
RecordDelimiter (\n) (\n) (\n)

Fig. 5. Regex Induction for First Child List in Fig. 1

of an OCRed page image with the fields of the first record of
a list labeled. ListReader initializes a new wrapper to model
the text and labels of the first record using a sequence of
capture groups corresponding to the sequence of fields and
delimiters. Consider, for example, the following labeling of
the first record of the first child list in Figure 1:

<ChildNumber>1</ChildNumber>. <Name>Andrew</Name>,
b. <BirthDate.Year>1772</BirthDate.Year>

From this labeling, ListReader generates the initial regular
expression (regex) in Figure 5. The field delimiters are exactly
those sequences of characters that appear between the labeled
fields, and the fields are a first level generalization of the field
content itself—a sequence of word characters of the observed
length or a sequence of digits of the observed length.

ListReader generalizes the initial regex in four steps to
produce a set of regexes, one for each record type. In the first
step, ListReader applies a predefined set of regex expansion
operators to enumerate a space of candidate regexes. These
operations include: (1) replace a word appearing in a labeled
field with a more general character class to account for both
intentional content variations and OCR errors (e.g. replace
“Samuel” with “\w{6,6}”), (2) replace each character in a
field delimiter with a predefined set of common OCR error
substitutions (e.g. replace “[\.]” with “[\.,]”), (3) generalize
word length (e.g. replace “\w{6,6}” with “\w{3,10}”), (4)
increase (or decrease) the length of a field by adding (or remov-
ing) space-delimited words, (e.g. “replace (\w{3,10})” with
“(\w{3,10}\s\w{3,10})”), (5) delete a field and its neighbor-
ing delimiters, and (6) insert a new capture group containing
between one and four words (e.g. “(\S{1,10}\s\S{1,10})”).
ListReader assigns a field label of “Unknown” to inserted cap-
ture groups. Notice that we do not generalize field delimiters as
much as field content since delimiters should remain constant,
while field values should differ. ListReader applies all these
operators in combination, each a bounded number of times.

In the second step, ListReader scores and ranks the candi-
date regexes. ListReader assigns a quality score to each regex



which is the product of similarity and match-frequency (all
values are between 0.0 and 1.0). Similarity is 1 minus the edit-
distance from the initial regex. (Values less than zero are set
to 0.0.) We compute edit-distance by summing an empirically
determined distance or cost value assigned to each operator
(e.g. 0.0 for an OCR error character expansion and 0.1 for
adding a new capture group). Match frequency is the number
of candidate records matched in unlabeled text divided by an
empirically determined maximum number of records that a
single regex is expected to match. (Values above 1.0 are set to
1.0.)

In the third step, ListReader determines whether any active
learning is necessary and interacts with the user when it is.
ListReader executes candidates against the unlabeled text in the
order of their quality scores and removes segments of text that
match. If ListReader encounters a regex with an “Unknown”
label while removing records, it alerts the user by highlighting
the section of text matched by the “Unknown” capture group.
The user may then modify the form, which provides a label
name for the field and updates the ontology, and then copy
the part of the highlighted section that constitutes the field
value into the new form field. ListReader then regenerates that
section of the matching regex. For example, the regex in the
last column of Figure 5 begins as the initial regex with two
“Unknown” capture groups that match “ Lee” and “, d. 1802”
in the fourth record in the first list of Figure 1. The user would
then add fields to the form for both, inserting “Lee” into an
additional Name field and “1802” into a new DeathDate.Year
field. ListReader then adjusts the regular expression by re-
placing the “Unknown” capture groups with, in this instance,
(\s)(\w{3,3}) and (,\sd\.\s)(\d{4,4}) respectively.

In the last step, ListReader makes the final set of regexes
no more general than necessary to match the text. It then
stores the induced wrapper in its knowledge repository for
use in weakly supervised wrapper induction (Section II-C).
Reducing wrappers to just what’s necessary helps prevent
overgeneralization. The field-value length for the first Name
field in Figure 5, for example, is initially (\w{6,6}), which
ListReader generalizes to (\w{3,10}) before finally replacing
it with (\w{5,9}) to match the actual name lengths that appear.
For OCR errors, instead of the full set of possible errors from
a confusion matrix for “b.”, for example, ListReader cuts the
set back to just “[bh]” for ”b” and [\.,] for ”.” if these are the
only actual OCR errors encountered.

After inducing a wrapper and labeling the records of a
list, ListReader uses the labels to instantiate the generated
ontology for the list. For the labeled field values in a record,
ListReader creates objects and relationships corresponding to
each label’s path and properly links the field values within the
record according to the structure of the ontology.

