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Abstract. Much of the information in factual documents is implied, and
thus a reader can therefore only obtain such information by inference.
Automated information-extraction tools cannot directly extract implied
information. FROntIER, the information-extraction tool we present here,
not only extracts stated information but also “reads between the lines”
to obtain implied information. Being based on a formal foundation of
predicate calculus, FROntIER uses inference rules to obtain implied in-
formation. As a result FROntIER can improve the quality of extracted
information by enhancing it with information the document author in-
tended to convey by implication. In a field study, we show that our im-
plementation of FROntIER can extract valuable information obtainable
only by “reading between the lines.”

Keywords: implied fact assertions, inference, information extraction,
object identity resolution, “reading between the lines”.

1 Introduction

Authors of factual documents often convey information by implication and ex-
pect readers to understand implied facts by what is explicitly stated. When
extracting asserted facts automatically from documents, information-extraction
engines typically only extract stated facts and entirely overlook implied facts.
The quality of automated extraction, and thus the quality of automatically pop-
ulated ontologies extracted from factual documents, suffers unless the tools are
able to extract the information that authors intend to convey by implication.

Consider, for example, a page from The Ely Ancestry [1] in Figure 1. The
page contains many dozens of stated facts about families (e.g. basic information
about individuals such as birth and death dates, who was born to which parents,
and who married whom). Suppose now that a reader is interested in querying for
a list of birth names of children whose mother is Abigail McKenzie. There are
only two: Mary Ely McKenzie and Gerard Lathrop McKenzie. As none of these
names even appear on the page, it takes a fair amount of reasoning to answer the
query. We can see that in 1835 Abigail Huntington Lathrop (a female, implied
by the name Abigail) married Donald McKenzie (a male, implied by the name
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Donald) and therefore would be known as Abigail McKenzie (implied by the
social norms of their homeland in the 1800’s). Their children, Mary Ely and
Gerard Lathrop, would likewise have the surname “McKenzie.” For the query,
we also want to be careful that we get the right Mary Ely and Gerard Lathrop—
not the grandmother of Mary Ely McKenzie, whose name is Mary Ely, and not
the grandfather of Gerard Lathrop McKenzie, whose name is Gerard Lathrop.
Neither the gender implying mother and father nor the surnames implied by
cultural conventions are stated and thus must be inferred.

To automate inference, we extract information into a high-quality conceptual
model whose underlying formalism is predicate calculus. We then use standard
reasoning to augment the predicate-based conceptualization with an augmented
high-quality conceptual model that includes reasoned facts based on stated facts.
The inference rules are based on cultural conventions that document authors
expect the reader to understand. Some of these conventions are probabilistic,
such as (1) gender, based on name and (2) same-person-as, based on known
information like parent-child relationships, birth dates, and death dates that
tend to uniquely identify duplicate mentions of a person.

A decade of research has produced many information-extraction engines [2,
3], including our own [4], and several text-reading systems [5–7]. None we know
of, however, provide for inference grounded in reasoning over formal, predicate-
calculus-based conceptual models. We call our proposed extraction and reasoning
engine FROntIER (Fact Recognizer for Ontologies with Inference and Entity
Resolution). FROntIER augments ontology-based extraction engines with

1. standard predicate-calculus-based inference,
2. reasoning based on probabilistic logic, and
3. capabilities to add inferred predicate types to ontologies and populate them.

We present the details of these contributions as follows. In Section 2 we briefly
describe the formal predicate-calculus foundation of linguistically grounded ex-
traction ontologies. Section 3 shows how we add inference rules, and Section 4
shows how we add object-identity resolution based on extracted and inferred
information. Section 5 describes some experimentation with our implementation
of FROntIER. We make concluding remarks in Section 6 and mention future
research opportunities.

2 Extraction Ontologies

An extraction ontology is a linguistically grounded conceptual model. Figure 2
shows the GUI of our Ontology Workbench with the Ontology Editor open,
displaying the conceptual model diagram of an extraction ontology. The Tools
tab is also open, showing access to the tools for linguistically grounding an
extraction ontology.

Formally, an extraction ontology is a 5-tuple (O,R,C, I, L):

O : Object sets—one-place predicates each of whose instance values are either
all lexical, denoted by named dashed-border rectangles in Figure 2, or all
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Fig. 1. Page 419 of The Ely Ancestry.

nonlexical, denoted by solid-border rectangles (e.g. DeathDate is lexical with
values such as “Nov. 4, 1898” and Person is nonlexical with object-identifier
values).

R : Relationship sets—n-place predicates, n ≥ 2, represented by lines connect-
ing two object-set rectangles (e.g. Person–Name in Figure 2) or by diamonds
with connecting lines to three or more object sets (e.g. the quaternary re-



4 J. Park, D.W. Embley, and S.W. Liddle

Fig. 2. The Ontology Editor.

lationship set connecting Person, Spouse, MarriagePlace, and MarriageDate
in Figure 2).

