PAGE

DYNAMIC MATCHMAKING BETWEEN MESSAGES AND SERVICES IN MULTI-AGENT SYSTEMS

by

Muhammed Al-Muhammed

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
Brigham Young University
May 2004

Copyright © 2004 Muhammed Al-Muhammed

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Muhammed Al-Muhammed

This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory.

	Date
	David W. Embley, Chair

	Date
	Michael Goodrich

	Date
	Bryan Morse

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Muhammed Al-Muhammed in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.

____________________________ __________________________________

Date David W. Embley, Committee Chairman

Accepted for the Department

 David W. Embley, Graduate Coordinator

Accepted for the College __________________________________

 G. Rex Bryce, Associate Dean,

 College of Physical and Mathematical Sciences
ABSTRACT

DYNAMIC MATCHMAKING BETWEEN MESSAGES AND SERVICES IN MULTI-AGENT SYSTEMS
Muhammed Al-Muhammed

Department of Computer Science

Master of Science

Researchers frequently make three assumptions for agents to communicate: agents (1) share ontologies, (2) speak the same language, and (3) pre-agree on a message format. These assumptions, however, impose stiff requirements on agent developers and preclude agents from interoperating on the fly. To resolve the problem, we have built a matchmaking system (MMS). Each agent has its copy of the MMS, and all the copies have the same an agent-independent, domain-specific ontology, called the global ontology. The MMS can do translation on the fly by establishing mappings between its global ontology and its agent’s local ontology. Once this mapping is done, there is no longer any concern about individual agents needing to agree on shared ontologies. In addition, the MMS enables an agent to request information from other agents by making ordinary function calls. Because function calls are ordinary tasks in all programs, agents need no common language. Finally, since the MMS parses messages and calls appropriate services of agents, the agents need not agree on a message format. Experiments that we have conducted on three applications show that the MMS has been able to allow agents to successfully interoperate with each other without having to abide by any of the three communication assumptions.
ACKNOWLEDGMENTS

Many thanks to my God; by his willing I achieved this work.

I am very grateful to my advisor Dr. David Embley for his patience, understanding, and above all his tolerance. I owe him a lot and will never forget his passion and guidance. I am very grateful to Dr. Michael Goodrich who helped and encouraged me a lot in my research. I am also grateful to Dr. Bryan Morse for his time and valuable comments.

I am very grateful for all the people at BYU especially Dr. Sandra Rogers who is supporting me to succeed. I am also grateful for the great BYU environment in which I have never felt that I am away from home.

Finally I am grateful for NSF for partially supporting this research under grant # IIS-0083127.

Table of Contents

1 Introduction 1

2 System Initialization 5

 2.1 Local-Global Ontology Mapping ………………………………………… 5

 2.1.1 The Global Ontology ………………………………………………. 6

 2.1.2 The Local Ontology ………………………………………………... 8

 2.1.3 The Mapping ……………………………………………………….. 10

 2.2 Service Analysis ………………………………………………………….. 14

 2.2.1 Finding Service Declarations ………………………………………. 14

 2.2.2 Discovering Service Input/Output Information ……………………. 15

3 System Operation 17

 3.1 MMS-MMS Communication …………………………………………….. 19

 3.2 Message-Service Matching ………………………………………………. 22

 3.3 MMS-Agent Interaction ………………………………………………….. 24

4 Experimental Results 29

 4.1 Computer-Shopping Agents ……………………………………………… 29

 4.1.1 Results ……………………………………………………………... 34

 4.1.2 Discussion …………………………………………………………. 36

 4.2 Book-Shopping Agents ………………………………………………….. 39

 4.2.1 Results ……………………………………………………………… 39

 4.2.2 Discussion ………………………………………………………….. 40

 4.3 Meeting Scheduling Agents ……………………………………………… 42

 4.3.1 Results ……………………………………………………………… 44

 4.3.2 Discussion …………………………………………………………. 46

 4.4 Summary Discussion ……………………………………………………. 47

5 Related Work 49

6 Conclusions and Future Work 53

 6.1 Conclusions …………………………………………………………….. 53

 6.2 Future Work ……………………………………………………………. 54

References 57
List of Figures

2.1 Recognizers for global concept names …………………………………………… 11

2.2 Value recognizers ………………………………………………………………… 14

2.3 Data format recognizers ………………………………………………………….. 16

2.4 Unit recognizers ………………………………………………………………….. 16

2.5 Relationships between some of the global concepts in the computer-shopping

 domain (partial) …………………………………………………………………… 18

2.6 Partial Java code for defining some concepts in a computer-shopping agent ……. 22

2.7 Mapping results for user verification …………………………………………….. 24

2.8 Mapping results for user verification …………………………………………….. 26

2.9 Service recognizer …………………………………………………………………27

2.10 Some services provided by a book-shopping agent ……………………………… 27

2.11 The extracted service declarations from a book-shopping agent ………………… 28

3.1 The interaction among the MMS components …………………………………… 30

3.2 A function call and the MMS calls ……………………………………………….. 31

4.1 A computer-shopping website (website [60]) ……………………………………. 46

4.2 Global ontology recognizers ………………………………………………………47

4.3 Service generation ………………………………………………………………. . 50

4.4 Data for the seller stored as a table whose schema is the concept names taken from

 figure 4.3c ………………………………………………………………………… 53

4.5 Site [62] ……………………………………………………………………………60

4.6 An example of a request ………………………………………………………….. 62

4.7 An example of a filled-in worksheet …………………………………………….. 68

4.8 A description of the semantics of the blanks …………………………………….. 70

4.9 A service description and the signature provided by one of the individuals …….. 77

Chapter 1

Introduction

The American Heritage Dictionary [15] defines an agent as “one that acts or has the power or authority to act … for or represent another” or the “means by which something is done or caused; instrument.” In this sense, we expect software agents to act on behalf of their owners to do some work such as filtering email or finding the best deal for airline tickets or other similar tasks. Bradshaw [2] defines a software agent as “a software entity, which functions autonomously and continuously in a particular environment, often inhabited by other entities.” Bradshaw continues “we expect an agent that inhabits the same environment with other agents to be able to communicate and cooperate with them.”

In this research we are interested in collaborative agents. More specifically, we focus on communication. It is well known that communication is a necessary condition without which agents cannot cooperate. Due to its importance, communication among cooperative agents becomes (to some extent) the defining characteristic of agents. This is clearly emphasized by Genesereth [7] who goes so far as to suggest that any entity that cannot communicate is not an agent.

Communication requires mutual understanding between cooperating agents. Heterogeneity is the major barrier that hampers agents from mutually understanding each other, and thus from communicating.

