Unsupervised Training of HMM Structure and Parameters for OCRed
List Recognition and Ontology Population

THOMAS L. PACKER, Brigham Young University
DAVID W. EMBLEY, Brigham Young University

Machine learning based approaches to information extraction and ontology population often require a large
number of manually selected and annotated examples in order to learn a mapping from facts asserted in
text to structured facts asserted in an ontology. In this paper, we propose ListReader which provides a way
to train the structure and parameters of a hidden Markov model (HMM) using text selected and labeled
completely automatically. This HMM is capable of recognizing lists of records in OCRed and other text doc-
uments and associating subsets of identical fields across related record templates. The training method we
employ is based on a novel unsupervised active grammar-induction framework that, after producing an
HMM wrapper, uses an efficient active sampling process to complete the mapping from the HMM wrapper
to ontology by requesting annotations from a user for automatically-selected examples. We measure perfor-
mance of the final HMM in terms of F-measure of extracted information and manual annotation cost and
show that ListReader (HMM) learns faster than a state-of-the-art baseline (CRF) and an alternate version
of ListReader that induces a regular expression wrapper.

Categories and Subject Descriptors: 1.2.7 [Artificial Intelligencel: Natural Language Processing—Lan-
guage parsing and understanding; H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: information extraction, wrapper induction, unsupervised learning, ac-
tive learning, grammar induction, OCRed text document, list, ontology population, HMM, Hidden Markov
Model

ACM Reference Format:

Thomas L. Packer and David W. Embley, 2014. Unsupervised Training of HMM Structure and Parameters
for OCRed List Recognition and Ontology Population. ACM Trans. Knowl. Discov. Data. 0, 0, Article 00 (
0000), 35 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Information extraction and ontology population are areas of research concerned with
building models or processes to discover information in implicitly-structured sources
like text and to make the structure of that information explicit, machine-readable,
and more readily usable. Wrapper induction [Kushmerick 1997] and other machine-
learning-based approaches are commonly employed to efficiently produce an extraction
model or wrapper. Supervised-machine-learning-based approaches are common (e.g.
[Heidorn and Wei 2008]|, [Li et al. 2011]) and can perform well in terms of accuracy,
but often require a large number of manually selected and annotated examples in
order to learn.

Authors’ addresses: Thomas L. Packer and David W. Embley, Computer Science Department, Brigham
Young University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 0000 ACM 1556-4681/0000/-ART00 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:2 T. Packer and D. Embley

Form Builder/Annotator Home Form Builder | Logout

KilbarchanPerson

Surname Sempile
Name
GiverName John

Parish

Killellane

GivenMame Isobel
Narne
Surname Morisane

Parish

Spouse

MarriageDate Ionth Nov. I‘*nru]ulv—, John, par. of Killellane, and Isobel Morisone, par I

rear 1653

Day
ChristeningDate Mt

ear mpill, oh

PEl 3

Fig. 1. KilbarchanPerson Page and Filled-in Form

We propose ListReader, an unsupervised active wrapper induction process for learn-
ing Hidden Markov Models (HMMs) that are customized to the structure of each text
document (e.g. a book) and capable of populating one or more richly-structured ontolo-
gies. ListReader requires no hand-labeled training data to construct an HMM. It does,
however, require a small number of hand-labeled examples and a minimal amount of
knowledge engineering to finalize the mapping from HMM-labeled text to an ontology.
In the end, ListReader induces a wrapper that is at least as accurate as a typical super-
vised machine learning approach but requires fewer hand-labeled examples and less
knowledge engineering. Moreover, it minimizes the ways in which the hand-labeled
examples affect the final model. In particular, since hand-labeled data only affects the
external mapping from HMM states to semantic labels, we can more easily repurpose
a previously-induced wrapper for a new target ontology.

To start the process, a user selects a text document containing one or more lists
of records, e.g. an OCRed collection of page images from a scanned book targeted for
an information application. For example, the user could select the Kilbarchan Parish
Register [Grant 1912], part of one page of which appears in the right side of Figure
The user constructs a data entry form for the desired information in the left side of the
user interface, e.g. the form in Figure (1| before being filled inE] ListReader translates
the form into an ontology schema, e.g. the empty target ontology in Figure 2| Without
anything more than the given text document (e.g. the entire collection of page images

1The construction of a form is the full extent of human manual knowledge engineering for the entire wrapper
induction process.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:3

Marme —— GivenNarme i
/ \ o I

KilbarchanPerson 1~ | i

MarriagelDate

| Month |
ChristeningDate f’_’f"' '

Fig. 2. KilbarchanPerson Ontology

<KilbarchanPerson.Name.Surname>Sempile</KilbarchanPerson.Name.Surname>,
<KilbarchanPerson.Name.GivenName>John</KilbarchanPerson.Name.GivenName>, par. of
<KilbarchanPerson.Parish[1]>Killellane</KilbarchanPerson.Parish>[1], and
<KilbarchanPerson.Spouse.Name.GivenName>Isobel</KilbarchanPerson.Spouse.Name.GivenName>
<KilbarchanPerson.Spouse.Name.Surname>Morisone</KilbarchanPerson.Spouse.Name.Surname>,

par. m. <KilbarchanPerson.Spouse.MarriageDate.Day>15</KilbarchanPerson.Spouse.MarriageDate.Day>
<KilbarchanPerson.Spouse.MarriageDate.Month>Nov</KilbarchanPerson.Spouse.MarriageDate.Month>.
<KilbarchanPerson.Spouse.MarriageDate.Year>1653</KilbarchanPerson.Spouse.MarriageDate.Year>

Fig. 3. Labeled Record “Sempile, John, par. of Killellane, and Isobel Morisone,
par. m. 15 Nov. 1653”

of the Kilbarchan book in our example), ListReader applies an unsupervised process to
automatically discover and align records, induces a simple phrase structure grammar,
and trains the structure and parameters of an HMM. After ListReader sets the HMM’s
structure and parameters, it actively requests labels for selected strings of text from
the user. ListReader highlights the strings it wishes the user to label by highlightin
them, as Figure indicates. The user provides labels by filling in the data entry form
Figure[l]shows the filled in form for the highlighted text. ListReader uses the structure
of the form to generate specialized labels for the field strings in the text document
that specify the mapping of the strings to ontology predicates. Figure [3| shows the
labels in the highlighted record. After labeling, the structure and parameters of the
HMM are unchanged but some of the states have been assigned labels by the user.
ListReader executes the final HMM using the Viterbi algorithm and maps labeled text
to predicates, thus completing the mapping from text to ontology.

Our approach to wrapper induction is a combination of unsupervised learning and
active learning. ListReader is unsupervised in that it induces an HMM without labeled
training data and does not alter the structure or parameters of this HMM after it starts

2Filling in the form from ListReader selected text is the full extent of hand labeling for the entire wrapper
induction process.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:4 T. Packer and D. Embley

making active requests of the user for labels which it receives and assigns to existing
HMM states. Because of how the HMM is induced, one label from the user may be
applied to more than one HMM state, which greatly reduces the amount of required
labeling. Furthermore, ListReader follows the spirit of active learning [Settles 2012
in that it uses this structural model to request labels for those corresponding parts of
the known and unlabeled text that will have the greatest impact on the final wrapper’s
mapping from text to ontology, meaning the greatest increase in recall for the lowest
number of hand-labeled fields.

The contributions of this research are the following. First, we provide an algorithm
to train both model structure and parameters of an HMM for list recognition without
hand-labeled examples. This algorithm is linear in time and space with respect to the
input text length and the discovered pattern length. Second, we provide an efficient
way to complete the HMM as a data-extraction wrapper that can map the data in lists
to an expressive ontology schema. The final wrapper outperforms two alternatives.

We give the details of these contributions as follows. Sections and 4| explain the
HMM wrapper induction process. Section[2|describes how ListReader discovers record-
like patterns in text in linear time and space without human input. Section[3|describes
how ListReader derives the structure and parameters of an HMM from the discov-
ered patterns, also without human supervision. Section 4| explains how ListReader
creates the mapping from HMM states to an ontology using active sampling, an active-
learning-like process that requests labels of select examples from the user without
modifying the internal wrapper structure. Section 5| provides an evaluation of the per-
formance of ListReader in terms of the precision, recall, and F-measure of the auto-
matically extracted information as a function of manual field labeling cost, and com-
pares the learning rates to a state-of-the-art statistical sequence labeler (CRF) and to
the previous version of ListReader that induces regular expression based wrappers.
Section [6] discusses performance issues and opportunities for future work. Section
compares our proposed solution to related work on unsupervised wrapper induction.
Finally, Section [8 concludes this paper.

2. UNSUPERVISED PATTERN DISCOVERY

In an unsupervised process of pattern discovery, ListReader finds record-like patterns
in the input text, provides a representation of the hierarchical structure of these
strings, and associates the major components (delimited field groups) across different
types of records. In Section |3 ListReader will flatten this hierarchical structure into
a state machine and set the parameters of the HMM using statistics in the collection
of parsed record patterns. As we explain in Subsection ListReader begins pars-
ing to discover patterns by conflating the input text—substituting abstract word and
phrase structure for strings of characters. ListReader then efficiently identifies record-
like patterns in the conflated text (Subsection [2.2). Subsequently, ListReader further
parses and aligns field groups within and between record patterns (Subsection [2.3).
Finally, ListReader establishes the set of record and field group templates from which
ListReader will construct the HMM (Subsection [2.4).

2.1. Text Conflation

ListReader converts input text into an abstract representation using a small pipeline
of conflation rules. They perform tokenization and chunking of the text which in turn
improve tolerance of many common OCR errors and the natural variations among
fields of the same type. Currently, we have established the following conflation rules,
given in their order of application.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:5

(] (1] Ts o] (o] e JT0) [MI ToJ o] [[s Lo Tn e ST] [m] 1] [1f[6] [S]73]]

Fig. 4. Initial Parse Tree of “\nIsobel Morisone, m. 1653\n”

(1) Split Word: Merges two alphabetic word tokens that are separated by a hyphen
and a newline into a single word symbol.

(2) Horizontal Punctuation: Conflates horizontally-oriented punctuation characters:
underscore, hyphen, en dash, em dash, and other Unicode variations.

(3) Numeral: Replaces each digit in a numeral with a generic digit symbol (“Dg”).

(4) Word: Replaces contiguous letters with a generic word symbol that preserves the
relative order of upper case (“Up”) and lower case (“Lo”) characters only. ListReader
optionally preserves the full spelling of lower-case words.

(5) Space: Conflates normal space characters (“ ”) with newlines (“\n”) using a com-
mon symbol (“[Sp]”).

(6) Incorrect Space: Removes spaces that occur on the “wrong side” of certain punctua-
tion characters because of an OCR or typesetting error, such as immediately before
a period.

(7) Capitalized Word Repetition: Replaces sequences of space-delimited, capitalized
words of any length with a single, generic symbol (“[UpLo+]”).

(8) Numeral Repetition: Replaces sequences of comma- or hyphen-separated numerals
of any length greater than one with a generic symbol (e.g. “[Dg+-]") that only pre-
serves the identity of the punctuation delimiter. The same delimiter must be found
between every pair of numerals in a sequence.