C. Weakly-supervised Wrapper Induction

In the weakly-supervised setting, ListReader begins wrap-
per induction with a completely unlabeled page and a non-
empty repository of induced wrappers and corresponding pop-
ulated ontologies. To produce a labeled record needed to start
wrapper induction, ListReader applies the stored wrappers,
and also further-generalized versions of those wrappers, to the
page. ListReader creates its own training data by selecting the

labels produced by the best regex, where “best” means the
highest product of the regex quality score and the number
of labeled fields within the regex. ListReader then executes
the semi-supervised wrapper induction process (Section II-B),
looking both above and below the starting record.

To illustrate, consider applying the wrapper in Figure 5
(induced for the first list in Figure 1) to the second list in
Figure 1. The regex for Record Type 1 in Figure 5 imme-
diately matches Record 5 in the second list, and the regex
for Record Type 2 with the deletion of the second name
matches Records 3 and 6 and with the deletion of the death
date and a generalization of the length of the second name
matches Record 8. ListReader can start from any one of these
records and, with active learning, acquire the additional fields
needed to induce a wrapper for the second list. On the other
hand, suppose a wrapper for the second list in Figure 1 were
generated first. This is a more interesting situation because
ListReader can then induce a wrapper for the first list without
user intervention. A regex, with a name length generalization
and a deletion of the marriage information of the induced regex
for Record 4 in the second list, matches both Record 4 and 6
in the first list. Then, ListReader can induce, on its own, the
regex for the remaining records in the first list by deletion of
the second name and the death date. Generation of the ontology
for the list is also automatic. For this example, it is the ontology
in Figure 3 with all the spouse information deleted.

III. EXPERIMENTAL EVALUATION

A main objective of developing ListReader is to find a
way to reduce cost (human labeling) and increase accuracy (F-
measure) for inducing wrappers for lists by taking advantage
of list structure. Since we can view ListReader as a machine-
learned sequential labeler, we empirically compare it to a
highly regarded Conditional Random Field (CRF) statistical
sequence labeler [15]. To make our labeling task learnable
by the CRF and to ensure a fair test, we tuned its hyper-
parameters and selected an appropriate set of word features.
We also tuned ListReader’s set of regex operators and scoring
function, tuning both the CRF and ListReader on the same
separate development data. As test data, we randomly selected
and isolated the text of 30 child lists1 from throughout The Ely
Ancestry [2] containing a total of 137 records. We compute
F-measures for field labels over all word tokens not used as
hand-labeled training data. All reported differences between
CRF and ListReader F-measures are statistically significant at
the p < 0.01 level using McNemar’s test [8].

To test ListReader’s semi-supervised wrapper induction, we
hand-labeled the first record of each list and ran ListReader
separately on it. We compare the results of ListReader to the
CRF, also run separately on each list with varying amounts
of training data. Table I shows the results. Hand-labeling just
the first record has a lower cost for the CRF compared to
ListReader (4.4 v. 5.9), but the F-measure is lower. Not until
trained with the “three best” records does the F-measure of
the CRF approach that of ListReader. Even then it is still
significantly less and at almost double the number of labels
plus the effort to select the “three best”—a combination of a

1Some list text in the The Ely Ancestry varies more than our current imple-
mentation of ListReader is designed to handle (see limitations in Section IV).
We discarded these lists and kept selecting until we obtained 30.



TABLE I. SEMI-SUPERVISED RESULTS

Accuracy Cost
P. R. F. # Labels / List

ListReader 98% 84% 90% 5.9
CRF 1st Rec. 86% 71% 78% 4.4
CRF Best Rec. 86% 70% 77% 4.7
CRF Best 2 87% 82% 84% 8.4
CRF Best 3 87% 86% 87% 11.0

TABLE II. WEAKLY-SUPERVISED RESULTS

Accuracy Cost
P. R. F. # Labels / List

ListReader 94% 59% 72% 0.53
CRF 72% 68% 69% 0.66

longest (1st Best), a least typical (2nd Best), and a most typical
(3rd Best) record.

To evaluate weakly supervised learning, we ran ListReader
on one of the lists in semi-supervised mode and then executed
ListReader in weakly-supervised mode on each one of the re-
maining 29 lists. We were thus able to see how well ListReader
could use a wrapper generated for one list to identify and label
a starting record in another list and induce a wrapper for it with
no more human labeling than for new unique fields not found
in the first list. For the CRF, we hand-labeled all records in one
list to train it and then executed it on each of the remaining
29 lists. For both ListReader and the CRF, we repeated the
procedure 30 times, using each list in our test set as a starting
list, to compute the averages in Table II. ListReader achieves
a higher F-measure at a lower cost than the CRF, although the
low F-measure indicates there is still room for improvement.

