
Data Extraction from Web Tables: the Devil is in the Details
George Nagy

Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute

Troy, NY, USA 12180

nagy@ecse,rpi.edu
David W. Embley, Spencer Machado
Computer Science Department
Brigham Young University
Provo, UT, USA 84602
embley@cs.byu.edu, admiralmachado@gmail.com
Sharad Seth, Dongpu Jin
Computer Science and Engineering Department
University of Nebraska – Lincoln
Lincoln, NE, USA 68588
seth@cse.unl.edu, jindongpu@hotmail.com
Mukkai Krishnamoorthy
Computer Science Department
Rensselaer Polytechnic Institute

Troy, NY, USA 12180

mskmoorthy@gmail.com
Abstract— Humans can usually discover the relationships of table headers to data cells at a glance, but determining them automatically is far from trivial. We describe common table configurations that require special consideration, including some that require access to semantic knowledge. Clicking on one or two critical cells per table, through a simple interface, is sufficient to resolve most of these problem tables. We show that header paths, a purely syntactic representation of visual tables, can be readily transformed (“factored”) into several existing representations of structured data, including category trees, relational tables, and RDF triples.  From a random sample of 100 web tables from ten large statistical web sites, the system processed 86 tables completely automatically, processed 3 more automatically after clicking on a critical cell, and generated 186 relational tables and 20,262 subject-predicate-object RDF triples.
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I.  Introduction 

In the first decade of table processing, researchers concentrated on finding the underlying grid structure of scanned tables from rulings or text alignments [
,
], and of ASCII tables in email [
]. In the second decade the emphasis was on locating and bounding HTML pages in web tables. Reviews of earlier work can found in [
,
].
The next step in table analysis, to which we attempt to contribute here, is efficient extraction of the relations of header cells to content cells and the representation of these relations in appropriate data structures. The resulting multi-dimensional indexing is a prerequisite for understanding individual tables and combining the contents of many tables into a queryable database or a populated ontology. Similar goals are addressed in [
,
].
The foundations of syntactic table analysis were laid by X. Wang in her 1996 dissertation [
]. Although she was interested primarily in reformatting tables for various media and page sizes, her definition of categories is equally suitable for analysis. Simple tables have only two categories defined by their row and column hierarchies, but more complex tables, such as her prime grade book example of Year, Term and Mark, require multidimensional indexing.

Below we show that the extraction of paths (introduced in [
]) through the header hierarchy to content cells, and the decomposition of these paths into orthogonal categories, leads to a representation suitable for transforming tables meant for human reading into relational database tables [
] accessible by formal languages like SQL [
] for relational tables or SPARQL [
] for RDF triple stores [
]. Of course, many of the tables available at large sites of statistical information—our primary focus—are generated from databases. Often, however, no direct public access is provided to the databases themselves. Individual users must therefore reconstruct fragments of the database of each source, or possibly of databases of multiple sources, by harvesting and analyzing individual tables.

Our starting point is a collection of tables, selected randomly from ten large sites [
]. HTML tables can readily be exported to Excel. The resulting Comma Separated Value (CSV) files are easy to parse. The transformation from HTML to CSV loses some formatting information like typeface, indentations and merged cells. Nevertheless the standard CSV format retains sufficient information for a broad range of applications, including automated table processing. 

In Section II we discuss common table formatting conventions that must be accommodated by automated table analysis. Section III describes our heuristics for finding header paths given these conventions. Section IV explains the extraction of Wang category trees using mathematical software designed for the synthesis of logic circuits. Section V demonstrates the transformation to relational tables and RDF triples. Section VI shows our experimental results on 100 web tables, explains some causes of failure, and proposes further work for expanded application of table analysis based on header paths.

II. TABLE FORMATTING CONVENTIONS
Since the invention of printing many table formatting conventions have been developed and refined for ease of human access to tabulated data (cf.  The Chicago Manual of Style or the US Government Printing Office Style Manual). Although tables can be prepared with any text editor, most document preparation systems (e.g. Office, Latex) include elaborate provisions for constructing tables.

A table contains a rectangular configuration of data cells, each of which can be uniquely designated by a named row and a named column. More formally, table is a discrete rectilinear tessellation, or a rectangular tiling, based on the partition of an isothetic rectangle into rectangles defined on a rT x cT lattice [
]. The bottom-right region of a well-formed table (WFT) contains a set of rd x cd content- (aka value-, data-, or delta- in [6]) cells that can be uniquely specified by a column-header path and a row-header path. Fig. 1 explains our notation and shows how a single critical cell can define the segmentation of the table into stub, header, and delta regions. (Although our observations are drawn from a large collection posted on the project website [
], we present simplified examples because most real tables are too large for the ICDAR page allotment.)

The extraction of header paths must take into account some commonly occurring configurations discussed below.