To resolve the heterogeneity/communication problem, researchers have assumed the need for a communication language that all agents in a multi-agent system can understand. As a result, two major communication languages have been developed, namely KQML (Knowledge Query and Manipulation Language) [4, 5, 9, 18, 19] and FIPA (Foundation for Intelligent Physical Agents) [10, 32]. Although these communication languages specify information about a message such as the sender and the receiver of the message, they do not always specify the content of the message, which can be specified by another content language [13]. Knowledge Interchange Format (KIF) [11] is one of the common content languages. In addition, agent must share ontologies in order to be able to communicate [13]. As a result, to communicate, agents must: (1) share ontologies, (2) use the same communication language (e.g. KQML), and (3) pre-agree on a content language (e.g. KIF). Shared ontologies provide agents with commonly understood vocabularies. When agents share ontologies, they agree on semantics. This agreement is necessary for agents to interpret and understand the vocabulary in messages unambiguously and in the same way. Using the same communication language and pre-agreeing on a content language allows agents to parse messages correctly. Sharing the same communication language causes agents to agree on the syntax of this shared language.

Although agents can communicate by satisfying these three requirements, these requirements prevent agents from interoperating on the fly. Interoperating on the fly requires agents to make the needed mapping between them without agreeing on a communication language and a content language, or sharing any type of ontological knowledge. Uschold [6] reflects this idea by saying that “the holy grail of semantic integration in architectures” is to “allow two agents to generate needed mappings between them on the fly without a-priori agreement and without them having built-in knowledge of any common ontology.” Allowing agents to interoperate on the fly is the objective of our research.

To allow agents to interoperate on the fly, we have developed a matchmaking system that enables communication. In our solution we assume neither shared ontologies, nor a common communication language, nor a shared content language. As a result, our solution shifts the responsibility of agreeing on these assumptions from an agent’s developer(s) to the system that realizes this solution. Our approach has two key ideas, which we explain as follows.

1. Independent Global and Local Ontologies. Rather than requiring agents to share ontologies, we provide our system with an agent-independent, domain-specific ontology, called the global ontology. Besides the global ontology, our system obtains useful information from agents. When an agent joins the system, our system applies an information extraction engine to the agent’s code to extract the useful information. This useful information, which we call a local ontology, includes the names of concepts the agent uses (such as class name, parameter names, and variable names) and the types of these concepts. To compensate for not having a shared ontology, our system maps the local ontologies of all agents to the independent global ontology. We emphasize that there is a major difference between our approach and a shared ontologies approach. An agent’s programmer(s) need to know nothing about any other agent’s local ontology, nor do they need to know anything about the global ontology. It is the system that does the mapping not an agent’s programmer(s).

2. Automatic Message-Service Mapping. Rather than having agents deal directly with in-coming messages, our system automatically maps an in-coming message to an appropriate service. As an immediate consequence of such automatic mapping, agents do not have to use the same communication language and pre-agree on a content language. As a necessary step to achieve the automatic mapping, our system parses an agent’s code, finds its services, and expresses them in an agent-independent way. Once our system has an agent’s services, it does a mapping between these services and an in-coming message by (1) parsing a message and identifying its type, its input, and its output parameters, and (2) matching the type, input, and output parameters of the message with those of a service. Then, using the local/global ontology mappings, our system can appropriately convert parameters of a requesting agent’s message to parameters of a providing agent’s service, receive results, and convert them to results the requesting agent can “understand.”

We present the details of the thesis as follows. Chapter 2 describes the initialization stage of our system. It describes the central process: the local-global ontology mapping. It also describes the service extraction and analysis. Chapter 3 describes the operational stage of our system. It describes in a high-level way all the involved processes from getting a request from an agent until this request is answered and returned to the requesting agent. It then discusses in detail the System-System Communication
, Message-Service Matching, and the System-Agent interactions. Chapter 4 presents the experimental results. In this chapter we discuss in detail the test cases we used to measure the performance of our system. Our focus for these test cases is on the local-global ontology mapping. We also show that the local-global ontology mapping is the critical process whose results determine the whole performance of our system. Chapter 5 discusses related systems and points out similarities and differences between these systems and ours. In chapter 6, we conclude and list open problems and directions for future work.

Chapter 2

System Initialization

In order for the MatchMaking System (MMS) to enable agents to communicate, it must be initialized. The initialization includes two steps. In the first step, the MMS establishes mappings between its global ontology and an agent’s local ontology. In the second step, MMS analyzes an agent’s services and expresses them in an agent-independent way. This chapter discusses in detail these two steps, namely Local-Global Ontology Mapping and Service Analysis.

2.1 Local-Global Ontology Mapping

In this step, the MMS parses an agent’s code to obtain useful information. The MMS then utilizes this information to establish mappings between the global ontology and an agent’s concepts, data formats, and units of measurement.

 2.1.1 The Global Domain Ontology

The system’s global ontology is domain specific and contains the following information.

Global Concept Names. These names denote objects that we expect to find in the domain. These names can be single words or short phrases. It is important to understand a domain when specifying these global concepts because the MMS can only work with concepts specified in its global ontology.

 Concept Recognizers. Dictionaries provide synonyms for global concept names. These synonyms can be obtained from any available resources such as websites that match the ontology’s domain. Using these dictionaries, we create regular-expression recognizers for the global concepts. The MMS uses the recognizers to find local concepts in an agent’s code that may map to the global concepts. Figure 2.1 shows an example taken from a computer-shopping ontology. As can be seen, the global concept name ProcessorSpeed has a recognizer, which consists of the concept name synonyms (CPUSpeed, ProcessorSpeed, etc.) taken from websites for computer shopping.

	Global concept names
	Concept recognizers

	ProcessorSpeed

Memory

…
	(CPU|Processor)(Speed)|(Processor)(clock)(speed)
(Memory)|(RAM)|(Installed)(RAM)

…

Figure 2.1: Recognizers for global concept names.

Value Recognizers. These recognizers identify constant values for a concept. Figure 2.2, for example, shows that a value of ProcessorSpeed is a number followed by either “GHz” or “MHz”.

	Global concept names
	Value recognizers

	ProcessorSpeed

ProcessorType

…
	([1-9][0-9]*[.]?[0-9]+\\s*(GHz|MHz))

(Pentium\\s*([\\d]{1}|I|II|III|IV))|…

…

Figure 2.2: Value recognizers.

Data Format Recognizers. Data can appear in different formats. For instance, we have identified several different formats of the concept Date. To be able to dynamically transform among different data formats used by agents, we must provide the global ontology with recognizers to discover the formats an agent uses to represent its data. Figure 2.3 provides an example of recognizer for one of the possible date formats: Month/Day/Year.

	Data format
	Data format recognizer

	Date Format: Month/Day/Year

…
	([0]?[1-9]|[1][1-2])\\s*[/]\\s*([0]?[0-9]|[1][0-9]|[2][0-9]|[3][0-1])\\s*[/]\\s*[\\d]{4}

…

Figure 2.3: Data format recognizers.