The cumulative application of these rules produces a sequence of roots of small parse
trees. Figure[d]shows the parse tree for the text “\nIsobel Morisone, m. 1653\n”. The
dashed line joins the sequence of root phrase symbols giving a new sequence of symbols
in which ListReader looks for patterns. Not all rules need be used for every book.
Generally, all of them should be used except when they erase distinctions between
records that should not be aligned, such as is the case when conflating lower-case
words in records where different field group delimiters like “born on” and “died on” are
aligned. Preventing the conflation of lower-case words is appropriate for books such
as the Kilbarchan Parish Register [Grant 1912] which contains very little prose and
whose list records are fairly well structured.

2.2. Record Pattern Search

Once the text is parsed, ListReader finds record-like patterns in it by building a suffix
tree data structure from the conflated text and searching for repeated patterns that
satisfy our record selection constraints including the following: records must begin
and end with a valid record delimiter character, must occur a minimum number of
times throughout the text (two or three times, depending on the size of the text), must
contain at least one numeral or capitalized word.

Figure shows the suffix tree built from two consecutive and simpli-
fied recordsﬂ of the form “[Sp][UpLo+], [Sp][m].[Sp][DgDgDgDgl [Spl”, e.g.
“\nIsobel Morisone, m. 1653\nJonat Allasoune, m. 1659\n”, that share the

3We use this artificial example to make the suffix tree small enough to discuss in a paper. Normally, suffix
trees are much larger because they represent every suffix of the input text.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:6

count=17(0, 3, 6, 8, 11, 14, 16)
ISp]

count=2(1,9)
[UpLo+],[Sp][m].[Sp][DgDgDgDg][Sp

count =2 (4, 12)
[m].[Sp][DgDgDgDg][Sp]

count =2 (5, 13)
-[Sp][DgDgDegDg|[Sp]

T. Packer and D. Embley

count=1(9)
[UpLo+],[Sp](m].[Sp][DgDgDeDg][Sp]$
O
count=2(1,9) =
Lo+ m DeDeD counl$1(l7)
>0
count=1(9)
[UpLo+1,[Sp][m].[Sp](DgDgDeDe][Sp]$
O
count =2 (4, 12)
[m].[Sp][DgDgDeDg][Sp]
q count=1(17)
$ O
count =2 (7, 15)
o [DgDgDgDg](Sp] count=1(9)
o UpLo+1,[Sp][m].[Sp][DgDgDgDg][Sp]S O
count=1(17) count=1(17)
$ O $
O
count=1(9)
[UpLo+],[Sp][m].[Sp][DgDgDgDg][Sp]$ _ ~
count =1 (17)
$ »O
count=1(9)
[UpLo+],[Sp][m].[Sp][DgDgDeDg][Sp]$
O
count=1(17)
S »O
count=1(9)

[UpLo+1,[Sp][m].[Sp][DgDgDegDg][Sp]$

count =2 (7, 15)
[DgDgDgDg][Sp]

count =2 (2, 10)
J[Sp][m].[Sp][DgDgDgDg][Sp]

count=1(17)
N

count =1 (17)
$

count=1(9)
[UpLo*].[Sp][m].[Sp][DegDeDeD][SpIS ,~
count=1(17)
$
O
count=1(9)
(UpLo+],[Sp][m].[Sp][DgDgDgDg](Spl$
count =1 (17)
s O

Fig. 5. Suffix Tree of “[Sp] [UpLo+], [Sp] [m] . [Sp] [DgDgDgDg]l [Sp] [UpLo+], [Sp] [m] . [Sp] [DgDgDegDg] [Spl”.

sequence of symbols in Figure [4 ListReader constructs the suffix tree in linear time
and space using Ukkonen’s algorithm [Ukkonen 1995|. It also finds and collects

record-like patterns within the suffix tree in linear time and space by iterating over
the edges of the suffix tree and checking for strings terminating in each edge that

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:7

1. [Spl[UpLo+], [Sp] [UpLo+], [Sp] [in] [Sp] [UpLo+], [Sp] [par] . [Sp] [of] [Sp] [UpLo+],
[Sp] [and] [Sp] [UpLo+] [Sp]
\nSteel, John, in Peockland, par. of Paisley, and Betbiah\n
\nSempill, John, in Burneight, par. of Lochwinnoch, and Janet Cochrane\n

2. [Sp]l [UpLo+], [Sp] [UpLo+], [Sp] [par] . [Spl [of] [Sp] [UpLo+],

[Sp] [and] [Sp] [UpLo+], [Sp] [par] . [Sp] [m] . [Sp] [DgDg] [Sp] [UpLo+] . [Sp] [DgDgDgDg]l [Sp]
\nSempile, John, par. of Killellane, and Isobel Morisone, par.\nm. 15 Nov. 1653\n
\nSempill, John, par. of Paisley, and Jonat Allasoune, par. m. 27 Oct. 1659\n

3. [Spl[UpLo+], [Sp] [DgDg] [Sp] [UpLo+] . [Sp] [DgDgDgDg] [Sp]
\nAgnes, 25 Sept. 1653.\n
\nJonet, 17 Sept. 1654.\n
\nMargaret, 18 Dec. 1657.\n
4. [Sp][UpLo+], [Spl [Dg] [Sp] [UpLo+] [Sp] [DgDgDgDg] [Sp]
\nWilliam, 6 June 1690.\n
\nAndrew, 6 May 1692.\n
\nMarie, 4 May 1660.\n
5. [Spl[UpLo+], [Spl [UpLo+] [Spl
\nCordoner, William\n
\nRose, Robert\n

Fig. 6. A Selection of Patterns Found in the Kilbarchan Parish Register

adhere to the properties of a record. The one pattern in Figure |5 that ListReader
would find is underlined and is represented by the concatentation of two edges. Notice
that this pattern begins and ends with space symbols which are connected to newline
characters in the parse tree. The pattern also repeats 2 times (given the count of the
second edge).

Figure [6] shows five other patterns that would have been discovered in a suffix tree
constructed from a larger sample of the text from the Kilbarchan Parish Register. Each
record pattern is connected to a set of aligned record candidate strings in the input text
forming a record cluster. Figure [6| shows a sample of 12 records grouped in five record
clusters.

2.3. Field Group Discovery

ListReader next discovers parts of records (field groups) that recur among different
record clusters. These correspondences will be represented later in the HMM and used
to reduce the number of necessary hand-labeled fields.

From the set of record clusters discovered, ListReader identifies field group delim-
iters: sequences of lower-case words separated by whitespace or punctuation that occur
in a fixed position within a few different record clusters (between two and four clus-
ters, depending on the size and complexity of the input text). Requiring more than four
record clusters typically eliminates valid delimiters from consideration, and requiring
less than two record clusters provides insufficient evidence for delimiter patterns. To
find field group delimiters, ListReader compares the original text of each word at each
position within a record template (below the root nodes in the parse trees). When it
finds delimiters to add to a field group template, it inserts the non-conflated text in-
stead of the conflation symbols. From the first two clusters in Figure[6] ListReader can
identify the following field group delimiters: “, par. of 7, “, and 7, and “\n”. With
additional supporting evidence from other clusters in the book, ListReader might also
identify the other two delimiters seen in the first two record clusters in Figure [6}
“, in ”and “, par. m. .

ListReader constructs field group templates from the text appearing between field
group delimiters and associates the field group template with the delimiter on its left
side. Field group templates consist of one or more variations of a field group delimiter,

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:8 T. Packer and D. Embley

[Record]

[\n-Segment] [m-Segment] [\n-End-Segment]

[m-Delim] [m-FieldGroup] [\n-End-Delim]]

Fig. 7. Complete Parse Tree of “\nIsobel Morisone, m. 1653\n”

which text is not conflated, followed by one or more variations of the field group, which
text is conflated. For example, the field group template for the delimiter “, par. of ”
discovered in the first two record clusters in Figure [6| would be “, par. of [UpLo+]”
and for the delimiter “, and ” would be “, and [UpLo+]”. When applied to parse text,
we say that a field group template produces a “field group segment” as a new type of
parse tree node. These can be seen in parse tree in Figure[7|where each “Segment” node
includes a “Delim” node followed by a “FieldGroup” node. A special “End-Segment”
node that includes a single “End-Delim” node marks the end record delimiter as Fig-
ure [T shows.

2.4. Final Record and Field Group Template Selection

As a next step, ListReader again produces a suffix tree, working at the
level of field-group segments. This more coarsely-grained text string at the
level of field-group segments for the parse tree in Figure for example, is
“[\n-Segment] [m-Segment] [\n-End-Segment]”. For two such consecutive segments
ListReader produces the suffix tree in Figure [8| ListReader then searches for record
patterns in the second suffix tree as it did in the first suffix tree with one additional
constraint: each record template must be composed entirely of field group segments.
(Any record template that, for example, has an extra punctuation character that was
not incorporated into any field group segment is not considered.) This produces a
higher level of text abstraction. Figure [9 shows how the records from Figure [6] would
now appear after parsing field group segments and rediscovering records. Notice how
the third, fourth, and fifth record clusters are now merged because they share a com-
mon segment-level parse sequence, namely, the initial [\n-Segment]. These selected
record templates define the sets of records from which ListReader later constructs the
HMM, and from which the HMM’s parameters will be set.

For each of these record templates, all of the members of its record cluster share the
same conflation pattern. ListReader is therefore guaranteed that the same type of field
group segment appears in the same position within all of its record instances. For ex-
ample, the two records in the first cluster in Figure[9]all contain the following sequence
of field group segments: an initial “\n” segment, an “in” segment, a “par-of” segment,
an “and” segment, and a final “\n” segment. On the other hand, the specific contents
of the field group segments may differ from each other even though they are aligned
within the same kind of record template. For example, the first record cluster in Fig-
ure[9 contains spouse names that are of different length. Greater variations than this

4Again, we mention the use of an artificial example to make the suffix tree small enough to discuss in
a paper. Normally, hundreds and even thousands of occurrences of a record-segment pattern are found
scattered throughout the document.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:9

count =1 (6)

count =1 (6)
$

count =1 (3)
[\n-Segment][m-Segment][\n-End-Segment]$ »O

count = 2 (0, 3)
[\n-Segment][m-Segment][\n-End-Segment

count =2 (1, 4) coum$= L)

[m-Segment][\n-End-Segment]

count =1 (3)
[\n-Segment][m-Segment][\n-End-Segment]$

count =2 (2, 5)
[\n-End-Segment]

count = 1 (6)
$

count= 1 (3)
[\n-Segment][m-Segment][\n-End-Segment]$

Fig. 8. Phase 2 suffix tree of “[\n-Segment][m-Segment] [\n-End-Segment] [\n-Segment]
[m-Segment] [\n-End-Segment]”. The record pattern is underlined.