A. Virtual Headers
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Wang defines rooted category trees. Category Roots, however, are often missing in real tables. For example in the table of Fig. 1, which has two column categories A and B and one row category C, it is necessary to add a virtual root header (e.g. CH1) to the category A paths.

Table Notation. Lower-case letters above and numerals to the left are not part of the table, just Excel-style cell addresses. Cells a1:b3 are the stub header (stub). The delta-cell region is c4:h5, i.e., everything below and to the right of critical cell c4. The column header path to cell f4 (which has cell-content D14) is B-B2-A1. The corresponding row headerpath is C-C1.
B. Headers in the Stub

In the simple example of Fig. 2a it is not obvious whether “A” in cell a1 (the only cell in the stub here) is the root for category B or C. A more realistic example is shown in Figs. 2b and 2c. The appropriate category trees cannot be determined without semantic considerations. As a practical matter, in the large majority of the tables we have seen, the contents of the stub are row headers: we would expect AGE instead of VERMONT in merged-header-cell b1:e1
C. Multi-row/column Indexing
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In a table with rd rows and cd columns of delta-cells, there must be rd row-header leaf-cells and cd column-header leaf-cells. However, for unique indexing it may be necessary to consider some data columns as headers. In the table of Fig. 3, one might at first consider State to be the row-root-header, and all but the first column as delta-cells. There are, however, multiple rows with the same entry (AL, MI, MN). Even adding the second column is insufficient because Minnesota Power Inc appears twice. The row-header here consists of the first three columns. 
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(b)
(c)
(a) Row or column header?  In 2b and 2c, GENDER and EDUCATION are in the same position (in cell a3). (b) GENDER is a column-root-header. (c) EDUCATION is a row-root-header.
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AL

DTE Energy Services

50407

Mobile Energy Services LLC

Mobile

91

91

AL

Georgia-Pacific Corp

10699

Georgia Pacific Naheola Mill

Choctaw

31

78

AL

International Paper Co

52140

International Paper Prattville Mill

Autauga

49

90

AR

Domtar Industries Inc

54104

Ashdown

Little River

157

157

AZ

Tucson Electric Power Co

126

H Wilson Sundt Generating Station

Pima

173

559

MI

S D Warren Co

50438

S D Warren Muskegon

Muskegon

51

51

MI

TES Filer City Station LP

50835

TES Filer City Station

Manistee

70

70

MN

Minnesota Power Inc

10686

Rapids Energy Center

Itasca

27

28

MN

Minnesota Power Inc

1897

M L Hibbard

St Louis

73

123

MO

University of Missouri-Columba

50969

University of Missouri Columbia

Boone

6

91

MS

Weyerhaeuser Co

50184

Weyerhaeuser Columbus MS

Lowndes

123

123

NC

Carlyle/Riverstone Renewable Energy

10381

Coastal Carolina Clean Power

Duplin

44

44

      ROWS OMITTED

ROWS OMITTED




Three columns are required here to index columns.

D. Row/Column Order

In relational tables, rows and columns can be permuted without loss. In tables meant for humans, however, order can be important. In Fig. 4. the Rank column may at first appear inferior to the State column as a row-header. But the table designer would have put State on the left if the table were meant to find the rank of various states instead of the states with various ranks (the title of this table was "Top 3 States for Trade via Port Huron, MI: 2008"). 
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Row order is important here, but column order is less so.
If the first column were missing, should we consider adding the row order explicitly before pouring the contents of this data into a relational table? Even if a numerical index satisfies our header path uniqueness requirement, it is often of little value for querying table data. We don't currently add explicit order information but do preserve the original CSV cell addresses as meta-data.
E. One-dimensional Tables and Lists

Our fundamental requirement is that each data cell can be indexed uniquely. We call a table-like structure with a single row or column a list because it lacks an explicit index. To avoid trivial tables, we impose the requirement that a table must have rd >1 rows or cd >1 columns of delta cells. We call a table with rd =1 or cd =1 one-dimensional (such a table could have multiple categories).
F. Aggregates

Tables often contain rows or columns of aggregate information that could be recovered from the rest of the table. V. Long [
] has identified sums in a large collection of Australian reports. Other aggregates, like median, standard deviation, or truncated mean, could also be identified by computer analysis when the span of the aggregation operation is clear. Sums are sometimes identified by simple keywords like Sum or Total which apply to the whole, or part of a, row or column. In other cases more complicated semantic processing may be required. In the Canada Statistics tables, totals for all the provinces and territories appear under CANADA. CANADA, however, also often appears as a row-header root, without any aggregate data. 