Unit of Measurement Recognizers. For global concepts that have units, we must develop recognizers that can identify their units. For example, for Price, a recognizer should identify the types of currency that the Price may have. Figure 2.4 provides an example for US$ or Euro and for processor speeds.

	Unit type
	Unit recognizes*

	Currency Unit

Processor Speed Unit

…
	(US(D|$)|($)|(EUR)|…)

(GHz|MHz)

…

* All our recognizers (concept, unit, and data format recognizers) are case-insensitive.

Figure 2.4: Unit recognizers.

Relationship and Participation Constraints. These relationships determine how global concepts relate to each other. The participation constraints determine the number of times instances of a concept relate to instances of another concept. Figure 2.5 provides an OSM [3] representation of some of the relationships between global concepts in the computer-shopping domain. Each Computer has one Price and one or more Operating Systems (represented by the Price is for Computer and Operating System is for Computer and the participation constraints 1 and 1:*). A Memory and Processor are parts of a Computer, and a Computer must have one of each. A Processor Name names a Processor and consists of two parts, namely Processor Type and Processor Speed (e.g. “Intel Pentium 4” “2.6GHz”). The Processor Type can be further decomposed into Processor Manufacturer and Processor Class (e.g. “Intel” “Pentium 4”). A Memory Name names a Memory and consists of two parts, namely Memory Capacity and Memory Technology (e.g. “512 MB” “SDRAM”).

[image: image1.png]is for 17

Computer

Processor Manufaturer; | Processar Class)

Figure 2.5: Relationships between some of the global concepts in the computer-shopping domain (partial).

2.1.2 The Local Ontology

The strings in an agent’s code recognized by the recognizers in the global ontology constitute the agent’s local ontology. Conceptually, the local ontology of an agent is a subset of the global ontology, namely the part of the global ontology whose recognizers recognized these strings. The strings are (1) the names of concepts the agent uses, which are found among or in class names, parameter names, variable names, and the literal strings, and comments and (2) the definition of data formats and units of measurement, which are usually found in literal strings and comments but may also be found in class, parameter or variable names.

Although an agent’s code need not be designed for purposes of our system, correct communication between our MMS and an agent highly depends on this code. That is, the MMS can only “know” as much about an agent as is in the code the agent exposes to the MMS. The quality of the code matters. The code should have meaningful names of concepts rather than unintelligent names such as X or Y. In addition, the code should have definitions of data representations and units of measurement. These definitions can appear in the code in standard ways. Figure 2.6 provides a partial example. As can be seen, the Price is of type integer and the unit for the Price is “US$” mentioned in a comment. The unit of measure for ProcessorClockSpeed is “GHz”. The ProcessorClass and RamStandardSize declarations mention two more concepts and another unit of measurement in a comment. The initial value for Date represents the date in an acceptable format to the agent.

 Public class KB

 {

 …

 int Price = 0; //US$

 double ProcessorClockSpeed; //GHz

 String ProcessorClass;

 double RamStandardSize; //MB

 String Date = “10/16/2003”;

 …

}

Figure 2.6: Partial Java code for defining some concepts in a computer-shopping agent.

2.1.3 The Mapping

Application of the concept recognizers to the agent’s code returns an ordered pair (Local Concept, Global Concept) for each recognized local concept. The Local Concept is the string recognized by a regular expression for the Global Concept. For example, the concept recognizer for the global concept ProcessorSpeed in figure 2.1 recognizes ProcessorClockSpeed in the code in figure 2.6, and produces the pair (ProcessorClockSpeed, ProcessorSpeed), in figure 2.7. Recognizers also produce the pairs (ProcessorClass, ProcessorType), (Price, Price), (RamStandardSize, MemoryCapacity), and (Date, Date).

Figure 2.7: Mapping results for user verification.

 Application of unit of measurement and data format recognizers to the agent’s code should return the data format and the unit of measurements the agent uses. For example, the recognizers for currency and processor speed recognize “US$” and “GHz” in figure 2.6 in comments close to the concepts Price and ProcessorClockSpeed. Also, the date format recognizer recognizes the format “Month/Day/Year” for date in the code initializing Date. Figure 2.8 shows these results.

Figure 2.8: Mapping results for user verification.

The user should scrutinize the results for two types of errors. First, the user should examine the pairs in figure 2.7 for mapping errors. A mapping error happens when the local concept and the global concept in a pair are not really related to each other. Second, the user should examine the data formats and the units of measurements in figure 2.8 for correctness.

2.2 Service Analysis

Agents, in our system, do not directly deal with messages because they do not share a communication language or a content language. The MMS, therefore, does not pass messages to agents; rather it calls the services that can answer message requests. This requires the MMS to “know” the agent’s services; specifically it should “know” what each service requires (input) and what it provides (output). Hence, to analyze services, we need to (1) find service declarations specified for use in agent’s interface and (2) determine from these declarations and associated information the input and the output requirements.

2.2.1 Finding Service Declarations
The process that finds a service declaration takes an agent’s code and a service recognizer and outputs service declarations. Figure 2.11 shows a service recognizer that can identify Java, C, or C++ service declarations. The return type of a service and the type of an input parameter can be either a Java-predefined type or a user-defined type. The user-defined type should be a structure (Java class) whose attributes the MMS should recognize during the mapping. We can, of course, extend the service recognizer in figure 2.9 to identify service declarations written in other programming languages. As an example, when we apply the service recognizer in figure 2.9 to the code in figure 2.10, we obtain the list of service declarations in figure 2.11. An agent’s developers can check the list and remove services they do not want their agent to provide.

public interface MethodRegularExpression

 {

 final String VisiblityType= "(public|protected|private)\\s+";

 final String StaticOrNot= "(static\\s+)?";

 final String JavaDefinedType= "(String|int|double|long|LinkedList|Map|ArrayList|Object|…)\\s*(\\[\\]\\s*)*\\s+";

 final String UserDefinedType = "([A-Za-z_][A-Za-z0-9]*)\\s*(\\[\\]\\s*)*\\s+";

 final String ReturnTypeOrParameterType = "("+JavaDefinedType+")"+"|"+"("+UserDefinedType+")";

 final String MethodName= "[A-Za-z_][A-Za-z0-9_]*\\s*";

 final String Vsrm= VisiblityType+StaticOrNot+ ReturnTypeOrParameterType+MethodName;

 final String InputList= "[(]\\s*"+ReturnTypeOrParameterType+"\\s+[A-Za-z_][A-Za-z_0-9]*" +

 "\\s*(,\\s*"+ReturnTypeOrParameterType+"\\s+[A-Za-z_][A-Za-z_0-9]*)*[\\s*)]";

 final String MethodDeclarationRegularExpression= Vsrm+InputList;