1. [\n-Segment] [in-Segment] [par-of-Segment] [and-Segment] [\n-End-Segment]
\nSteel, John, in Peockland, par. of Paisley, and Betbiah\n
\nSempill, John, in Burneight, par. of Lochwinnoch, and Janet Cochrane\n

2. [\n-Segment] [par-of-Segment] [and-Segment] [par-m-Segment] [\n-End-Segment]
\nSempile, John, par. of Killellane, and Isobel Morisone, par.\nm. 15 Nov. 1653\n
\nSempill, John, par. of Paisley, and Jonat Allasoune, par. m. 27 Oct. 1659\n

3. [\n-Segment] [\n-End-Segment]

\nAgnes, 25 Sept. 1653.\n
\nJonet, 17 Sept. 1654.\n
\nMargaret, 18 Dec. 1657.\n
\nWilliam, 6 June 1690.\n
\nAndrew, 6 May 1692.\n
\nMarie, 4 May 1660.\n
\nCordoner, William\n
\nRose, Robert\n

Fig. 9. Segment-level Record Clusters Derived from the Record Clusters in Figuref]

are common, such as aligning “, par.\nm. 15 Nov. 1653\n” with“, par. m. 1653\n”.
And, even greater variations shown in the third record cluster in Figure [9| where the
start of a record can be either a name/comma/date or a surname/comma/given-name.
Because of this, ListReader must either create a separate sub-HMM for each vari-
ation, select among these variations and create sub-HMMs for only a subset of the
variations, or merge the variations into some kind of union of sub-HMMs. Using all
possible variations is less desirable for two reasons: it significantly increases the run-

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:10 T. Packer and D. Embley

ning time of execution which is quadratic in the number of states and it significantly
increases the variations that have to be hand-labeled. Merging all variations into a
single pattern is probably hard to do without more domain knowledge than we expect
the user to provide. Therefore, we choose to select a representative sample of each field
group variation at each position of each record template.

For each field group segment in each record template, ListReader selects one or
more field group representatives. For “[\n-Segment]” in the third segment-level record
cluster in Figure [9] for example, ListReader selects one or more of the corresponding
patterns that comprise it—one or more of the corresponding patterns from the third,
fourth, and fifth patterns in Figure [6] Ideally, the representatives for a segment to-
gether cover each major variation for the segment. To select the representatives for a
segment, ListReader first selects one of the alternative patterns at random. ListReader
then iterates over the remaining alternatives in random order. For each field group
template variation, ListReader computes its normalized Levenstein edit distance from
each of the representative templates among those being considered. The field group
template must have an edit distance of 0.25 or less to be grouped together in the same
set. Having a normalized edit distance of 0.25 means that the field group template per-
fectly overlaps with 75% of the words of the representative of that set—the first one
chosen randomly to initialize the set. (Delimiter words match if they are identical at
the character-level while non-delimiter words match if they have identical conflation
symbols at the word-level.) To be most effective as a representative, ListReader selects
the member of the set of templates that are similar that has the largest “representa-
tiveness score”—ideally, the “best” representative. The representativeness score is the
product of match count (the number of strings in the input text that match the field
group template) and length (the number of word tokens in the field group template).
Continuing, ListReader considers any remaining field group templates that have not
yet been grouped together. Only field group templates that have a normalized Leven-
stein edit distance of at least 0.75 from every previously-chosen field group template
representative will become a new set representative (meaning, the new representa-
tive overlaps perfectly with no more than 25% of the content of any existing cluster
prototype).

For example, the “[\n-Segment]” in the first constituent position of
the last cluster of records in Figure [9] has eight text-string alternatives,
“\nAgnes, 25 Sept. 1653”, “\nJonet, 17 Sept. 1654”, .., “\nRose, Robert\n”.
The first six of these eight field group segments have two patterns of conflated text
at the word level, namely “\n[UpLo], [Sp] [DgDg] [Sp] [UpLol] . [Sp] [DgDgDgDgl” and
“\n [UpLo], [Sp] [Dg] [Sp] [UpLo] [Sp] [DgDgDgDg]”. These two patterns differ by an edit
distance of less than 0.25, and thus ListReader groups these two patterns together
and then chooses one of them to be the representative. ListReader would choose
the first, because it has a representativeness score of 3 x 10 = 30 whereas the other
option has a representativeness score of 3 * 9 = 27. The last two instances of the
eight have the pattern “[Sp] [UpLo+], [Sp] [UpLo+]” which differs from the first chosen
representative by more than an edit distance of 0.25, and thus it stands alone as a
second representative of the “[\n-Segment]” of the third record cluster in Figure[9]

In preliminary experiments on the Shaver-Dougherty Genealogy, ListReader’s selec-
tion procedure, as just described, improved precision, recall, F-measure, and reduced
the number of required hand-labelings compared to two other policies, one that se-
lected the single longest field group template among all alternatives and one that se-
lected the longest field group template for each set of templates (as defined by the same
two edit distance thresholds described above). This last policy performed worse than
the other two. We expect this behavior will be consistent across books.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:11

1. [\n-Segment] [in-Segment] [par-of-Segment] [and-Segment] [\n-End-Segment]
[\n[UpLol], [Sp] [UpLol]
\nSteel, John
[, in [UpLol]
, in Peockland
[, par. of [UpLoll
, par. of Paisley
[, and [UpLol [Sp] [UpLol]
, and Janet Cochrane
[, and [UpLo]l]
, and Betbiah
[(\n]
\n
2. [\n-Segment] [par-of-Segment] [and-Segment] [par-m-Segment] [\n-End-Segment]
[\n[UpLo], [Sp] [UpLol]
\nSempile, John
[, par. of [UpLo]ll
, par. of Killellane
[, and [UpLo] [Sp] [UpLoll
, and Isobel Morisone
[, par. m. [DgDg] [Sp] [UpLo] . [Sp] [DgDgDgDg]]
, par.\nm. 15 Nov. 1653
[(\n]
\n
3. [\n-Segment] [\n-End-Segment]
[\n [UpLol, [Sp] [DgDgl [Sp] [UpLo] . [Sp] [DgDgDgDg]]
\nAgnes, 25 Sept. 1653
[\n [UpLol, [Sp] [UpLol]
\nCordoner, William
[-\n]
\n
[\n]
\n

Fig. 10. Record and Field Group Templates Derived from the Segment-level Record Clusters in Figure[9]

The final record and field group templates selected from the record clusters in Fig-
ure [9] appear in Figure Field group templates are grouped under the record tem-
plate they belong to and are each followed by the text string (of the field group segment)
used to create them. The strings also serve as example of the text they will match.

3. HMM CONSTRUCTION

An HMM is a probabilistic finite state machine consisting of a set of hidden states S, a
set of possible observations W, an emission model P(w|s) associating a state with a set
of observable events, and a transition model P(s;|s;—1) associating one state with the
next. States are initially “hidden” and must be inferred during application of the HMM
from the observable events in the text. In our work, each event is a word-sized chunk
of text (token), including alphabetic words, numerals, spaces, and punctuation charac-
ters. Inferring the correct state associated with each word token is the main task done
in extracting information from the text and is guided by the parameters of the HMM.
Using the Viterbi algorithm, ListReader selects the most probable sequence of states
given the words of the input text and the HMM’s parameters. The emission model is a
multinomial distribution—a table of conditional probabilities indicating which obser-

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:12 T. Packer and D. Embley

[RecDelim
RecDelim| -~

0.06 0.5
RecDelim Insertion ")]D“‘_; (l.mnmn [1)])“‘5 (l.mnmn [1)])“‘5 (umnmn [1)])“‘5 (umnmn [1)])“‘5 (umnmn [1)])“‘5 (umnmn [1)])“‘5 (umnmn [1)])“‘5 (lnwnmn [1)])“‘5 (lnwnmn D5 5——{RecDelim

0.5 0.03 105 0.03 \0.5 0.067 \0.5 0.03 \0.5 0.03 \0.5 0.03 \0.5 0.03 \0.5 0.03 \0.5 0.09

n.5.2.1.1 05213 m6.2.1

1A2.1A5.2.1.1 1A2.1A5.2.13 1A2.2A6.2.1
[UpLo] |0.9665 [UpLo] 0.9665 [DgDgDgDg][0.9582
[LoUp] [0.0095 5212 [LoUp] [0.0095 612 615 [DgbgDg] 0.0094
) Lo] [0.0095 1A2.1A5.2.1.2 Lo] [0.0095 m6.11 1A2.2A6.1.2 m6.13 m6.14 1A2.2A6.1.5 DgDg] |0.0094

Recpam 262 [Lo] 0.96 0.96 [Lo] 093 |1 A2 2A6.1.1 1096, 6. 096 |1 A2 246131996 | 1 A2 246 1.4 096, . 0.96 | _[DgDg] 09 (e eetim
[Up] 0.0095 | 0.9901 [Up] 0.0095 - | 0.9901 o 0 | 0.9901 [Dg] 0.0094
m | I

[DgDgDgDg] [9.0E-4 n | 0.0098 [DgDgDgDg] [9.0E-4 n | 0.0098 n [0.0098 [LoUp] |[9.0E-4
[DgDgDg] [DgDgDg] |9.0E-4 [UpLo] |9.0E-4
[DgDg] [DgDg] [9.0E-4 [Up] [9.0E-4
[Dg] |9.0E4 [Dg] |9.0E4 [Lo] |9.0E4

Fig. 11. HMM for text “\nIsobel Morisone, m. 1653\nJonat Allasoune, m. 1659\n”.

vation w can be emitte(ﬂ from which hidden state s and with what probability given
s. The transition model is also a multinomial distribution—a table of conditional prob-
abilities indicating which hidden state s; at position ¢ can follow which other hidden
state s;_; at position ¢ — 1 and with what probability given s;_;. The two kinds of
probabilities are the parameters of the HMM. The set of states and the transitions
that have non-zero probabilities in the transition model determine the structure of the
state machine of the HMM. The processing described in Section [2| provides what we
need to produce both the transition and emission model for our application.

Figure shows an HMM constructed from the parse trees of the text
“\nIsobel Morisone, m. 1653\nJonat Allasoune, m. 1659\n”. Nodes represent
states. The top section of each node contains the node’s IDs, explained below. The bot-
tom sections (if present) show the non-zero emission parameters for that state. Edges
represent the non-zero transition parameters between states. We have duplicated the
RecDelim node in the figure to avoid complicating the figure with long or crossing
edges.

The HMM that ListReader constructs has two levels of structure, page-level and
record-level, that are connected by transitions. The record-level states belong to record
templates that are connected to each other and to the page-level states of the HMM.
We now explain how ListReader automatically constructs these two levels of structure
from the parsed record templates previously discovered and filtered automatically. In
Subsection ListReader generates the record-level states and their syntactic and
semantic IDs. In Subsection ListReader sets transition and emission parame-
ters within field group templates. In Subsection [3.3] ListReader finishes the transition
model connecting field groups to each other and connecting record templates and the
page-level HMM states and setting the page level state’s emission parameters.

5The term “emission” comes from the generative story commonly used to explain how an HMM can generate
text. HMM parameters are traditionally chosen to maximize the likelihood that the HMM can generate the
actual text that the HMM was meant to model.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:13

3.1. Record-level State Generation

ListReader transforms each field group template that is selected as a representative by
the process described at the end of Section[2]into a linear sequence of HMM states, one
HMM state for each word token in the parse tree of the record template (i.e. the second
level of the parse tree from the bottom). So, for the parse tree in Figure |7, ListReader
would create HMM states for the following nodes:

[Sp] [UpLo]l [Spl [UpLo]l [Sp] [m] . [Sp] [DgDgDghgl [Sp]

ListReader connects adjacent HMM states with transitions, as explained later.
ListReader assigns each state two IDs. These are seen as the first two lines in the
nodes in Figure and consist of a semantic ID and a syntactic ID. For record-level
states, the semantic ID is derived from the syntactic ID, so we explain the syntactic ID
first.