III. CONSTRUCTION OF HEADER PATHS

A. CSV Version of the HTML table

The CSV text file is parsed by a Python program: the description of an earlier version of this program will appear in [7]. Most html formatting information is lost, and the structure is modified because merged cells, like the column-header root containing B in Fig. 5, are unmerged. Therefore one of the tasks of the path extraction program is to copy the cell contents in the atomic cells of the CSV string. For the table of Fig. 1, B, B1, and B2 are copied into all the empty cells, represented by commas, to their right. C is copied into the first empty cell of the fifth row. 

 To simplify subsequent processing, empty rows and columns are deleted, blanks within cell contents are replaced by underscores, and some characters with special meanings in downstream programs (“\”,  “+”,  “*”,  “(“,  “)”, etc.) are replaced by ASCII strings like “backslashtoken”.  
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CSV file and table for the Excel table of Fig. 1. Excel cell addresses changed to x-y coordinates to allow negative indices.
Both the header paths and the paths through the delta cell region consist of asterisk-separated-sequences of cell contents in double quotes, with the sequences separated by plus signs. An example is shown in Fig. 6. After the paths are extracted, the original cell coordinates, enclosed by angle brackets <>, are added to each path element. (If C were above C1—the customary location of a row header root—the program creates negative x-coordinates for header-path roots virtually moved from the stub to left of the leftmost row-header column). 

B. Path Extraction Heuristics
The critical cell is located automatically if either of two conditions holds: (1) the stub header is empty, and (2) the delta cell region consists of numerical information. If neither of these conditions holds, the table is rejected for interactive identification of the critical cell. 

Under the second scenario, row header roots in the stub are added as roots of the row headers below them. In the table of Fig. 2a, A would be added to the row header paths C1 and C2 (if D11, D12, D21, D22 were numerical). 

The next section describes the “factoring” of the path files (which also contain a copy of the original CSV files).

rowpaths = 

(("<0,3>C"*"<1,3>C1")

+("<0,4>C"*"<1,4>C2"));

colpaths = 

(("<2,0>B"*"<2,1>B1"*"<2,2>A1")

+("<3,0>B"*"<3,1>B1"*"<3,2>A2")

+("<4,0>B"*"<4,1>B1"*"<4,2>A3")

+("<5,0>B"*"<5,1>B2"*"<5,2>A1")

+("<6,0>B"*"<6,1>B2"*"<6,2>A2")

+("<7,0>B"*"<7,1>B2"*"<7,2>A3"));
Row and column paths for table of Figs. 1 and 5.
The delta paths are simimlar but longer.
IV. EXTRACTION OF CATEGORY TREES

With the asterisks and plus signs added in the row and column header paths, both resemble sum-of-products algebraic expressions. This choice is deliberately made to simplify the process of extracting category trees from these expressions through an algebraic factorization process. As the formulation is completely symmetric for column and row header paths, without loss of generality, 

we elaborate on only the column header paths in the following description.

The algebraic interpretation is based on a covering relation defined between each product term in the header paths expression with the column covered by it. The covering relation can be extended to sums of products by taking the union of individually covered columns. For example, the sum-of-products:

("<2,0>B""<2,1>B1""<2,2>A1")+("<4,0>B""<4,1>B1""<4,2>A3")  (1)
covers the first and the third columns of the table in Fig. 5. Note that the cell labels <2,0>B and <4,0>B in this example are identical in the original table. To enforce this constraint, we drop the second (column) coordinate in the header paths. As a consequence, the labels <2,2>A1 and <5,2>A1 in the colpaths expression are also treated as being the same, in accordance with the normal conventions of table layout.  

The covering relation can be further extended to factored forms, as long as the inverse multiplying-out process can recover the original product terms from it. For example, the whole colpaths expression can be factored as:

       <0>B*[<1>B1+<1>B2]*[<2>A1*<2>A2*<2>A3]

   (2)
from which the category trees for the headers are derived by our Python program, as shown in Fig. 7. Here, the program has stripped the indices and added the virtual root header CH1 to represent the missing header for the second column category. 


Wang Categories for the table of Fig. 1
To facilitate the generation of relational tables (see Section V), the program combines the category-tree structures for the row and column headers into a canonical form, as shown below for the example:

C*(C1+C2)+B*(B1+B2)+CH1*(A1+A2+A3)                (3)
It also generates multiple views of the table resulting from the different choices of the category chosen as the attribute. 

Another output produced by the program are the values of the table features used in verification of the result against visual inspection of the CSV table, as illustrated below for the example:

 Row categories: 1; Leaf nodes for row categories: 2

 Col   categories: 2; Leaf nodes for col  categories: 2, 3
A benefit of this formulation is that the algebraic factorization problem has been studied extensively in the past in fields ranging from symbolic mathematics [
] to logic synthesis [
] and we gain leverage from the sophisticated strategies developed in these fields. We map the header paths expression to Boolean algebra and adapt the logic synthesis tool Sis [
] for factorization. Interested readers can find further details in our earlier work [7].
V. RELATIONAL TABLES & RDF TRIPLES

Given a factored expression for a table in canonical form along with the table’s data indexed by the header paths, we can generate a corresponding relational table and populate it with the data.  We can then query the table with SQL and otherwise manipulate it along with other tables in a standard relational database.