C : Constraints—closed formulas, as implied by the notation (e.g. ∀x(Person(x)
⇒ ∃!y(Person-BirthDate(x, y)))—one of the many functional constraints
denoted by the arrowhead on the range side of the Person-BirthDate re-
lationship set and by a mandatory constraint denoted by the absence of on
optional “o” on the domain side; ∀x(Child(x)⇒ Person(x))—a generaliza-
tion/specialization constraint denoted by a triangle, which may optionally
also specify mutual exclusion among its specialization sets by a “+” symbol
(e.g. mutual exclusion of Son and Daughter object sets in a specialization of
Person), or specify that the generalization set is a union of its specialization
sets (“∪”) or both (“]”) to form a partition among its specializations).

I : Inference rules—logic rules specified over predicates (e.g. Daughter –> Person-
Gender(x, ‘Female’)).

L : Linguistic groundings—text recognizers for populating object and relation-
ship sets and collections of interrelated object and relationship sets as on-
tology snippets as indicated in the tools menu in Figure 2.



Increasing Extracted Information Quality 5

The conceptual foundation for an extraction ontology is a restricted fragment of
first-order logic, but its most distinguishing feature is its linguistic grounding [8],
which turns an ontological specification into an extraction ontology. Each object
set has a data frame [9], which is an abstract data type augmented with lin-
guistic recognizers that specify textual patterns for recognizing instance values.
Relationship sets may also have data-frame recognizers. Recognizers for larger
ontological components are also possible.

We are building an ensemble consisting of a collection of tools to automate
the construction of rules and to directly extract information into the ontolog-
ical structure [10, 11]. FROntIER provides the inference engine and the entity
resolver in the ensemble.

3 Inference

FROntIER uses the Jena reasoner3 to organize facts in conformance to a tar-
get ontology (e.g. the ontology in Figure 2). To use the Jena reasoner, we must
convert ontology object and relationship instances into RDF triples. To conform
with RDF syntactic requirements, we normalize our ontologies as we convert
them. We convert lexical object sets into nonlexicals (RDF classes) with a Value
property and convert n-ary relationship sets (n > 2) into binary relationships
connected to a nonlexical (RDF class) that represents the n-ary relationship
set. As a result, all relationship sets are binary between two RDF classes, and
each lexical object set has a property value associated with its RDF class. Con-
sider for example, the quaternary relationship set in Figure 2. The lexical object
sets MarriageDate and MarriagePlace become RDF classes, respectively with
a MarriageDateValue property and a MarriagePlaceValue property. We then
create an RDF class for PersonSpouseMarriageDateMarriagePlace and form bi-
nary relationships between it and each of the four RDF classes Person, Spouse,
MarriageDate, and MarriagePlace.

Figure 3 gives a sampling of FROntIER inference rules. The rules specify
schema mappings between a source ontology s and a target ontology t, as speci-
fied in the prefix statements in Figure 3. In our example the FamilyTree source
ontology is the same as the target ontology in Figure 2 except that it does not
include the object sets InferredBirthName, InferredMarriedName, and Gender,
which are the items of interest we wish to infer in our application.

Some rules are simply direct transfers of information. The first three rules in
Figure 3 are examples. They transfer Person objects, Name objects, and Person-
Name relationships from source to target. The Ontology Editor in Figure 2
allows a user to right click on an object set or relationship set and display its
content. The left-most pop-up window in Figure 4 shows the result of displaying
the content of the Person-Name relationship set after executing the first three
rules in Figure 3. Note that the nonlexical Person objects are all identified by
surrogate identifiers (e.g. osmx411, the Person identifier, for Emma Southerland
Goble, the Name value).

3 http://jena.apache.org/documentation/inference/index.html
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@prefix s: <http://dithers.cs.byu.edu/owl/ontologies/FamilyTree#>.
@prefix t: <http://dithers.cs.byu.edu/owl/ontologies/TargetOntology#>.
@prefix ann: <http://dithers.cs.byu.edu/owl/ontologies/annotation#>.