 }

Figure 2.9: Service recognizer.

 package agent;

 import java.util.*;

 public class AgentInterface

 {

 public BookInfo[] BookInformation(LinkedList Author_Name,String ISBN)

 {

 AgentResourceManager arm = new AgentResourceManager();

 BookInfo[] res = arm.SearchBy(Author_Name,null,ISBN,null);

 return res;

 }

 public String getISBN(String Title)

 {

 AgentResourceManager arm = new AgentResourceManager();

 String[][] res = arm.SearchBy(null,Title,null,null);

 return res;

 }

/*

 * input: P is Publisher

 *output: Price

 */

 public double getAmt(String P)

 {

 AgentResourceManager arm = new AgentResourceManager();

 double res = arm.SearchBy(null,null,null,Publisher);

 return res;

 }

 …;

 }

class BookInfo

{

LinkedList Author_Name;

String Publisher;

String Title;

String ISBN;

Date Publish_Date;

double Price;

…;

}
Figure 2.10: Some services provided by a book-shopping agent.

Figure 2.11: The extracted service declarations from a book-shopping agent.

2.2.2 Discovering Service Input/Output Information

The input parameters can be determined from the declarations themselves or from declaration and documenting comments. The output can be determined from the return type, documenting comments, the name of the service, or the results of executing the services. We consider three cases.

First, the MMS recognizes all the input parameters and output parameters of a service during the local-global ontology mapping process. In this case the MMS simply takes this information and builds a service signature. The first service in figure 2.10 is an example. All the input parameters are meaningful, and the MMS should recognize them during the mapping process. The return type of the service is the structure BookInfo with meaningful attributes, which the MMS should recognize. As a result, the MMS has all the information it needs to build the complete signature for this service.

Second, the MMS fails to recognize at least one of the input/output parameters. In this case, it may be possible to find some associated information (documenting code, name of the service) to help recognize the parameter(s). The second service in figure 2.10 shows that the name of the service can provide enough information to discover the output parameter. The return type of the second service is a string, which by itself is not enough to determine the output of the service, but the name of the service, getISBN, which includes the concept ISBN is a good signal that this service returns the ISBN for a book. The third service shows that it is possible to make use of documenting comments, if they exist, to recognize input/output parameters. It is not likely that the MMS can discover the output parameter of this service from its return type (double) or from the service’s name. The documenting comments associated with this service, however, have the keyword, output, in the comments, which gives a good hint that the concept Price that follows this keyword is an output parameter of the service. The input parameter of the third service, P, is not by itself recognizable, but from the comments the MMS can recognize P as a name for Publisher, which is recognizable.

Third, executing a service is another way to discover its output parameters. When a service executes successfully, it returns information. The MMS can apply value recognizers to this information in an attempt to determine what information the service returns. In order to execute a service, the MMS provides the input parameters with appropriate domain values. Therefore for this strategy to work, the global ontology must supply typical values for ontology concepts.

If the MMS cannot fully resolve the input/output parameters for a service, it requests help from the agent’s developers. If the developers do not supply the needed information, the MMS ignores the service.

After analyzing all the services, the MMS outputs an agent-independent representation of each service. For each service, this representation consists of the name of the service, its input parameters along with their types, and its output parameters along with their types.

Chapter 3

System Operation

Once the MMS has been initialized, it becomes ready to operate and consequently enables its agent to communicate with other agents. This chapter discusses in detail how the MMS operates. Figure 3.1 shows the interactions between the MMS and agents. Each agent has its own copy of the MMS, and all these copies are identical except for the repositories, which contain data specific for each agent created during the initialization.

The MMS handles communication between agents as follows. Agent 1 in figure 3.1 sends a request for some information about, say, a PC to the MMS. The MMS receives this request, which is represented in agent 1’s local vocabulary in its Translation component. Using information in the translation repository obtained during initialization, the translation component translates the vocabulary of the request to the global vocabulary and normalizes the units (e.g., changes currencies to US$) and data formats (e.g., change dates to Month/Day/Year) and passes the request to the Message Handling component, which routes
 the request to agent 2. When the MMS of agent 2 receives the message in its message handling component, this component passes the message to the Message-Service Matching component. The message-service matching component requests services from the service repository obtained during initialization and matches the message with these services. If a match is found, the message-service matching component passes the matched service to the translation component. The translation component translates the information using agent 2’s vocabulary, units, and data format. The MMS then calls the service.

Figure 3.1: The interaction among the MMS components.

Agent 2 executes the service and returns a response. The MMS receives the response, which is represented in agent 2’s local vocabulary, in its translation component. The translation component translates the response to the global vocabulary and normalizes the units and data formats and passes the response to the Response Handling component. The response handling component filters out unwanted information by comparing the response to the requested information and passes the response to the message handling component, which sends the response to agent 1. The MMS of agent 1 receives the response in its message handling component and passes the answer to the translation component. The translation component translates the answer to agent 1’s local vocabulary and local units and formats. Finally, the MMS returns the response to agent 1.

3.1 MMS-MMS Communication

The MMS’s of agents communicate using the Knowledge Querying and Manipulation Language (KQML). KQML is an agent communication language that can be used to create and exchange messages among agents. A KQML message consists of the following set of arguments: performative, sender, receiver, reply-with, in-reply-to, content, ontology, and language. The performative argument determines the type of the message (e.g., query). The sender/receiver argument specifies the sender’s/receiver’s name or address. The reply-with argument is an identifier whose value uniquely identifies a request message, and the in-reply-to argument is an identifier whose value uniquely identifies a reply message. The content argument specifies the actual message (what information is provided and what information is requested). The ontology argument specifies the ontology name that defines the concepts in the content, and the language specifies the name of the content language in which the content of the message is encoded (e.g., KIF: Knowledge Interchange Format). Agents that use KQML must use its syntax and semantics, abide by its protocols, and agree on the format of the content (how the information in the content argument of the message is formulated).

In our research, we are able to discard two arguments of KQML. We discard the ontology argument because all MMS’s have identical ontologies. We discard the language argument because all MMS’s use the same content language, XML.

The message handling component (see figure 3.1) creates KQML messages. In our research, we have two types of messages, namely query messages for requesting information from other agents, and response messages, which are answers for query messages. To distinguish between these two types of messages, the message handling component assigns the keyword query as a value for the performative of the query message and tell for the performative of a response message.

Besides creating KQML messages, the message handling component has two other tasks. It maintains a list of agent addresses and uses this list to deliver messages between agents. In addition, the message handling routes an in-coming message to the appropriate MMS’s component depending on the type of the message. It routes all query messages to the message-service matching component and all response messages to the translation component.