Our transformation of an expression assumes that one of the terms representing a category in a table provides the attributes for the relational table while the remaining category terms provide key values for objects represented in the original table.  Without input from an oracle, we do not know which of the categories would serve best for the attributes. We therefore transform a table with n categories into n complementary relational tables—one for each choice of a category to serve as the attributes.

The transformation from a category term in an expression in canonical form to a SQL create-table statement is straightforward. Transforming the remaining terms in the expression and data indexed in header paths to SQL insert-value statements is also straightforward.  For the canonical expression (3) with the choice of the term CH1*(A1+A2+A3) for the attributes along with the header paths and data like in Fig. 5, Fig. 8 shows the generated SQL create statement and SQL insert statement for one of the relational tables.  
In general, we (1) transform each header path of the term chosen to represent attributes into an attribute name (e.g., CH1_A1 in Fig. 8), (2) transform the root node of the remaining header paths into attribute names (e.g., C and B in Fig. 8), (3) declare the attributes of these remaining header paths to be the primary key (e.g., primary key (C, B) in Fig. 8), and (4) insert tuples into the generated table: the key values are a cross product of the header paths below the root from each category (e.g., {C1, C2} ( {B1, B2} for the four tuples in our example), and the data values are inserted as directed by the header paths of each data value in the original table (e.g., “D11” for the CH1_A1 attribute of the tuple whose key is {C1, B1} as Fig.8 shows).


CREATE TABLE Fig_1_0(C varchar(2),B varchar(2),

     CH1_A1 varchar(6),CH1_A2  varchar(6),CH1_A3 varchar(6),

     PRIMARY KEY (C, B));

INSERT INTO Fig_1_0 VALUES("C1", "B1", "D11", "D12", "D13");

INSERT INTO Fig_1_0 VALUES("C1", "B2", "D14", "D15", "D16");

INSERT INTO Fig_1_0 VALUES("C2", "B1", "D21", "D22", "D23");

INSERT INTO Fig_1_0 VALUES("C2", "B2", "D24", "D25", "D26");

Tuple generration for the table of Fig. 1
For RDF triples we transform each data value in a relational table into a (subject, predicate, object)-triple.  Fig. 9 shows the resulting RDF for the first tuple generated for the relational table in Fig. 8.  For each data value (e.g., “D11”), the subject in the triple is a generated object identifier for the tuple (e.g., the object identifier C-B_0 in Fig. 9 obtained as a hyphenated concatenation of the attributes of the primary key along with a subscript 0 for the first tuple, 1 for the second, and so on).  The predicate for the triple is the attribute for the value (e.g., CH1_A1 for the value “D11” in Fig. 9 and B for “B1”).  And the object in the triple is the value itself (“D11” and “B1” in Fig. 9).


<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:Fig_1="mysql://localhost:3306/Fig_1#">

<rdf:Description

rdf:about="mysql://localhost:3306/Fig_1/C-B_0"

Fig_1:C="C1"

Fig_1:B="B1"

Fig_1:CH1_A1="D11"

Fig_1:CH1_A2="D12"

Fig_1:CH1_A3="D13"

/>

...

</rdf:RDF 

RDF for the first tuple in Fig. 8
VI. EXPERIMENTAL RESULTS

The python segmentation routines found the critical cell on 97 of the 100 tables. The three that failed have X or NA in some delta cells, and non-empty stubs. These tables required clicking on the critical cell before path extraction. The interaction (three mouse clicks) using the Clicker GUI takes on average about 5 seconds per table.
If the header paths are correct, factorization produces the correct canonical form. The factorization program yielded the canonical expression for 89 of the 100 path files. Most of the eleven errors require only simple fixes.
Since our implementation selects each term in a canonical expression to serve as the attributes of a generated relational table, our to-relational-table conversion program generated and populated 186 MySQL relational tables (two tables for each of the 81 two-category tables and three tables for each of the 8 three-category tables). 
Among the attributes generated for these tables, several contained MySQL-disallowed characters and some names exceeded the 64-character limit MySQL imposes on attribute names. We remedied these quirks in standard ways: enclosed some names in single quotes and built correspondence tables to connect short names to full names longer than 64 characters.  
To generate RDF triples, our implementation converts each value in a relational table to a triple. The to-RDF-triple conversion program generated 20,262 subject-predicate-object triples.
All the CSV tables we processed were interactively stripped of external metadata like table titles and footnotes. We are automating these tasks and improving path generation before attempting to process more tables.
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