[(?x rdf:type s:Person) -> (?x rdf:type t:Person)]
[(?x rdf:type s:Name), (?x s:NameValue ?nv)
->
(?x rdf:type t:Name), (?x t:NameValue ?nv)]
[(?x s:Person-Name ?y) -> (?x t:Person-Name ?y)]
...
//Gender based on name
[(?x s:Person-Name ?n), (?n rdf:type s:Name), (?n s:NameValue ?nv),
isMale(?nv), makeSkolem(?gender, ?x)
->
(?x t:Person-Gender ?gender), (?gender rdf:type t:Gender),
(?gender t:GenderValue ’Male’)]
...
//Birth name for child: surname of father added
[(?p s:Person-Child ?c), (?p s:Person-Name ?n), (?n s:NameValue ?nv),
(?p t:Person-Gender ?g), (?g t:GenderValue ’Male’), (?c s:Person-Name ?cn),
(?cn t:NameValue ?cnv), getsurname(?nv, ’^(([A-Z][A-Za-z]+)[- ]*)+’, ?x),
getsurname(?cnv, ’^(([A-Z][A-Za-z]+)[- ]*)+’, ?y), notEqual(?x, ?y),
strConcat(?cnv, ’ ’, ?x, ?nx),
makeSkolem(?bn, ?c, ?p, ?n, ?nv, ?g, ?cn, ?cnv, ?nx)
->
(?bn rdf:type t:InferredBirthName), (?bn t:InferredBirthNameValue ?nx),
(?c t:Person-InferredBirthName ?bn)]
...
//Inferred married name for female spouse: married surname
[(?p rdf:type t:Person), (?p t:Person-Name ?n), (?n t:NameValue ?nv),
(?marriageRecord t:PersonSpouseMarriageDateMarriagePlace-Person ?p),
(?p t:Person-Gender ?gf), (?gf t:GenderValue ’Female’),
(?q rdf:type t:Spouse),
(?marriageRecord t:PersonSpouseMarriageDateMarriagePlace-Spouse ?q),
(?q t:Person-Gender ?gm), (?gm t:GenderValue ’Male’), (?q t:Person-Name ?mn),
(?mn t:NameValue ?mnv), getsurname(?mnv, ’^(([A-Z][A-Za-z]+)[- ]*)+’, ?x),
strConcat(?nv, ’ ’, ?x, ?nx),
makeSkolem(?fsn, ?p, ?n, ?nv, ?marriageRecord, ?gf, ?q, ?gm, ?mn, ?mnv, ?nx)
->
(?fsn rdf:type t:InferredMarriedName), (?fsn t:InferredMarriedNameValue ?nx),
(?fsn t:InferredMarriedName-Person ?p)]

Fig. 3. Sampling of Inference Rules.

The Gender rule in Figure 3 determines the gender of male names. To de-
termine gender, we use a user-defined built-in predicate isMale, which accesses
a predefined statistical table giving the probability of a name being male or fe-
male as computed from the billions of name instances in the FamilySearch.org
data store [12]. Using a threshold of 0.75, if the isMale predicate holds for an
instance of the NameValue variable ?nv, the rule generates a gender object with
its makeSkolem function and sets its lexical GenderValue to be ’Male’. As the
second pop-up window in Figure 4 shows, all names in Figure 1 turned out to
be highly indicative of gender.

Once we have the gender, then along with the extracted parent-child rela-
tionships we can determine the father of a child. Then if the child’s name, as
extracted, does not have the same surname as the father, we can add the father’s
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Fig. 4. Inferred Results

surname to the child’s name and thus obtain the child’s full birth name. The
pop-up window in the upper-right of Figure 4 shows that every child in Figure 1
without a surname has a surname added.

Inferring married surname is similar to inferring birth names of children, but
is based on the marriage relationship.4 Before inferring married names of female
spouses, we infer the inverse relationships for Person and Spouse in the Per-
sonSpouseMarriageDateMarriagePlace relationship set. Thus, for example, we
have Person(Maria Miller) and Spouse(Nathan Tilestone Jennings) as a couple
as well as the extracted Person(Nathan Tilestone Jennings) and Spouse(Maria
Miller). Then, in the marriage rule in Figure 3, we only need to add surnames for
married persons whose gender is ’Female’. The first entry in the lower-right pop-
up window in Figure 4 shows that Maria Miller became Maria Miller Jennings
by (assumed) marriage. Indeed, every female spouse in Figure 1 has a correctly
inferred married name.

4 This is the case for our running example. Of course other cultures require different
inference rules.
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4 Object Identity Resolution

Object identity resolution in FROntIER is about determining whether any two
object identifiers in the Person object set designate the same person. Object-
existence rules make a new surrogate identifier for every extracted Name. In
Figure 1, for example, the three Mary Elys who are spouses of Gerard Lathrop are
the same person, but their generated surrogate identifiers are different: osmx265,
osmx241, and osmx165 as Figure 4 shows. On the other hand, Mary Ely osmx141
whose surname is McKenzie is a different Mary Ely.

FROntIER’s object identity resolution uses facts for entities in populated
target ontologies as input and generates owl:sameAs relationships as output.
FROntIER uses Duke5 but could use any any other fact-based entity resolver.