Each state’s syntactic ID (the second identifier in the nodes of Figure [11)) is a dot-
delimited sequence of numbers representing the path in the parse tree from root (the
record node) to word (the word for which the state is being created). Each number in
this path (ignoring the number after the “A” for now) is called a parse tree number. It
indicates the order of the node among its siblings in the parse tree. For example, con-
sidering the two figures Figure|7|and Figure the node in the parse tree for the word
Isobel in Figure [7| corresponds to the state “1A2.1A5.2.1.1” in the record template in
the HMM in Figure The syntactic ID indicates the following correspondence along
a path from the record node to the word node:

[Record] [\n-Segment] [\n-FieldGroup] [UpLo+] [UpLo]
1(A2) 1(A5) 2 1 1

The record node is always assigned a parse tree number of “1” (as in “1A2”) because
it is always the only sibling on that level in the parse tree. The field group segment
in this example is also assigned a parse tree number of “1” (as in “1A5) because it is
the first child of the record node. The other parse tree numbers are assigned in similar
fashion.

The first two parts of the syntactic ID are special cases since they contain another
number, the alternation number (the number after the “A” in the syntactic ID). The al-
ternation number is a number uniquely identifying the record or field group template
among alternative record or field group templates discovered in Section [2| These two
alternation numbers make the syntactic ID functionally complete within the HMM
wrapper. The record alternation number identifies one record template among all
available record templates which differ from each other in field group content or or-
der. The combination of the record alternation number and the parse tree numbers
makes each node’s syntactic label unique within an HMM. For example, there is only
one node with syntactic ID “1A2.1A5.2.1.1” in the HMM in Figure [11|(with or without
the field group alternation number). The field group alternation number plays an im-
portant role in creating the semantic ID of a node and in improving labeling efficiency
during active sampling, as we explain later.

The semantic ID of a state is the suffix of the syntactic ID starting with the field
group segment’s alternation number. The semantic ID, therefore, represents both a
type of field group segment and a word’s position within that field group segment. The
semantic ID of a state is purposefully not unique within an HMM. States that share a
semantic ID should be labeled the same by the user and therefore ListReader should
request only one label from the user for all states (and matching strings within the
input text) that share a semantic ID. ListReader carefully infers semantic IDs and
therefore carefully assigns field group alternation numbers. ListReader assigns the

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:14 T. Packer and D. Embley

same field group alternation number to field group segments that (1) are of the same
type (e.g. and and m are different) and (2) contain the same conflated field group words
(e.g. [UpLo] and [UpLo] [UpLol are different). Therefore, HMM states with the same
field group alternation number will have the same semantic ID if they are in the same
position within their respective field group segments, even when those field groups
appear in different record templates. This semantically ties the HMM states together
that refer to the same field group templates and, in active sampling below, prevents
the user from labeling more than one example of that field group. For example, the
field group template “, and [UpLo] [UpLol” matching “, and Janet Cochrane” in the
first cluster of Figure [9 and the identical field group template “, and [UpLol [UpLol”
matching “, and Isobel Morisone” in the second cluster will be assigned the same
final labels because they will first be assigned the same semantic IDs, despite being in
different positions in two different record templates.

3.2. Record-level Parameter Setting

ListReader sets the emission and transition parameters using maximum likelihood es-
timation (MLE). That is, they are set by normalizing the sums of counts of phrases in
parse trees. These parameters must allow for flexible alignment of an induced HMM
with text containing natural differences from the text on which the HMM was trained,
such as word substitutions, insertions, and deletions. Therefore, beyond MLE, we also
smooth these parameters using pseudo-counts (Dirichet priors) to allow for combina-
tions of events not present in the training data.

A substitution is a token in one record that does not exactly match the cor-
responding token in another record. For example, if an HMM were built from
text “\nIsobel Morisone, m. 1653\n”, we still expect that HMM to match text
like “\nIsobel Morisone; m. 1653\n”, despite the semicolon replacing the comma.
ListReader allows for substitutions using both conflation of text and smoothing in the
emission model. The emission model of each record-level state is set with the conflated
text of the word for that state with a count of 1.0 unless the state is part of a delimiter
in which case ListReader uses the non-conflated text, e.g. “[m]” instead of “[Lo]” in the
seventh state on the bottom row of Figure For conflated numerals and alphabetic
words, their emission parameters are smoothed with small, fractional pseudo-counts
to allow for any other numeral or alphabetic words with low probability (lower for
words outside of the character class of the original text). For example, a second-to-
last state in Figure [11]| for a word with conflated text of “[DgDgDgDg]” will receive a
count of 1.0 for “[DgDgDgDgl”, a pseudo-count of 0.01 for “[Dgl”, “[DgDgl”, “[DgDgDgl”,
and “[DgDgDgDgDgl” and a pseudo-count of 0.001 for “[UpLol”, “[LoUpl”, “[Up]” and
“[Lo]”. This promotes better alignment of similar words, especially words of the same
character class, despite the very small amount of training data provided to train the
HMM and despite possible OCR errors and other variations. Similarly, ListReader
adds pseudo-counts of spaces for the two kinds of internal space it encounters, (“ ”
and “\n”), unless it’s syntactic label is “record delimiter”. Finally, all record-level state
emission models receive a pseudo-count of 0.0001 for every other word in the document
except the page beginning and ending symbols. These are omitted from the figure for
simplicity.

A deletion is a sequence of one or more tokens of a record template that are missing
from text that should otherwise match that record template. For example, though the
HMM in Figure was trained on text like “\nIsobel Morisone, m. 1653\n” we ex-
pect the HMM to be flexible enough to match text like “\nIsobel Morisone m 1653\n”
(with the punctuation missing). This means that states in the HMM that were not ad-
jacent in training data should become adjacent during execution. To allow this, during
unsupervised training, the transition model of each pair of adjacent states receives

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:15

a full count of 1.0, while the transition model of each pair of non-adjacent states re-
ceives a pseudo-count of 1/30 if that pair of states satisfies our deletion constraint. The
deletion constraint is an ordering on states such that the second state must follow the
first state within a training record, regardless of how far apart the words were. For
example, the word “Morisone” precedes the space after the comma, so the transition
from the state representing “Morisone” to the state representing the space receives the
non-zero pseudo-count. But the reverse transition (from “ ” to “Morisone”) would re-
ceive a zero parameter. Proper order is determined algorithmically by comparing the
parse tree numbers in the syntactic IDs of the two HMM states in question. The al-
gorithm checks to see that the two states have ancestor numbers that are correctly
ordered. E.g. states “1A2.1A5.2.1.3” (“Morisone”) and “1A2.2A6.1.1” (“ ”) are correctly
ordered because they share a record number and their field group parse tree numbers
are in the correct order. But the reverse order would not be allowed. The algorithm
also checks for states in different record templates or alternate field group templates
at the same position in a record template and prevents any state in one template from
becoming adjacent to any state in the alternative template, regardless of the order. So,
if there were an alternate initial field group in the HMM of Figure its first state
might have ID “1A2.1A4.2.1.1”, and ListReader would prevent it from becoming adja-
cent to state “1A2.1A5.2.1.1” in either order. The algorithm to check if deletion order
possible is the following. Split the syntactic labels into numeral pieces. Compare piece
number pairs from top to bottom (left to right within label string). At the first differing
piece, if they differ in alternates (“A” numbers) and this is the record piece, then return
false. If they differ in the parse tree number, return true if and only if the numbers
are correctly ordered and both states actually exist within the HMM. We avoid using a
quadratic amount of memory by applying this order-check algorithm based on the syn-
tax IDs instead of explicitly encoding all possible transitions in the transition model.
?? Possible transitions denoting deletions do not appear in Figure 11| because ...

An insertion is a sequence of one or more tokens appearing in text that should
match a record template but which did not appear within the training text of that
record template. For example, though the HMM in Figure 11| was trained on text like
“\nIsobel Morisone, m. 1653\n” we expect the HMM to be flexible enough to match
text like “\nIsobel Morisone, m.. 1653.\n” (containing two extra dots). To allow in-
sertions, ListReader must do more than alter the transition and emission models.
It must introduce a new set of states, which we call insertion states. For every al-
lowed transition between record-level states s;_; and s; (including record delimiters),
ListReader creates a new state whose syntactic label is the concatenation of the two
state’s syntactic label (s; + s;_1) and whose semantic label is the concatenation of the
two states’ semantic labels. For example, the inserted node between “1A2.2A6.1.3” (“m”)
and “1A2.2A6.1.4” (“.”) will be “1A2.2A6.1.3 + 1A2.2A6.1.4” and its semantic ID will be
“A6.1.3 + A6.1.4”. ListReader sets counts for three new transitions per insertion state:
one to the insertion state from the original prior state: s;—1 to (s; + s;—1), one self-
transition for possible additional insertions: (s; + s;—1) to (s; + st—1), and one from the
insertion state to the original subsequent state: (s; + s;—1) to s;. The pseudo-count is
the same for all three transitions: N/30, where N is an integer between 1 and 3 depend-
ing on the likelihood of insertion at that location given prior knowledge of the behavior
of insertions in list-like text: N = 3 next to record delimiters, N = 2 next to field group
delimiters, and N = 1 everywhere else. Notice in the last row of states in Figure
that the transition between states “1A2.1A5.2.1.3” and “1A2.2A6.1.1” is smaller than
the others in that row. We choose 30 because there are approximately 30 instances of
a transition in normal text for every instances of an insertion at that specific location
in a record template.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:16 T. Packer and D. Embley

3.3. Connecting the Pieces

ListReader must connect field group templates to record delimiter states and to each
other to complete each record template HMM. ListReader creates transitions from
RecordDelimiter to the starting states of each of the initial field group templates with
a count equal to the size of the field group template cluster (the one determined by the
normalized Levenstein edit distance of 0.25). Based on the example record templates
in Figure (10} ListReader would add four transitions from RecordDelimiter to the first
state of each of the representative initial field group templates (the ones starting with
“\n” in Figure[10). Then, the parameters of the transitions going from RecordDelimiter
to each of the four initial field group segments would be initialized with the counts of
the respective instances (seen in Figure[9). The count assigned to the first, second and
fourth field group templates would be 2 each, and the count assigned to the third field
group template would be 6. ListReader also creates a transition from the last state
of each field group template to the first state of each following field group template
(including RecordDelimiter in the case of the final field group template), with count of
1.0.