IV. CONCLUSIONS AND FUTURE WORK

These encouraging early results suggest that ListReader is
a viable new line of research for solving the general problem
of populating ontologies with data from lists in OCRed doc-
uments. ListReader outperforms a CRF (p < 0.01) in all our
tests showing that we can better leverage the characteristics of
list structure with a more tailored machine learning approach.
ListReader has the potential to reduce human effort, not only
limiting user involvement to labeling each distinct field of a list
only once, but for an entire collection of lists, like the child
lists in The Ely Ancestry. Additionally, ListReader uniquely
obtains rich ontological assertions that are more useful than
simply labeling words with named entity categories.

To continue this line of research, we will address a few cur-
rent limitations. When executed against lists containing greater
variation between records than two field insertions/deletions,
several-word (>4) insertion fields, or parenthetical comments,
the current approach of exhaustively enumerating candidate
regexes fails to scale in both time and space and becomes
sensitive to parameter settings. We plan to investigate three
alternative designs: (1) record-incremental search in which
ListReader adjusts the wrapper one record at a time, (2) A∗

search [11] using a specially designed admissible heuristic
allowing only the most promising intermediate regexes to be
expanded, and (3) a Hidden Markov Model whose structure is
learned methodically from one labeled field per list.

In addition to investigating alternative wrapper induction

algorithms, we intend to work with more complex lists: (1)
lists split by intervening text or page breaks (e.g. the lists
in The Ely Ancestry that split across page boundaries), (2)
lists nested within other lists (e.g. the nested child lists in the
larger family list in Figure 1), (3) lists with fields factored
out of each record, (e.g. the surname of the children in a
family factored out of the child lists in Figure 1), (4) lists
whose records describe entities from distinct categories (e.g.
child lists containing records with distinct structures for sons
and daughters), and (5) lists that can be modeled by joining
fragments of previously learned wrappers and ontologies (e.g.
parish christening records learned from joining parts of family
lists with parts of church administration lists).

REFERENCES

[1] B. Adelberg. NoDoSE — a tool for semi-automatically extracting
structured and semistructured data from text documents. ACM SIGMOD
Record, 27:283–294, 1998.

[2] M. S. Beach, W. Ely, and G. B. Vanderpoel. The Ely Ancestry. The
Calumet Press, New York, New York, USA, 1902.

[3] A. Belaı̈d. Retrospective document conversion: application to the library
domain. International Journal on Document Analysis and Recognition,
1:125–146, 1998.

[4] A. Belaı̈d. Recognition of table of contents for electronic library con-
sulting. International Journal on Document Analysis and Recognition,
4:35–45, 2001.

[5] D. Besagni and A. Belaı̈d. Citation recognition for scientific publi-
cations in digital libraries. In Proceedings of the First International
Workshop on Document Image Analysis for Libraries, pages 244–252,
Palo Alto, California, USA, 2004.

[6] D. Besagni, A. Belaı̈d, and N. Benet. A segmentation method for
bibliographic references by contextual tagging of fields. In Proceedings
of the Seventh International Conference on Document Analysis and
Recognition, pages 384–388, Edinburgh, Scotland, 2003.

[7] N. Dalvi, R. Kumar, and M. Soliman. Automatic wrappers for large
scale web extraction. Proceedings of the VLDB Endowment, 4:219–230,
2010.

[8] T. G. Dietterich. Approximate statistical tests for comparing supervised
classification learning algorithms. Neural Computation, 10(7):1895–
1923, Oct. 1998.

[9] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational
tables from lists on the web. Proceedings of the VLDB Endowment,
2:1078–1089, 2009.

[10] R. Gupta and S. Sarawagi. Answering table augmentation queries from
unstructured lists on the web. Proceedings of the VLDB Endowment,
2:289–300, 2009.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[12] P. B. Heidorn and Q. Wei. Automatic metadata extraction from
museum specimen labels. In Proceedings of the 2008 International
Conference on Dublin Core and Metadata Applications, pages 57–68,
Berlin, Germany, 2008.

[13] N. Kushmerick. Wrapper induction for information extraction. PhD
thesis, University of Washington, Seattle, Washington, USA, 1997.

[14] K. Lerman, C. Knoblock, and S. Minton. Automatic data extraction
from lists and tables in web sources. In IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining, volume 98, 2001.

[15] A. K. McCallum. MALLET: a machine learning for language toolkit.
http://mallet.cs.umass.edu/, 2002.

[16] I. Muslea, S. Minton, and C. Knoblock. Stalker: Learning extraction
rules for semistructured, web-based information sources. In Proceedings
of AAAI-98 Workshop on AI and Information Integration, page 74–81,
1998.

[17] S. Sarawagi. Information extraction. Foundations and Trends in
Databases, 1:261–377, 2008.