3.2 Message-Service Matching

The matching process takes a message and a set of services, all represented in global concepts, and outputs the matched service, if any. The process operates on its input by matching the input and output parameters of a message with those of a service. When matching two concepts (input/output parameters), we may encounter two types of concepts, namely compound concepts and simple concepts. A concept is compound if it is an aggregation of other concepts. We call this concept the parent concept and its parts are child concepts. A concept is simple if it has no children. Figure 2.5 provides examples of both. Processor Name is compound because it has children (e.g. Processor Type and Processor Speed) whereas Price is simple because it has no children.

When matching input and output parameters of a message and a service, the process can encounter three cases. First, structural matching occurs when a compound concept in a request/service must match with simple concepts in a service/request. Referring to figure 2.5, structural matching occurs when the process matches, for instance, Processor Name in a request with its children, Processor Type and Processor Speed in a service. Second, non-structural matching occurs when the process must match a compound concept with a compound concept, or a simple concept with a simple concept. Referring to figure 2.5, matching Price to Price is non-structural and so is matching Memory Name to Memory Name. Third, subsumption occurs when a parent concept must match with some, but not all, of its child concepts. Referring to figure 2.5, Processor Type matches with Processor by subsumption.

When an input parameter of a message matches with a service input parameter, the matching must be either structural or non-structural. The following example demonstrates the reason for the exclusion of subsumption. Assume that an in-coming message provides Processor information (Processor Manufacturer = “Intel”, Processor Speed = “2.8GHz”, and Processor Type = “Pentium IV”) and inquires about the Price of the Processor, and assume that a service takes the Processor Speed and returns its Price. If we allow a subsumption match, then this message matches with the service because Processor subsumes Processor Speed and Price matches with Price. However, it may be the case that the service returns the Price of AMD processors not Intel processors as required by the message. Therefore, the information returned to the requesting agent is useless or even deceiving. If an output parameter of a service subsumes the return parameters of a message, then they match but not vice versa. The parent concept can always provide complete values for its children, but a child cannot provide complete information for its parent. Consistent with this exclusion of subsumption, in order for a message to match a service, the MMS requires that all of the input parameters of the message match with the input parameters of the service and vice versa
 and that the output parameters of the service must, at least, cover the output parameters of the message.

In addition to resolving structural, non-structural, and subsumption matches, the matching process must reorder, if necessary, the input parameters of the message to match the order of the input parameter of the matched service. This process is straightforward because both the input parameters of the message and the service are represented in terms of the global ontology. As a result, the MMS just moves each input parameter in the message, if necessary, to be in the same position as the input parameter of service with the same name. This reordering makes it possible to assign the appropriate values provided by the message to the appropriate input parameters of the service.

3.3 MMS-Agent Interaction

Agents formulate their requests as function calls. Calling a function requires, of course, that the caller know the function name, the exact input parameters of the function, their order, and the return type. Although agents, in our system, do not usually know each other nor are they expected to know each other’s services, the MMS allows the agents to make function calls as if they did know. In order for this to work, an agent must be able to make function calls independent of any agent by providing a name for a service that does not necessarily match the receiving agent’s service name, input values whose type and order need not match the receiving agent’s service input parameters type and order, and a return type that need not match the agent’s service return type.

An agent’s programmers code normal function calls in the usual way. They specify a function name; they give the input parameters, which must be defined somewhere in the code prior to the call and initialized (at compile time or run time) either prior to the call or in the call itself; and they assign the result of the call to a variable, which must also be defined. The MMS distinguishes between external function calls (to other agents) and internal function calls by examining the agent’s code. If the call refers to a function that is not defined anywhere in the agent’s code, the MMS considers this to be an external call to other agents
.

When the MMS encounters an external function call, it replaces this call by a series of valid Java calls to functions in the MMS. These functions pass the input parameters of the external call as well as the name of the function to the MMS. If the type of the input parameter is a Java built-in type, the MMS immediately inserts a call to the appropriate MMS’s function
. If, however, the type of the input parameter is a user-defined type
, the MMS generates a function in its API
 that can receive a value of this type and places a call to this function in the agent’s code. For the name of the function, the MMS generates a function in its API that takes a string as an input whose value is the name of the function and returns a value whose type must match the type of the output parameter to which the result of the call is assigned. The MMS inserts a call to this MMS-generated function in the agent’s code and assigns the result of the call to the output parameter specified in the original call. When the MMS receives the name of the function, it makes a KQML message out of the received information.

Figure 3.2 shows an agent’s programmers’ call to an assumed external function, getPcInfo, which takes the ProcessorSpeed and the RamSize and returns information about the PC. The input parameter, ProcessorSpeed, is defined and initialized at run time, prior to the call, by receiving its values from a user interface. The input Parameter, RamSize, is initialized in the call itself. The type of the output parameter to which the result of the call is returned is the user-defined type, PCInformation. The MMS transforms this call to the series of calls that figure 3.2 shows. The first two MMS-generated calls allow the MMS to receive the input parameters along with their values. The last call passes the function name, getPcInfo, to the MMS. The return type of the last call is PCInformation because the result of the call is assigned to the output parameter, PcInfo, which is of the type PCInformation. When the MMS receives the function name, it creates a KQML message using the input parameters (and their values), ProcessorSpeed and RamSize, received from the first two MMS-generated calls, and the output parameter, PcInfo. The MMS then sends the KQML message to some agent.

double ProcessorSpeed = Double.parseDouble(ProcSpeedField.getText());

//ProcSpeedField is the name of the text field in which a user can type in the processor speed
PCInformation PcInfo; //PCInformation is a user-defined type which should be a class.

//The call, which the programmer places in an agent’s code

PcInfo = getPcInfo(ProcessorSpeed, "RamSize = 512MB");

//The MMS generated calls, which replaces the function call
MMS.sendString("ProcessorSpeed= "+ProcessorSpeed);

MMS.sendString("RamSize= 512MB");

PcInfo = MMS.sendPCInformation("getPcInfo"); //A function returns a value of type PCInformation
Figure 3.2: A function call and the MMS calls.

When the MMS receives the response for the request, it creates an output parameter of the type PCInformation
 and assigns the values in the response to the fields of the output parameter. The MMS returns this output parameter as a result of the call, which, in turn, is assigned to the output parameter PcInfo.

 Since function calls are ordinary tasks in all programs no matter whether they are normal programs or agent programs, agents need no common communication language to speak to each other. In addition, because the MMS calls services of agents, the agents are freed from the burden of parsing messages and executing appropriate services. Therefore, agents need not to agree on a content language. Furthermore, because the MMS establishes mappings between its global ontology and its agent’s local ontology during the initialization stage, the MMS can do translation on the fly, and therefore agents do not have to share ontologies. As a result, agents in our system need neither agree on a common communication language or a content language nor share ontologies.