ListReader must also connect record templates to the page-level model. There are
four page-level states as shown at the top of Figure[11} they always occur in any HMM
ListReader constructs. They are PageBeginning, PageEnding, NonList, and Record-
Delimiter. The emission model of PageBeginning and PageEnding are fixed to contain
only the special character that we artificially insert into the text sequence at the begin-
ning and ending of each page to represent page breaks. The emission model of Record-
Delimiter is fixed to contain the set of allowable record delimiters, which currently
contains only the newline character. For these fixed emission models, the probability
of an allowable character is 1.0 and all other probabilities are 0.0—in other words, no
parameter smoothing is allowed. The emission model of NonList is not fixed. Rather, it
is set as the MLE estimate of all word tokens in the input text that were not covered
by any candidate records during unsupervised grammar induction. We train the emis-
sion model of the non-list state on unlabeled data and the emission models of list states
(above) on labeled data (specifically automatically-labeled data that we know from pre-
vious research has high precision and moderate recall). These two sets of states (list
and non-list) can be seen as a binary classifier, predicting a “positive” and a “negative”
class. We justify our approach to training our HMM from mixed labeled and unlabeled
data by citing Elkan and Noto ([Elkan and Noto 2008]]) who show that for binary classi-
fiers, “under the assumption that the labeled examples are selected randomly from the
positive examples ... a classifier trained on positive and unlabeled examples predicts
probabilities that differ by only a constant factor from the true conditional probabili-
ties of being positive.” We also smooth the emission model of the NonList state using
small Dirichlet priors to allow any word to appear there, even those not appearing in
the training data. (These are not shown in Figure)

The parameters for the transitions among these four page-level states are also
trained using MLE from the records discovered during grammar induction. For ex-
ample, if there were 100 pages of input text and 10 of the pages began with list text
and 90 with non-list text, then the transition from PageBeginning to RecordDelim-
iter would have a probability of 0.1. The transition model is also smoothed with small
Dirichlet priors to allow any reasonable transitions that were not seen in the parsed
text such as a transition from PageBeginning to PageEnding (allowing an empty page)
or from RecordDelimiter to PageEnding if there were no pages ending with discovered
records, for example, but not from PageEnding to PageBeginning.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:17

4. FINAL EXTRACTION

To map data in record patterns to an ontology, ListReader does two things. First it
actively and selectively requests text labels from the user by which it may associate
HMM states with elements of the ontology, as explained in Subsection and then
it applies that state-label knowledge to extract information from throughout the input
text and maps that information to the ontology, as explained in Subsection [4.2]

4.1. Active Sampling

Active sampling consists of a cycle of repeated interaction with the user who labels the
fields in the text of a record matched by a part of the HMM that ListReader selects.
On each iteration of the loop, the user labels the text that ListReader chooses and
highlights. Actual labeling consists of the user copying substrings of the ListReader-
selected text into the entry fields of the data entry form in ListReader’s Ul (e.g. Fig-
ure([I). ListReader then accepts the labeled text via the Web form interface and assigns
labels to the corresponding HMM states, which completes the HMM and enables it to
become a “wrapper” that extracts information from the text and maps it to the ontology
as we explain in Subsection

This active sampling cycle is a modified form of active learning, focusing on the
“active sampling” step and performing practically none of the “model update” step,
just as in [Hu et al. 2009]. The HMM learning ListReader does is fully unsupervised—
no HMM structure or parameter learning takes place under the supervision of a user
either interactively or in advance. In each cycle, ListReader actively selects the text for
labeling that maximizes the return for the labeling effort expended. To initialize the
active sampling cycle, ListReader applies the HMM to the text of each page in the book.
It labels the strings that match each state with the state’s semantic ID. ListReader
saves the count of matching strings for each semantic ID. It also records the page and
character offsets of the matching strings throughout the book and associated semantic
IDs. ListReader uses the page and character offsets when highlighting a span of text
in the UI for the user to label. ListReader selects a span of text on each iteration of
active sampling using a query policy (explained next) that is based on the counts of
matching strings for each semantic ID.

The string ListReader selects as “best” is a string that matches the sub-HMM with
the highest predicted return on investment (ROI). A selected sub-HMM must be part
of a record template. When there is more than one string that matches the best sub-
HMM, ListReader selects the first one on whichever page contains the most matches
of that sub-HMM. One can think of ROI as the slope of the learning curve: higher
accuracy and lower cost produce higher ROI. ListReader computes predicted ROI as
the sum of the counts of the strings matching each state in the candidate sub-HMM
divided by the number of states in the sub-HMM. It limits the set of candidate sub-
HMNMs to those that are contiguous and complete, meaning sub-HMMs that contain no
record delimiters or states already labeled by the user and that are not contained by
any longer candidate sub-HMM. This is so ListReader queries the user once instead
of multiple times for a section of text, a part of which might have a larger predicted
ROI than the whole string. Querying the user to maximizing the immediate ROI tends
to maximize the slope of the learning curve and has proven effective in other active
learning situations [Haertel et al. 2008]]. Once labeling of the selected text is complete,
ListReader removes the counts for all strings that match the corresponding capture
groups, recomputes the ROI scores of remaining capture groups, and issues a query to
the user.

As an example, supposed ListReader’'s HMM discovers the same groups of records
as in Figure [9] If a majority of the shorter, child records appear on the same page

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:18 T. Packer and D. Embley

(as they do), ListReader would select the first one, “Agnes, 25 Sept. 1653.” in the
first cycle of active sampling, because the predicted ROI of labeling this text is
(10 *x 3 + 9 % 3)/10 = 5.7, while the predicted ROI of labeling the best alternative
(“Steel, John, in Peockland, par. of Paisley, and Betbiah”)is (22x%2)/22 = 2.

When one HMM state receives a user-supplied label, all states sharing the same se-
mantic ID receive the same final label. This minimizes the labeling effort during active
sampling. Therefore, the counts on which the query policy is based are aggregates of
matches for all states sharing a semantic ID.

Active sampling is impactful from the very first query and improves recall nearly
monotonically as it does not back-track or reverse labeling decisions from one cycle
to the next. Compared with typical active learning [Settles 2012], it is not necessary
for ListReader to induce an intermediate model from labeled data before it can be-
come effective at issuing queries. This would be true, even if ListReader did update
the HMM during active learning cycles, although it would necessitate ListReader hav-
ing to apply the HMM again on every cycle, which currently it avoids. Furthermore,
ListReader need not know all the labels at the time of the first query. Indeed, it starts
active sampling without knowing any labels. The query policy is similar to processes
of novelty detection [Marsland 2003|| in that it identifies new structures for which a
label is most likely unknown. Furthermore, the wrapper can be induced for complete
records regardless of how much the user annotates or wants extracted, and ListReader
is not dependent on the user to identify record- or field-delimiters nor to label any field
the user does not want to be extracted.

4.2. Mapping Data to Ontology

Having completed the HMM wrapper, including user-supplied labels, ListReader ap-
plies the HMM using the Viterbi algorithm to compute the most probable sequence of
state IDs for each token in each page, translates the syntactic IDs into user-supplied
labels for each token, and then translates labeled text strings into predicates that
it inserts into the ontology (excluding tokens labeled as “NonList”. The entire flow
from HTML form and text to ontology takes a few steps, as we now explain. To auto-
mate much of this process, we have established formal mappings among three types
of knowledge representation: (1) HTML forms (e.g. Figure [1), (2) ontology structure
(e.g. Figure [2), and (3) in-line labeled text (e.g. Figure [3). This effectively reduces the
ontology population problem to a sequence labeling problem, and in turn the sequence
labeling problem to a form-construction and form-filling task, a process more familiar
to most users than either sequence labeling or ontology population.

The mapping begins with the user-constructed HTML form. The structure of the
form is a tree of nested, labeled form fields. The names of some of the form fields may be
the same, in which case they will map to the same object set in the resulting ontology.
The leaves of the tree of form fields are lexical text-entry fields into which the user
inserts field text from the page. ListReader maps form fields to object sets (concepts
or unary predicates) and uses the nesting of one field inside another to produce a
relationship set (n-ary predicates n > 1) between the corresponding object sets. The
root of the tree represents the primary object set, i.e. the topic of a record in a list, for
example a person in Figure

ListReader maps the empty HTML form to an ontology schema that may contain a
number of expressive constructs including any of the following. (1) textual vs. abstract
entities (e.g. GivenName(“John”) vs. KilbarchanPerson(Person;) in Figure |[1| where
Person; is an object identifier); (2) 1-many relationships in addition to many-1 rela-
tionships so that a single object can relate to many associated entities or only one (e.g.
a KilbarchanPerson object in Figure |2|can relate to several Parishs but only one Chris-
teningDate—the arrowhead in the diagram on ChristeningDate designating functional,

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:19

only one, and the absence of an arrowhead on Parish designating non-functional, al-
lowing many); (3) n-ary relationships among two or more entities instead of strictly
binary relationships; (4) ontology graphs with arbitrary path lengths from the root in-
stead of strictly unit-length as in named entity recognition or data slot filling (e.g. Kil-
barchanPerson.Spouse.MarriageDate.Day in Figure [2); and (5) concept categorization
hierarchies, including, in particular, role designations. This expressiveness provides
for the rich kinds of fact assertions we wish to extract in our application.

When the user fills in the HMTL form during each iteration of active sampling,
ListReader maps the text of the whole page plus the filled-in form to an in-line labeled
text format for the page. Figure |3| shows an example of just one labeled portion of a
page. Labels indicate a path from the root (primary object of a record) to a leaf node
(a lexical field of that record) by naming all the object sets (form field names) in the
path using a dot-separated list of object set names. Additional notation distinguishes
between predicates of different arity and cardinality and will include the names of
additional object sets that participate in the relationship in parentheses (since a single
path in a tree would normally name only the object sets in binary relationships).

When receiving labeled text from the form UlI, ListReader first tokenizes the in-line
labeled text of the page, attaches the tag labels to each token, and associates each la-
bel with a corresponding HMM syntactic ID (the one that matched the token during
the first application of the HMM). During the second (also the last) application of the
HMM after active sampling is complete, ListReader produces the same kind of in-line
labeled text of a page from the completed HMM wrapper applied to the whole page
and translates the labeled text into predicates. This is done by splitting the token la-
bels into object set names and instantiating objects for each new object set name and
relationship predicates for each dot-separated set of object set names. The text string
of the each field is instantiated as a lexical object. Object sets with the same name
are instantiated as the same object within a given record unless the object set name
is subscripted, with the effect that all objects instantiated for a record are tied by re-
lationships back to the same primary object. Record delimiter tags that surround a
complete record string determine which fields belong to the same record. Any remain-
ing unlabeled text (text labeled as “NonList”) produces no output.

5. EVALUATION

This section evaluates ListReader on two books, the Shaver-Dougherty Genealogy
and the Kilbarchan Parish Register, and compares its performance to two baselines,
an implementation of the conditional random field (CRF) and a previous version of
ListReader that induced regular expression wrappers instead of HMMs. The previ-
ous version of ListReader is similar to the current version in other respects, except
that it created regex wrappers for every pattern discovered during grammar induction
whereas the newer version is selective in which record and field group templates make
it into the final HMM wrapper, and the regex wrappers are brittle whereas the HMM
wrappers are not so that regex wrappers only match text identically whereas HMM
wrappers match text with a degree of variation allowed.

Below, we describe the data (books) we used to evaluate ListReader in Subsec-
tion We explain the experimental procedure comparing ListReader’s performance
with the performance of the CRF in Subsection We give the metrics we used in
Subsection [5.3] and the results of the evaluation in Subsection which includes a
statistically significant improvement in F-measure as a function of labeling cost.