To use Duke, we convert the Jena-inferred RDF triples into a CSV file, which
one can view as a table of entity records. For the target ontology in Figure 1, we
produce CSV records as follows: (1) convert nonlexicals with a Value property
into table attributes: e.g. BirthDate with a BirthDateValue property into the
attribute BirthDate; (2) convert the quaternary relationship set into Marriage-
Date, MarriagePlace, and Spouse attributes, where the nonlexical specializa-
tion Spouse becomes SpouseName through its generalization’s object existence
rule, which is based on Name; and (3) calculate the maximum observed cardi-
nality for Person-Child instances and for PersonSpouseMarriageDateMarriage-
Place instances (allowing for more than one marriage) to produce the attributes
Child1Name, Child2Name, ..., Spouse1Name, MarriageDate1, MarriagePlace1,
... up to the maximum number of instances for each.

The Duke entity resolver uses a configuration file to set attribute compara-
tors and parameter values. For our work we used the ExactComparator for all
attributes. For parameter values, each attribute has a low value for when two
attribute-value pairs do not match and a high value for when they do match.
Duke combines the values to produce a probability that two entities are the
same. For example, we set the high value to 0.73 for birth-date years because
we believe that when they match they are moderately discriminating, and we
set the low value to 0.002 because mismatched birth-date years are highly dis-
criminating. Gender does not disambiguate persons when they match, but is a
strong discriminator when they do not match, so a high value of 0.56 and a low
value of 0.01 are appropriate. Similarly, we set other parameter values according
to expected significance within the domain.

Given comparator and parameter settings, Duke computes the probability of
same-as between every pair of extracted person objects. Duke makes conclusions
based on a threshold we set. For our extraction and inference results partially
shown in Figure 4, a threshold of 0.8 lets Duke correctly conclude for Figure 1
that the first, third, and fourth Mary Ely are the same person, that the first,
third, and fourth Gerard Lathrop are the same person, and that all other persons
differ from each other.

5 https://code.google.com/p/duke/
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5 Case Study

After creating proper cultural-based inference rules and tuning the entity-resolution
engine for the information in The Ely Ancestry, we observed that the generated
inferred fact assertions that “read between the lines” were always 100% correct
with respect to the extracted fact assertions. Indeed, the inferred results are
necessarily 100% correct if:

1. the base information is correctly extracted,
2. the cultural inference rules are correctly encoded and application sufficient,
3. the deduplication parameters are tuned correctly for the application, and
4. sufficient information exists and is used to discriminate persons.

Unfortunately, violations of these conditions may occur. Clearly, surnames of
children and married female spouses will be missing or incorrect if fathers and
husbands are not identified or identified incorrectly. Incorrect gender inference
can also cause misidentification. In our experience with automated extraction
on fact-filled family-history documents such as The Ely Ancestry, we have found
that precision errors are rare while (unfortunately) recall errors are prevalent.
Thus, though our inferred fact assertions are often incomplete, they are rarely
incorrect.

Fortunately, since authors of factual documents can only convey implied in-
formation if conditions (2)–(4) hold, it should be possible to correctly encode
culture-based inference rules and identify enough discriminating information to
distinguish or link individuals. Extracting all needed information, however, is
not trivial. Page 419 of The Ely Ancestry in Figure 1 is about the families of
the children of Mary Ely and Gerard Lathrop. Thus, a reader can easily see the
repetition of these grandparents in the family groups; automatically discerning
this subtlety, however, is beyond the capability of current extraction engines.
Fortunately, in the The Ely Ancestry, sufficient extractable information is avail-
able on Page 419 to avoid having to discover the implicit exposition of the page’s
layout.

6 Concluding Remarks

For factual documents such as The Ely Ancestry, it is possible to successfully
“read between the lines” and extract unstated, implicitly-asserted facts inten-
tionally omitted by document authors. Our FROntIER implementation bases
implicit fact-finding on ontologies formalized in predicate calculus. It can there-
fore use an off-the-shelf reasoner to augment the ontology with new fact types and
populate them. Based on both explicit and implied fact assertions, FROntIER
can also resolve person object identity with an off-the-shelf deduplicator. Infer-
ence accuracy depends only on a correct encoding of cultural inference rules, a
sufficiency of information, and proper tuning of entity-resolution software. With
proper encoding and tuning, we were always able to achieve 100% inference
accuracy with respect to the accuracy of extracted base fact assertions.
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Our research in implicit fact finding is already beginning to be applied in
family-history applications [13]. As we apply our work in this domain, we are
seeing future-work opportunities to expand implicit fact finding by using seman-
tic context. We should, for example, be able to fix some OCR errors based on
knowing the semantic type of a data instance and reject some erroneous fact
extractions by reasoning that they do not make sense. Overall, we see signifi-
cant opportunities to improve the quality of extracted information by a reasoned
“reading between the lines.”
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