Chapter 4

Experimental Results

To measure the performance of the MMS, we implemented three multi-agent systems: Computer-Shopping Agents, Book-Shopping Agents, and Meeting-Scheduling Agents. To avoid a natural bias toward our work, we implemented the services of each agent as described by others, and we took the concept names, units of measurement, data representations, and data from sources defined by others. This chapter presents the test cases and the performance of our system.

4.1 Computer-Shopping Agents

For any application, our first task is to create the global ontology. To create the global ontology for our computer-shopping application, we visited eight websites [35, 37, 31, 33, 36, 27, 40, 22] and collected the concepts for each part/attribute of a computer, the units of measurement, and the data formats. Figure 4.1 shows an example of a website, which contains concepts (e.g. Processor Manufacturer) and units (e.g. GHz).

Given the concepts and the implied relations among them, we created a conceptual model for the application covering the concepts in which we were interested. Figure 2.5 shows part of the conceptual model for our computer-shopping application.

To form names for the concepts, we designated one of the concept names (e.g. Processor Manufacturer in figure 4.1) as the global concept name. We let that name and all other names for that concept be its synonyms. We created a recognizer for that global concept by putting its synonyms together in a regular expression. When we created the recognizers we removed all spaces/commas between the parts of a concept name because the recognizers apply to Java code and the spaces/commas cannot be part of Java variable names. Figure 4.2a shows a global concept, its synonyms, and the global concept name recognizer (the number after each synonym gives the number of sites in which the synonym was found).

We created recognizers for each unit of measurement that we found in the eight sites. Figure 4.2b shows an example of the recognizer for the units used in the eight sites to measure the Memory Capacity. For this application there were no data formats of interest.

[image: image2.png]v e
9023 Qo oo v 31595
et I

G| vt s [0S0 o B

W onpro5 sies e e s
. i

Howrr - wno
Rrwmoer 2 onw |
Processor
Clock Speed 266 GHz
Installed Gty 1
Hanufacturer intet
Max Supported Qry_©
Memary
RAM Installed Sizs 256 M8
RAM Max Supported 1 GB
Size
RAM Memory pczi00
Specifisation
Compliance
RAM Technoloay DR SDRAM
o =

08 29203 @ || € &1 | £m) - afn| @s | [i | £ Do .| e [T .| (2S00

Figure 4.1: A computer-shopping website (website [27]).

	Global concept name
	Processor Manufacturer

	Synonyms found in the 3 websites*
	Processor Manufacturer (3)

	Concept name recognizer
	(Processor)(Manufacturer)

* Two websites [31, 33] used the concept Processor to represent the aggregate of all three concepts Processor Manufacturer and Processor Type and Processor Speed, and three websites [35, 37, 36] included the Processor Manufacturer as part of Processor Type.

(a)

	Memory capacity units found in the 8 websites
	MB (8), GB (8)

	Memory capacity units recognizer
	(MB|GB)

(b)

Figure 4.2: Global ontology recognizers.

After creating the global ontology for the computer-shopping application, we created seller and buyer agents. The seller agents need to provide services for buyer agents. Figure 4.3a shows a form from website [14]. We generated services for a seller agent according to a form we found in a particular website. We did not generate all possible services implied by a form because the number of the services would have been large
 and, more importantly, because many of the services would have been redundant in the sense that they could not measure anything different from a few well chosen services. Therefore, for a form with n field names, we generated n services, where the ith service has i input parameters chosen from the field names, making sure that each field name participates in the generated services at least once. For example if we have a form with four field names x, y, z, and t, then the generated services can be: F1(x), F2(y,z), F3(t,x,y), and F4(z,t,x,y).

	
[image: image3.png]Desktop Finder

Manufacturer: Processor Class:

processor Sieed Installed Memuvi

[y Hord o Copac =] 5 fos |
_Find |

(a): A form.

	PcInfo getPcInfo (String InstalledMemory)

{

 //code

}

class PcInfo

{

 String ProcessorManufacturer;

 String ProcessorClass;

 String ProcessorSpeed; //GHz

 …;

 double Price; //$

}

(b): A service signature generated from the form and a type definition.
	
[image: image4.png]Sony VAIO Digital Studio RS420
Compare Prices | Full Speciications | Description |

Pre-configured

Processor Manufacturer: Intel
Processor Class: Pentium 4
Processor Speed: 280 GHz

Installed Memory: 512 MB
Full Specifications

Processor Manufacturer Intel
Processor Class Pentium 4
Processor Speed 286tz
Installed Mermory 512MB

Mermory Technology SDRAM
swoage
Included Dives 35" Floppy Divve

Hard Drive Capacity 40GB

(c): Returned results for

Installed Memory = ”512MB”.

	Figure 4.3: Service generation.

We generated a service signature by determining its name, input parameters, and return type as follows. We obtained input parameter names for the service directly from the field names of the form. We determined the type of each input parameter of the service according to the type of the allowed values in its matching field. If the value was a number without a decimal point, we chose the type to be int; if the value was a number with a decimal point, we chose the type to be double; otherwise we chose the type to be String. We defined the return type of the service according to the result we obtained by entering valid values for the field names we chose to be input parameters. If the site returned one value, we let the type of this value be the return type of the service (determined in the same way we determined input value types). Otherwise we defined the return type as a Java class with the site’s concept names as the class’s attributes each with a type determined in the same way we determined input value types. Finally, we used the following convention to name the service. If the service returned one value, we used the concept name for the value prefixed with get as the service’s name (e.g. getPrice); otherwise we used the generic name getPcInfo. For instance, figure 4.3a shows a form provided by site [14], and figure 4.3b shows the service, PcInfo getPcInfo(String InstalledMemory), generated from the form. We chose the field name(Installed Memory(to be the service input parameter, InstalledMemory
. The type of the input parameter is a string because the form allows the values for this field to be alphanumeric values (see “512 MB” in the form). The return type of the service is the class PcInfo
 with attributes Processor Manufacturer, processor Class, ... because when we filled in the field Installed Memory with the value “512MB”, we obtained the information in figure 4.3c, which has multiple values. We defined the units for each attribute through comments (e.g. Processor Speed is in GHz and the Price is in US dollars). Finally, since the returned information has multiple values, we named the service using the generic name getPcInfo.

The generated services for seller agents need to access data to answer a buyer agent’s requests. We obtained the data for these services from the same sites we used to generate services. We stored this data in a table whose schema (names of the columns) were the concept names (we chose to model a computer) that were associated with the data in the sites. Figure 4.4 shows a partial example of data and its schema, which we took from figure 4.3c (site [14]).
	Processor Manufacturer
	Processor Class
	Processor Speed
	Installed Memory
	…

	Intel
	Pentium 4
	2.8 GHz
	512 MB
	

	…
	…
	…
	…
	

Figure 4.4: Data for the seller stored as a table whose schema is the concept names taken from figure 4.3c.