5.1. Data

General wrapper induction for lists in noisy OCR text is a novel application with no
standard evaluation data available and no directly comparable approaches other than

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:20 T. Packer and D. Embley

our own previous work. We produced development and evaluation data for the current
research from three separate family history booksE]

We developed ListReader almost entirely using the text of the The Ely Ancestry
[Beach et al. 1902] and Shaver-Dougherty Genealogy [[Shaffer 1997]|. The Ely Ancestry
contains 830 pages and 572,645 word tokens and Shaver-Dougherty Genealogy con-
tains 498 pages and 468,919 words. We used Shaver-Dougherty Genealogy and three
pages of the Kilbarchan Parish Register [Grant 1912] containing 6013 words as our
evaluation data. The Kilbarchan Parish Register would be considered a blind test ex-
cept for our recognizing the need to not conflate lower-case words for this kind of book.
We have added this option as an input parameter that is easy to set after quickly in-
specting the input document. We chose the two test books to represent larger and more
complex text on the one hand using the Shaver-Dougherty Genealogy and smaller and
simpler text on the other using the Kilbarchan Parish Register.

The Kilbarchan Parish Register is a book composed mostly of a list of marriages and
sub-lists of children under each marriage. The three pages we used as our test set are
shown in the Appendix.

To label the text, we built a form in the ListReader web interface, like the one on
the left side of Figure|l|that contains all the information about a person visible in the
lists of selected pages. Using the tool, we selected and labeled all the field strings in
68 pages from Shaver-Dougherty Genealogy and 3 pages from the Kilbarchan Parish
Register. We ran the unsupervised wrapper induction on the text of the labeled pages.
Grammar induction did not use the labels, but active sampling used a small number
of them. All of the remaining labels were used as ground truth for evaluation. The
web form tool generated and populated the corresponding ontologies which we used
as the source of labeled text. The annotated text from the 68 pages of the Shaver-
Dougherty Genealogy have the following statistics: 14,314 labeled word tokens, 13,748
labeled field instances, 2,516 record instances, and 46 field types. Figure [12|shows the
ontology corresponding to those 46 field labels. The annotated text from the 3 pages of
the Kilbarchan Parish Register have the following statistics: 852 labeled word tokens,
768 labeled field instances, 165 record instances, and 12 field types. Figure |2| shows
the ontology corresponding to those 12 field labels.

5.2. CRF Comparison System

We believe the performance of the supervised Conditional Random Field (CRF) serves
as a good baseline or reference point for interpreting the performance of ListReader.
The CRF implementation we applied is from the Mallet library [McCallum 2002]. To
ensure a strong baseline, we performed feature engineering work to select an appro-
priate set of word token features that allowed the CRF to perform well on development
test data. The features we applied to each word include the case-sensitive text of the
word, and the following dictionary/regex boolean attributes: given name dictionary
(8,428 instances), surname dictionary (142,030 instances), names of months (25 vari-
ations), numeral regular expression, roman numeral regular expression, and name
initial regular expression (a capital letter followed by a period). The name dictionaries
are large and have good coverage of the names in the documents. We also distributed
the full set of word features to the immediate left and right neighbors of each word
token (after appending a “left neighbor” or “right neighbor” designation to the feature
value) to provide the CRF with contextual clues. (Using a larger neighbor window than
just right and left neighbor did not improve its performance.) These features consti-
tute a much greater amount of knowledge engineering than we allow for ListReader.
We simulated active learning of a CRF using a random sampling strategy—considered

6We will make all text and annotations available to others upon request.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:21

T poTTTTTTTTTTTT P TTTTTTT I
i Birthrder i i Givenmame i ! Surname |
pTTTTTTTTTTTTTTS T !
| PageNumber | Ancestar Spouse » [ame / Day |
| Month |
S o Birth o Date [oo !
| BirthOrder ‘m.__| D ear |
i ! ShaverPersan ! :
N
o
e ity

Death = Flace \r—————————,
i County i

Fig. 12. ShaverPerson Ontology. ShaverPerson is the primary object set.

to be a hard baseline to beat in active learning research, especially early in the learn-
ing process [Cawley 2011]].

Each time we executed the CRF, we trained it on a random sample of n lines of
text sampled throughout the hand-labeled portion of the corpus. Then we executed
the trained CRF on all remaining hand-labeled text. We varied the value of n from
1 to 10 to fill in a complete learning curve. We ran the CRF 7,300 for the Shaver-
Dougherty Genealogy and 4,000 times for the Kilbarchan Parish Register and then
computed the average y value (precision, recall, or F-measure) for each x value (cost)
along the learning curve and generated a locally weighted regression curve from all
7,300 (or 4,000) points.

5.3. Experimental Procedure and Metrics

To test the three extractors (two versions of ListReader and the CRF) we wrote an
evaluation system that automatically executes active sampling by each extractor, sim-
ulates manual labeling, and completes the active sampling cycle by reading in labels
for ListReader and by retraining and re-executing the CRF. The extractors incur costs
during the labeling phase of each evaluation run which includes all active sampling cy-
cles up to a predetermined budget. To simulate active sampling, the evaluation system
takes a query from the extractor and the manually annotated portion of the corpus
and then returns just the labels for the text specified by the query in the same way
the ListReader user interface would have. In this way, we were able to easily simulate
many active sampling cycles within many evaluation runs for each extractor.

For purposes of comparison, we computed the accuracy and cost for each evalua-
tion run. We measured cost as the number of field labels provided during the labeling
phase, a count that correlates well with the amount of time it would take a human
user to provide the labels requested by active sampling. The CRF sometimes asks the
user to label prose text but ListReader never does. To be consistent in measuring cost,

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:22 T. Packer and D. Embley

we do not count these labelings against the cost for the CRF. This means that the CRF
has a slight advantage as it receives training data for negative examples (prose text)
without affecting its measured cost. During the test phase, the evaluation system mea-
sured the accuracy of the extractors only on tokens of text not labeled for training or
active sampling.

Since our aim is to develop a system that accurately extracts information at a low
cost to the user, our evaluation centers on a standard metric in active learning re-
search that combines both accuracy and cost into a single measurement: Area under
the Learning Curve (ALC) [Cawley 2011]. The rationale is that there is no single, fixed
level of cost that is right for all information extraction projects. Therefore, the ALC
metric gives an average learning accuracy over many possible budgets. We primarily
use F-measure as our measure of extraction accuracy, although we also report ALC for

precision and recall curves. Precision (p) is defined to be tpﬁffp and recall (r) is defined

to be # where #p means true positive, fp means false positive, and fn means false
negative field strings. F-measure (F}) is the harmonic mean of precision and recall, or

2PL ALC s [f(c)dc, wehre ¢ is the number of user-labeled fields (cost) and f(c)

can be precision, recall, or F-measure as a function of cost. min and max refer to the
smallest and largest numbers of hand-labeled fields in the learning curve. The curve
of interest for an extractor is the set of an extractor’s accuracies plotted as a function
of their respective costs. The ALC is the percentage of the area, between 0% and 100%
accuracy, that is covered by the extractor’s accuracy curve. ALC is equivalent to taking
the mean of the accuracy metric at all points along the curve over the cost domain—an
integral that is generally computed for discrete values using the Trapezoidal Rulem
which is how we compute it.

5.4. Results

From Tables[[land[[T| we see that the ALC of F-measure for ListReader (HMM) is signif-
icantly higher than that of ListReader (Regex) for both books, which in turn is signif-
icantly higher than that of the CRF. ListReader (HMM) consistently outperforms the
CRF in terms of F-measure over both learning curves. ListReader (Regex) consistently
produced very few false positives (precision errors). The improvement of ListReader
(HMM) over (Regex) is due to improved recall. The initial HMM is capable of recogniz-
ing up to 50% more list records in the input text document than the phrase structure
grammar from which it is built, despite the fact that HMM construction eliminates
between about 50% and 90% of the patterns found in the second suffix tree that sat-
isfy our record selection constriants while the Regex preserves all of them. ListReader
(HMM) does not produce as high a precision, but does improve on recall. Recall is
improved because the HMM matches more records with fewer record templates on ac-
count of its flexible probabilistic structure, allowing the user to provide fewer labels to
cover more information (allowing the HMM to reach the end of the long tail of record
templates faster).

From Table [IT] we see that in the Kilbarchan Parish Register, ListReader (HMM)
outperforms ListReader (Regex) and the CRF in all three metrics except in the case of
Regex’s precision, but that difference is not statistically significant as it is in Shaver-
Dougherty Genealogy.

Figures and [15] show plots of the F-measure, precision, and recall learn-
ing curves for ListReader and the CRF on the Shaver-Dougherty Genealogy and Fig-
ures and [18 show plots of the F-measure, precision, and recall learning curves
for ListReader and the CRF on the Kilbarchan Parish Register. These plots provide

7See http:/en.wikipedia.org/wiki/Trapezoidal rule

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

http://en.wikipedia.org/wiki/Trapezoidal_rule

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:23

Table I. ALC of Precision, Recall, F-measure for the
Shaver-Dougherty Genealogy (%)

Prec. Rec. Fy

CRF 50.63 3395 38.82
ListReader (Regex) 97.60 32.55 48.78
ListReader (HMM) 69.59 42.84 52.54

All differences are statistically significant at p < 0.05
using an unpaired ¢ test except for the difference in
Recall of ListReader (Regex) and the CRF.

Table Il. ALC of Precision, Recall, F-measure for the Kil-
barchan Parish Register (%)

Prec. Rec. P

CRF 68.86 63.02 65.47
ListReader (Regex) 96.34 54.30 67.92
ListReader (HMM) 91.38 72.74 79.19

All differences are statistically significant at p < 0.05
using an unpaired ¢ test except for the difference in
Precision of the two ListReaders and the difference in
Recall of ListReader (Regex) and the CRF.

F-measure vs. Cost for ListReader and CRF

0.7

Test F-measure

—
o T & —e— ListReader (HMM)
—&— ListReader (Regex)
o A CRF (mean F-measure)
P e —— CREF (regression curve)

0 20 40 60 80
Hand Labeled Fields

Fig. 13. F-measure Learning Curves for the Shaver-Dougherty Genealogy

detail behind the ALC metrics in Tables [I| and [II} Visually, the comparative learning
curves indicate that ListReader (Regex or HMM) outperforms the CRF fairly consis-
tently over varying numbers of field labels for all three metrics. Tables [I| and [I1| tells
us that the differences among the three extractors are statistically significant for most
pairwise comparisons at p < 0.05 using an unpaired ¢ test. The three pairs that are not
significant are the ones comparing the recall of ListReader (Regex) and the CRF on
both the Shaver-Dougherty Genealogy and the Kilbarchan Parish Register and compar-
ing the precision of the two versions of ListReader on the Kilbarchan Parish Register.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:24 T. Packer and D. Embley

Precision vs. Cost for ListReader and CRF

1.0

Test Precision

—o— ListReader (HMM)
—&— ListReader (Regex)

A CRF (mean Precision)
g B i i —— CREF (regression curve)
T T T T
0 20 40 60 80
Hand Labeled Fields
Fig. 14. Precision Learning Curves for the Shaver-Dougherty Genealogy
Recall vs. Cost for ListReader and CRF

~

e e e
©

P T e e PR

Test Recall

—o— ListReader (HMM)
—8— ListReader (Regex)

A CRF (mean Recall)
—— CRF (regression curve)
T T T T

0 20 40 60 80
Hand Labeled Fields

Fig. 15. Recall Learning Curves for the Shaver-Dougherty Genealogy

The spike in the CRF’s recall at Cost = 4 in Figure is because the majority of
records in the book are child records which contain 4 fields. When the CRF is lucky
enough to train on one of these records, it usually does well extracting all the other
child records.