The buyer agent needs request messages to obtain information from a seller agent. A request is a call to a service. For each request, we must determine what information it provides for the called service’s input parameters and what information it requests. We use concept names to hold the information that a request provides for the called service’s input parameters and to specify a parameter to which the result of the call is assigned. The input parameters of a request receive their data through a user interface form, which we created using field names we took from the website we chose for the buyer agent (site [41]). We generated requests for the buyer agent using concepts and units of measurement that came from the website. The number of requests was sufficient to cover all the concepts and units of measurement in the website and to invoke all services of every seller agent. The requests presumably return values, which should be represented in units and formats acceptable for the buyer agent. We took the units of measurement and the data formats for the concepts from the chosen buyer website. Figure 4.5 (site [41]) shows the website from which we created the request message in figure 4.6. We created the request as a function call to an assumed service, getPrice, using three concept names, SystemRAM and MemoryType, which receive their values at runtime from a user interface, and Price, which holds the result of the call. The request

[image: image5.png]Flo Edt View Favortes

Tools

-ompaq Presario PC 55140WM-B

Help

17-inch LCD Monitor FP7317 Bundle

icrosoft Internet Explorer

=181

Ghack v+ o - @ [0 Q| Qoearch [Gravortes @ivedn (3 | By- S = [

Address [€) htp: jwnw.walmart comjcatalogproduct.gspproduct i

9% dept

A45path=0%3A35447,3A3951 Flong_descr

o o Jwe

Google-|

1| Gsearchweb - Gxsearchsie | @ | PR @ - | Foptons @) - 2

See larger photo

Audio CD-Rs, 50-Pack
$16.88

™ 1ndude in order

Product Information
Opersting System
Manitar:

Pracessor Brand:
Pracessor Type:
Pracessar Speed
System RAM:

Mermory Type:

Hard Priue Size.

$898.00

Availability:
before shiping.

to 2 business days to process

Shipping Cost: Ta see the shipping cast for
s item, add it to your cart,

Add to Cart

‘Add to My Registry

This Compag delivers both fun and
function, and plenty of both! Duplicate
or even record your own CDs, then
watch a DVD on the super-sharp, color-
rich 17-inch liquid crystal display. When
it's time to get serious, fire up the
cutting-edge Microsaft Money and Intuit

Quicken software to organize your More Recommendations

investments and finances,
See full description

See similar items

Model No. 55140u-b
Manufacturer Cormpaq

Accessories We Recommend for This Item

Check the boxes belaw and then click "Add to Cart’ (abave) to include any of these
items with your order.

)

Loaitech cordless
TrackMan Wheel
Mouse

$45.86

™ 1ndude in order

Micrasaft Windows XP Home Edition
Compag FP7317 17-inch LCD flat panel
Amp

Athlon ¥P 2600+

2133 GHz

256 M8

DDR-SDRAM

£ AR llra NS hard drive

Edge Disko!
256 MB Drive
Watch

$112.70
mm_ HPSCANIET
[T\ 5530 Scanner
$214.78
HP Photosmart

REBATE
AVAILABLE
$298.00

Protect your Compaq
Presario PC §5140WM-B &
17-inch LCD Monitor
FP7317 Bundle with a Keep

Gifting Options

Gifting options for this item;
Gift Message
See details.

]

Astart| | 8 L O RO B @

|| &1welcome o ..| &Mt Encart... | EExperimert... | E]appendiat...| E]Bbiography...| ElDacumentz ...|[&]walmart.c.

[O>BB0D amm

Figure 4.5: Site [41].

 String SystemRAM; //MB
 String MemoryType;
 double Price; //$

 //get the values from a user interface
 SystemRAM = MemField.getText();

 MemoryType = MemTypeField.getText();

 Price = getPrice(SystemRAM, MemoryType); //call to assumed service

Figure 4.6: An example of a request.

also specifies the units of measurement and data formats the buyer agent accepts (i.e. the buyer agent accepts Price in US$).

4.1.1 Results

To measure the performance of the MMS for the computer-shopping application, we fixed the global ontology and used 9 test sites, one for a buyer agent and the rest for seller agents.
We measured the MMS’s performance in mapping concepts, units of measurement, and data formats used by agents to the global ontology. The agents’ code included 104 concepts, which the MMS needed to map to global concepts. The MMS generated 94 mapping pairs of the form (Local, Global), of which 91 were correct, yielding (91/104) or 88% recall and (91/94) or 97% precision. The units of measurement, in the agents’ code, that the MMS needed to recognize were currencies, processor/hard-drive speed units, and memory/hard-disk capacity units. The currency types in the 9 test sites were US$, GBP (Great Britain Pound), and EUR (Euro). There were 9 currency instances that the MMS needed to recognize. The MMS recognized 9 instances for (Price Unit: currency) all of them were correct. The number of processor/hard-drive speed units and memory/hard-disk capacity units was 23. The MMS recognized 25, of which 23 were correctly associated with their global counterparts. Altogether there were 32 unit instances; the MMS recognized 34, of which 32 were correct, yielding 100% recall and 94% precision.

4.1.2 Discussion

Before we discuss our results, we give our rationale for excluding all mappings, except local-global ontology mappings, from our performance measurement. The local-global ontology mapping generates mapping pairs between local concepts and global concepts, recognizes units of measurement, types, and data formats. This information is necessary and sufficient to translate messages and services from local to global and vice versa. Representing messages and services in terms of the global ontology makes message-service matching straightforward because the concepts to be matched belong to the same ontology. Furthermore, it makes result filtering straightforward because the response handler only needs to make simple comparisons between information represented in terms of the same ontology. Type conversions are also straightforward because the MMS knows both the source and the target types, and thus the conversion is straightforward (we do not consider loss of precision). Finally, since the MMS will have recognized all the concept names during the local-global ontology mapping, the input/output parameters of the services, which we need to build service signatures, are already recognized. These observations allow us to focus only on the local-global ontology mapping and to ignore measuring the other processes.

We now discuss the results of the local-global ontology mapping given in the last section. The MMS failed to recognize and consequently map 13 concepts out of 104 in the agents’ code. Processor Brand and Processor Frequency are examples of an agent’s concepts that did not map to global concepts. They are synonyms for the global concepts Processor Manufacturer and Processor Speed respectively, but the recognizer for Processor Manufacturer does not include Processor Brand (see figure 4.2a) and the recognizer for Processor Speed does not include Processor Frequency (see figure 2.1). Although we can simply fix this problem for these sites by adding the synonyms that appear in these sites to the global concept recognizers (e.g. by adding Processor Brand to the Processor Manufacturer recognizer), we are aware that this solution may not resolve the problem because there may be additional synonyms, which are still not included. A possible technique, which we will further investigate in future work, to fix this recall problem is to generalize the recognizers by not limiting ourselves to the concepts that we had seen in websites or provided by subjects, but also to exploit our knowledge of the domains to augment the recognizers with the concepts that we would expect to see in these domains. Further we could use auxiliary synonyms dictionary, such as WordNet [12], and could use more sophisticated matching techniques [1].