Comparing the sizes of the extractors, ListReader (Regex) generated a regular ex-
pression that was 319,096 characters long for the Shaver-Dougherty Genealogy match-

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:25

F-measure vs. Cost for ListReader and CRF

Test F-measure

—e— ListReader (HMM)
—&— ListReader (Regex)

A CRF (mean F-measure)
o)

D I i —— CREF (regression curve)
T T T T

10 20 30 40
Hand Labeled Fields

Fig. 16. F-measure Learning Curves for the Kilbarchan Parish Register

Precision vs. Cost for ListReader and CRF

Test Precision

—e— ListReader (HMM)
—8— ListReader (Regex)
° A CRF (mean Precision)
D I —— CREF (regression curve)

10 20 30 40
Hand Labeled Fields

Fig. 17. Precision Learning Curves for the Kilbarchan Parish Register

ing 3,334 records, and one that was 54,600 characters long for the Kilbarchan Parish
Register matching 268 records. ListReader (HMM) generated an HMM with 2,015
states for the Shaver-Dougherty Genealogy matching 3,023 records and an HMM
with 255 states for the Kilbarchan Parish Register matching 162 records. The HMM
matches fewer records than the Regex because it is built from a fraction of the avail-
able record parse trees. The key to its improved recall, again, is that each HMM record

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:26 T. Packer and D. Embley

Recall vs. Cost for ListReader and CRF

1.0

S E R R R R R R R R R R R R N

Test Recall

ListReader (HMM)
ListReader (Regex)

A CRF (mean Recall)
--- —— CREF (regression curve)

10 20 30 40
Hand Labeled Fields

Fig. 18. Recall Learning Curves for the Kilbarchan Parish Register

template can match more records than each Regex template. Otherwise, the HMM
should match less than half of the number of records that the Regex does. CRF had
353 features and 28 states for the Shaver-Dougherty Genealogy and 191 features and
15 states for the Kilbarchan Parish Register. A smaller number of states probably con-
tributed to it faster running time and lower accuracy compared to the HMM.

Comparing the running time of the extractors, time and space complexity is linear
in terms of the size of the input text, but unlike the Regex version, the HMM version
is quadratic in the length of the record and the size of the label alphabet. The typical
implementation of the training phase of a linear chain CRF is quadratic in both the
sizes of the input text and the label set [Cohn 2007], [Guo et al. 2008]. We ran all
extractors on a desktop computer with JDK 1.7, a 2.39 GHz processor, and 3.25 GB of
RAM. ListReader (Regex) took 26 seconds to run on the Kilbarchan Parish Register and
2 minutes 47 seconds to run on the Shaver-Dougherty Genealogy. ListReader (HMM)
took 2 minutes 11 seconds to run on the Kilbarchan Parish Register and 59 minutes
18 seconds to run on Shaver-Dougherty Genealogy. CRF took 52 seconds on Shaver-
Dougherty Genealogy and 9 seconds on Kilbarchan Parish Register.

6. DISCUSSION AND FUTURE WORK

In our error analysis we see that ListReader (HMM) produced both precision and recall
errors (false positives and false negatives). The most important errors include missing
whole records or large segments of records belonging to undiscovered templates. For
example, on Page 31 of the Kilbarchan Parish Register, ListReader misses the first
part of the third record, namely “Cordoner, James, par., and Florence Landiss, par.
of Paisley”, because the “par-and” delimiter occurs in only one record cluster and is
therefore not recognized as a field group marker in our three-page test set. This issue
contributes mostly to errors in recall as it causes ListReader to completely miss many
fields. It also contributes to a few errors of precision as it causes ListReader to propose
a record boundary in the wrong place (just past the missing information).

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:27

ListReader (HMM) as compared to ListReader (Regex) does relatively well in recall
for the same reason it does relatively poorly in precision—by matching more text. By
design, it uses only one “feature” per word token, and that feature is easily derived
from the text, itself, without large knowledge resources. This is in contrast to our im-
plementation of the CRF which, instead of removing information as our HMM does, the
feature extractors add information. This makes the comparison CRF a less scalable op-
tion in terms of development cost over multiple domains or text genres compared to
our HMM whose main operating principle could be stated as “carefully throwing out
just the right information”. The technique of using semantic or lexical resources is
complicated in our work by the common OCR errors that make dictionary matching
more difficult.

On the other hand, adding semantic constraints to the HMM would likely help pre-
vent some of its precision errors, such as labeling an “m.” as a surname at the be-
ginning of a line that otherwise matched a known record pattern. Future work should
investigate adding such semantic features or constraints to ListReader in a way that is
cost-effective, for example using self-supervision, e.g. a bootstrapping mechanism that
learns its own semantic categories by combining multiple sources of evidence in an ex-
panded set of input text. We could also train ListReader from examples labeled auto-
matically by other extractors, from wrappers trained on other books, or from examples
that match a database of known facts such as the work in [Dalvi et al. 2010], with
the added costs associated with those resources. Since the final mapping from HMM
states to labels and predicates is the only step currently needing human labeled exam-
ples, adding a technique that utilizes automatically-labeled examples would make our
approach completely unsupervised and very scalable in terms of supervision cost.

The HMM is currently limited in how it utilizes user feedback. For example, the
generic insertion states may match many different textual patterns that will not nec-
essarily have the same final labels. Future work should change ListReader so it creates
a sub-HMM for each pattern matched by a given insertion state.

7. RELATED WORK

We now compare our current work with other research having a strong component of
unsupervised learning in the context of information extraction applied to lists. These
works are almost universally applied to clean text, and most of them are applied to
structured HMTL documents and would therefore not perform well on noisy OCR text
that lacks HTML structure.

There are many wrapper induction projects applied to web pages that have a strong
element of unsupervised machine learning, such as [Kushmerick 1997], [Ashish and
Knoblock 1997], [Dalvi et al. 2010], and [Lerman et al. 2001]]. These and other related
research projects do not solve our targeted problem. Most do not address lists, specif-
ically, and none address plain OCRed text. As Gupta and Sarawagi say ([Gupta and
Sarawagi 2009]), the vast majority of methods of extraction of records from unstruc-
tured lists assume the presence of labeled unstructured records for training and a few
assume a large database of structured records. None of these projects address all of
the steps necessary to complete the process of the current research such as list finding,
record segmentation, field extraction, and mapping to an expressive ontology.

A common and mathematically motivated means of unsupervised HMM induction
is the Baum-Welch algorithm, an instance of the iterative Expectation-Maximization
algorithm (EM). Baum-Welch finds the MLE parameters of an HMM in either unsu-
pervised or semi-supervised learning scenarios. In either case, text without manually-
provided labels are assigned those labels that are most probable given the current
HMM parameters, and those HMM parameters are in turn set from the most prob-
able label distributions given the parameters set on the previous iteration. Grenager

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:28 T. Packer and D. Embley

et al. ([Grenager et al. 2005]) use EM to train an HMM in both unsupervised and
semi-supervised scenarios to extract fields from plain text records, including bibli-
ographic citations and classified advertisements. They supplement EM with a few
genre-dependent biases to prefer diagonal (self) transitions and recognize boundary
tokens (punctuations). They report that the accuracy of the unsupervised approach
starts low but is improved with the added biases. Furthermore, before adding the bi-
ases, their semi-supervised approach performed worse than supervised learning given
the same number of hand-labeled examples, according to our reproduction of their
work. The fields they extract are coarse-grained, such that a sequence of author names
in a bibliographic citation is considered one homogeneous segment. Our work differs
from theirs in that we set the HMM parameters from record structure proposed by a
separate phrase grammar that we induce automatically and separately (without any
connection to the HMM). We also extract more fine-grained information, e.g. individ-
ual person names and parts of those names, to improve the richness of the resulting
data Therefore, their self-transition bias would not be appropriate in our work. Also,
Grenager et al. assume that list records have been found and extracted before their
process begins, which we do not assume for ours. Unlike the semi-supervised part of
their work, we do not perform any training of the HMM’s structure or parameters
using hand labeled data.

Elmeleegy et al. (|[Elmeleegy et al. 2009]) present an algorithm to automatically con-
vert a source HTML list into a table, with no hand-labeled training data and no out-
put labeling of fields or columns. They segment fields in records automatically using
the following sources of information to predict which words should be split and which
should remain together: (1) sets of “data type” regular expressions including common
numeric entity patterns, (2) an n-gram language model producing internal cohesive-
ness and external in-cohesiveness scores, and (3) a thresholded count of the number
of cells matched in a corpus of extracted table cells. They combine these sources of
evidence using a weighted average. They also correct errors in the first pass of seg-
mentation by counting fields, forcing all records to be segmented into no more than the
most common number of fields, and aligning shorter records using a modification of the
Needleman-Wunsch algorithm. Like Grenager et al, they perform field segmentation
and alignment but do not appear to perform list discovery or record segmentation as
we do. They also do not label fields or fully extract information, and they target HTML
lists which may contain additional formatting clues not present in our OCR text. Un-
like us, they assume that the order of fields does not change between list entries. Un-
supervised techniques like theirs target Web-scale applications and they also rely on
a Web-scale corpus. Therefore, they avoid hand-labeling of training data. Their source
table data is a massive collection of tables from the Web. Using massive amounts of
Web data is a common technique in some the recent web wrapper papers that rely on
the sheer size of the web as a key resource for their system. We do not use Web-scale
data resources. They assume there are not many optional fields in their input data
which is not true of our data. Forcing the number of fields/columns to equal the mode
of the numbers of fields per row discovered in the first pass will not work correctly for
many lists because there can be optional fields which do not often occur.

Gupta and Sarawagi ([Gupta and Sarawagi 2009]) convert HTML source lists on
the web into tables that match and augment an incomplete user-provided table. Their
unsupervised approach first ranks lists with a Lucene query, based on the words in

8The benefits of a fine-grained ontology include the following: (1) it can allow an ontology user to evolve the
schema without either retraining the extraction model or manually restructuring individual fields within
the resulting database and (2) it can improve the accuracy and versatility of downstream processes such as
querying, record linkage, and ontology mapping.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:29

the user-provided table. Second, they label candidate fields in the source list records
as training data by marking text in the list records that match text in the columns
of the user-provided table. Third, they train a separate CRF for each source list using
the automatically labeled records of the list and then apply the CRF to the rest of
the records of that list. This effectively produces tables from the lists. They finally
merge and rank the rows of the resulting tables and returns the top ranked rows of
the final table to the user. Rows that repeat often in source lists and which are given
high confidence scores by the CRF are ranked high. This work is similar to ours in
that they train a statistical sequence model on the text of lists labeled by a separate,
automatic process. It differs from ours in that their source text (web pages) have no
OCR errors and have more structure making it easier to find lists, segment records,
and identify fields. They do not need to complete a mapping from text fields to ontology
predicates, they only need to align user-provided fields with fields in a list record. They
do not seem to (or need to) segment records in lists before extracting fields. They have
a much larger source of potential lists than we do and only need to find some with high
accuracy, not all of them. In our project, we evaluate against an ideal of extracting all
list records from a book. This work, as well as the other two, do not extract richly- and
explicitly-structured data suitable for ontology population as we do.

ListReader solves the problem of extracting information from OCRed lists for ontol-
ogy population. It requires little effort to apply to a new book, is specialized to recognize
and model list structures, and is tolerant of OCR errors.

8. CONCLUSIONS

ListReader has demonstrated a novel way to set the structure and parameters of
an HMM automatically for the task of populating an expressive conceptual model
with information from lists in OCRed text. It has also demonstrated a way to min-
imize the work necessary for completing the HMM wrapper by manually associ-
ating automatically-selected HMM states with ontology predicates. ListReader per-
forms well in terms of accuracy, user labeling cost, time and space complexity, and
required knowledge engineering—outperforming the comparison systems in terms of
F-measure as a function of labeling cost with statistical significance.

APPENDIX A: Example Pages

We now show an example page from The Ely Ancestry in Figure from the Shaver-
Dougherty Genealogy in Figure and three pages from the Kilbarchan Parish Regis-

ter in Figures and

ACKNOWLEDGMENTS

We would like to thank FamilySearch.org for supplying data from its scanned book collection and for their
encouragement in this project. We would also like to thank the members of the BYU Data Extraction Re-
search Group, and particularly Stephen W. Liddle, for coding the Annotator used for ground truthing and
for interactively supplying labels for ListReader and for their support in supplying additional tools and
resources for completing our ListReader project.

REFERENCES

N. Ashish and C.A. Knoblock. 1997. Semi-automatic wrapper generation for Internet information sources.
In Proceedings of the Second IFCIS International Conference on Cooperative Information Systems, 1997.
COOPIS ’97. 160-169.

Moses S. Beach, William Ely, and G. B. Vanderpoel. 1902. The Ely Ancestry. The Calumet Press, New York,
New York, USA.

Gavin C. Cawley. 2011. Baseline Methods for Active Learning. Journal of Machine Learning Research-
Proceedings Track 16 (2011), 47-57. http://jmlr.org/proceedings/papers/v16/cawleylla/cawleylla.pdf

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

http://jmlr.org/proceedings/papers/v16/cawley11a/cawley11a.pdf

00:30 T. Packer and D. Embley

Fig. 19. Page from The Ely Ancestry, Page 367

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:31

SNIDER FAMILY 367

__1) Mary Ann--b. ca 1840 in Doddridge Co.--mar. Cox. Samuel

in Doddrfidge Co.--nr of d. or ch. (she never moved to Roane Co.)
2) William 28-2

T 3) Alfred 28-3

4] Israel 28-4

__5] Mandeville 28:5

__6) Eliza 28-6

__T7) Louise 28-7

__8) Leommius James--b. 13 Sep 1857 at Meathouse (Doddridge

MR)--nr of mar., d. or ch. (in 1880, the census inumerator noted

that L. James was an idiot)

__9) Edward Tunstill 28-9

28-2 Snider, William--h.13 Jan 1841 in Doddridge Co.--mar. 1)
Lowe. Elizabeth 9 Apr [868 (Roane MR): 2) Ryan, Nancy J. 21 Jul
1922 (Roane MR]}--d. 6 May 1932 on Big Lick. Roane Co.--bur.
Snider Cem.--ch. 10:

__1) Florence E.--b. 31 Jan 1869 at Buffalo Run. Roane Co.--
mar. Daugherty. William Henry 26 Mar 1891 (Roane MR)--d. 9 Dec
1940 at Pad, Roane Co.--ch 11: (see ID 24-4-3 ; Chapter 4)

__2) Charles T. 28-2-2

__3) William Albert 28-2-3

__4) Lloyd Nathaniet 28-2-4

__5) John Everett C. 28-2-5

__6) Ida B.--b. ca Mar I877--nr of mar ., d, or ch.

__7) Daniel W. 28-2-7

_ B) Ciendennen--b. | Aug 1881 (Roane BR)--mar. Hersman,
Lonia May 19 Nov 1903 (Roane MR)--nr of d. or ch.

__9) Louise Della --b. ca Mar 1883--mar. Boley. David D. 24 Nov
1909 (Roane MR}--nr of d. or ch.

_10) D, B. (m) stillborn--1 Jul 1895 at Walton (Roane BR}

28-3 Snider, Alfred--b. ca 1843 in Doddridge Co.--mar. 1)
McCluster, Mahulda: 2) Radar. Mary C. 17 Feb 1898 (Roane MR)--
d. nr--ch. 12 (per 1910 Census record):

__ 1) Mary E.--b. 20 Aug 1867 {Roane BR)--mar. nr--d. 10 Mar
1983--ch. nr

_ 2] John F.--b. 2 Oct 1869 (Roane' BR):--mar. nf--d. 17 Jan
1937--bur. Snodgrass Cem.--ch. nr

_ 3) Robert E. Lee--b. 8 Mar 1871 (Roane BR}--mar. nr--d. 31
May 1906--ch. nr.

__4) Susan A.--b. 12 Feb 1872 (Roane BR)--mar. nr--d. 15 Dec
1892--ch. nr

_5} Lucy E. {or Hulda)--b, 20 Apr 1873 (Roane BRJ--mar.
Vineyard, Wm. H. 4 Apr 1897 (Roane MR)--nr of d. or ch.

__6) Martha E.--b, 28 Feb 1877 (Roane BR}--nr of mar., d. or ch.
__7) James E.--b. ca 1878--nr of mar.. d. or ch.

8) Fannie H.--b. 28 Feb 1880 (Roane BR)--nr of mar., d. or ch.

FE—,

Fig. 20. Page from Shaver-Dougherty Genealogy, Page 154

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:32 T. Packer and D. Embley

Fig. 21. Page from Kilbarchan Parish Register, Page 31

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:33

Fig. 22. Page from Kilbarchan Parish Register, Page 32

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:34 T. Packer and D. Embley

Fig. 23. Page from Kilbarchan Parish Register, Page 96

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:35

Trevor A. Cohn. 2007. Scaling conditional random fields for natural language processing. Ph.D. Dissertation.
Citeseer. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.1265&rep=repl&type=pdf

Nilesh Dalvi, Ravi Kumar, and Mohamed Soliman. 2010. Automatic Wrappers for Large Scale Web Extrac-
tion. Proceedings of the VLDB Endowment 4 (2010), 219-230.

Charles Elkan and Keith Noto. 2008. Learning Classifiers from Only Positive and Unlabeled Data. In Pro-
ceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’08). ACM, New York, NY, USA, 213-220. D0 : http://dx.doi.org/10.1145/1401890.1401920

Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. 2009. Harvesting relational tables from lists on the
web. Proceedings of the VLDB Endowment 2 (2009), 1078-1089.

Francis J. Grant (Ed.). 1912. Index to the Register of Marriages and Baptisms in the Parish of Kilbarchan,
1649 - 1772. J. Skinner and Company, Ltd., Edinburgh, Scotland.

Trond Grenager, Dan Klein, and Christopher D. Manning. 2005. Unsupervised Learning of Field Segmenta-
tion Models for Information Extraction. In Proceedings of the Forty-third Annual Meeting on Association
for Computational Linguistics. Ann Arbor, Michigan, USA, 371-378.

Yong Zhen Guo, Kotagiri Ramamohanarao, and Laurence AF Park. 2008. Error Correcting Output Coding-
Based Conditional Random Fields for Web Page Prediction. In Web Intelligence and Intelligent Agent
Technology, 2008. WI-IAT08. IEEE | WIC /ACM International Conference on, Vol. 1. IEEE, 743-746.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4740540

Rahul Gupta and Sunita Sarawagi. 2009. Answering table augmentation queries from unstructured lists on
the web. Proceedings of the VLDB Endowment 2 (2009), 289-300.

Robbie A. Haertel, Eric K. Ringger, James L. Carroll, and Kevin D. Seppi. 2008. Return on Investment
for Active Learning. In Proceedings of the Neural Information Processing Systems Workshop on Cost
Sensitive Learning.

P. Bryan Heidorn and Qin Wei. 2008. Automatic Metadata Extraction from Museum Specimen Labels. In
Proceedings of the 2008 International Conference on Dublin Core and Metadata Applications. Berlin,
Germany, 57-68.

Weiming Hu, Wei Hu, Nianhua Xie, and S. Maybank. 2009. Unsupervised Active Learning Based on Hi-
erarchical Graph-Theoretic Clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 39, 5 (Oct. 2009), 1147-1161. DOI : http://dx.doi.org/10.1109/TSMCB.2009.2013197

Nicholas Kushmerick. 1997. Wrapper induction for information extraction. Ph.D. Dissertation. University of
Washington, Seattle, Washington, USA.

K. Lerman, C. Knoblock, and S. Minton. 2001. Automatic data extraction from lists and tables in web
sources. In IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, Vol. 98.

Y. Li, J. Jiang, H.L. Chieu, and K.M.A. Chai. 2011. Extracting Relation Descriptors with Conditional Ran-
dom Fields. Proceedings of the 5th International Joint Conference on Natural Language Processing
(2011), 392-400.

Stephen Marsland. 2003. Novelty detection in learning systems. Neural computing surveys 3, 2 (2003), 157—
195. http://seat.massey.ac.nz/personal/s.r.marsland/pubs/ncs.pdf

Andrew Kachites McCallum. 2002. MALLET: A Machine Learning for Language Toolkit. (2002). http://
mallet.cs.umass.edu/

Burr Settles. 2012. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 6, 1
(June 2012), 1-114. DOI : http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018

Harvey E. Shaffer. 1997. Shaver / Shafer and Dougherty /| Daughery Families also Kiser, Snider and Cottrell,
Ferrell, Hively and Lowe Families. Gateway Press, Inc., Baltimore, MD.

E. Ukkonen. 1995. On-line construction of suffix trees. Algorithmica 14, 3 (Sept. 1995), 249-260.
DOI:http:/dx.doi.org/10.1007/BF01206331

Received Month 0000; revised Month 0000; accepted Month 0000

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.1265&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1401890.1401920
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4740540
http://dx.doi.org/10.1109/TSMCB.2009.2013197
http://seat.massey.ac.nz/personal/s.r.marsland/pubs/ncs.pdf
http://mallet.cs.umass.edu/
http://mallet.cs.umass.edu/
http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018
http://dx.doi.org/10.1007/BF01206331

	Introduction
	Unsupervised Pattern Discovery
	Text Conflation
	Record Pattern Search
	Field Group Discovery
	Final Record and Field Group Template Selection

	HMM Construction
	Record-level State Generation
	Record-level Parameter Setting
	Connecting the Pieces

	Final Extraction
	Active Sampling
	Mapping Data to Ontology

	Evaluation
	Data
	CRF Comparison System
	Experimental Procedure and Metrics
	Results

	Discussion and Future Work
	Related Work
	Conclusions