The MMS generated 3 incorrect mapping pairs, all of them of the form (ProcessorType, ProcessorClass). The incorrect pair arises because of a naming ambiguity among the websites we visited. To investigate further how the MMS incorrectly produced the pairs (ProcessorType, ProcessorClass), let us recall how we built our conceptual model (figure 2.1). Most of the websites either represented the processor as one concept Processor or represented the processor in terms of three different concepts, namely Processor Manufacturer, Processor Type, and Processor Speed, using these names or synonyms for these names. A few, however, represented a processor in terms of only two different concepts, namely Processor Type and Processor Speed, using these names or synonyms for these names. The websites that represented the processor in terms of three concepts used the names Processor Type or Processor Class to represent the type of the processor (e.g. “Pentium 4”), and we selected Processor Class to be the global concept for our conceptual model. The websites that represented the processor in terms of two concepts also used the names Processor Type or Processor Class to represent the manufacturer and the type of the processor (e.g. “Intel Pentium III”), and we selected Processor Type to be the global concept for our conceptual model. As a result, when we used our predetermined method for generating recognizers, both global concepts Processor Type and Processor Class were identical(both recognizers were (Processor)(Type|Class). Thus, the MMS incorrectly declared the pairs (ProcessorType, ProcessorClass), namely because both recognizers recognized Processor Type in an agent’s code and produced two pairs (ProcessorType, ProcessorType), which is correct, and the pair (ProcessorType, ProcessorClass), which is incorrect.

Possible techniques, which we will investigate further in future work, to fix this precision problem are to use more sophisticated matching techniques [1] and to use reasoning rules. For example, consider the reasoning rule: “If Processor Type (or Processor Class) is recognized in an agent’s code and there is no occurrence of Processor Manufacturer, then Processor Type (or Processor Class) maps to the global concept Processor Type; otherwise it maps to the global concept Processor Class.” This rule would detect the incorrect pairs (ProcessorType, ProcessorClass) and automatically remove them.

Regarding the units, the MMS also incorrectly recognized 2 units. It recognized MB (Megabyte) twice as a hard-disk capacity, but the agents used GB as their hard-disk capacity unit. If any website we used to create the global ontology had had MB units for hard-disk capacity, we would have included MB as a unit and would not have encountered this error.

4.2 Book-Shopping Agents

For our book-shopping application, we implemented four agents. All played the buyer and seller roles at the same time. Using the same method as for our computer-shopping application, we used 4 different book-shopping websites [34, 20, 22, 24] to generate services and requests, to obtain data, and to provide units of measurement and data formats for our agents. We created the MMS’s global ontology using 4 other book-shopping sites [26, 17, 21, 42].

4.2.1 Results

 The agents’ code included 27 concepts, which the MMS needed to map to global concepts. The MMS generated 25 mapping pairs, of which 25 were correct, yielding (25/27) or 93% recall and (25/25) or 100% precision. The units of measurement in the agents’ code that the MMS needed to recognize, were currency units, US$ and EUR. The MMS recognized all of them and no others, yielding 100% recall and precision. The MMS recognized 3 different date representations
, which constituted all the publication date representations in the four test sites, yielding 100% recall and precision.

4.2.2 Discussion

The MMS missed two concepts, namely Best Price and Our Price. These two concepts were synonyms for Price; however, the Price concept recognizer did not have these two synonyms causing the MMS to miss these two concepts. Although we can fix this problem for these 4 websites by adding Best Price and Our Price to the Price recognizer, this fix has the same concerns we discussed in section 4.1.2.

4.3 Meeting Scheduling Agents

For our meeting scheduling application, we requested some of the people in our research group at BYU to create their own scheduling information for agents in their own terms. The scheduling information consisted of concept names used to schedule meetings, data formats (specifically how they usually write dates and times), and services. Figure 4.7 shows the worksheet we used to request concepts and data formats. As can be seen, the worksheet has numbered boxes. The numbers refer to a high-level description of the semantics of each box; figure 4.8 shows examples of high-level descriptions for boxes 1, 2, and 3. Subjects filled in each numbered blank with the concept name (a single word or a phrase) to reflect the semantics of the description associated with that number (e.g. number 1 was filled with the concept name organizer). Subjects filled in boxes 7 and 9 non-specific dates and non-specific times respectively. In addition, there were two more boxes, one for a sample date and one for a sample time.

[image: image6.png]1)_orjam zer Please put in the box below your date
S format (how you normally write the date,

— g this i my specific ormat 0429/2003)
e
i o e Formed: ¥
2 ofendees Y203
e >
e o
Goodrich o 7
el T
e ey

o vecks P By

i degg afler fopon
) o cenptlioit oy s
3 pupese in « miple o vects

i A fo deys
Brainstorming in & R ceeks

Plesscwrite |
o_lengtls . your format fur
& Time formet /xh:(im:(eL

my format. 300

I Specific | bt 30)
5)_loestion Not specific \97

Afternoon

L
L
s

oy et

bekore lonct

Office 3331

10 Fegnirement's.

All must attend

Figure 4.7: An example of a filled-in worksheet.

[image: image7.png]‘The semantics of the slots:

1) The user will put in the text box the name of the person who is calling for the meetin;
(e.g. Embley is calling for the meeting). Choose a label (preferably a single word but
possibly a short phrase) to indicate this.

2) The user will choose from the list the names of the people to aitend the meeting.
Choose a label (preferably a single word but possibly a short phrase) to indicate this

3) The user will specify in the text box why the meeting is being called. Choose a label
(preferably a single word but possibly a short phrase) to indicate this.

Figure 4.8: A description of the semantics of the blanks.

These subjects from our research group also translated some high-level descriptions for services into service signatures. In the translation we asked them to use the concept names that they had chosen when they filled in their worksheets (i.e. figure 4.5). They chose names of services and input/output parameter types. Figure 4.7 shows an example of a high-level description. As can be seen, the description defines a service signature, but does not explicitly suggest the service’s name or input/output parameter types. Figure 4.9 also shows one subject’s translation of the description to a signature. The same subject filled in the worksheet in figure 4.7 and provided the service signature in figure 4.9. As can be seen, the translation of the service adhered to the concepts in figure 4.7. All the input/output parameters of the service came from the concept names in figure 4.7.

[image: image8.png]Servicel
{

Specification

Service takes the name of the person who is calling for the meeting, the name of the
people who are called for the meeting, the length of the meeting, the reason for the
mecting, and the date and time of the meeting (both date and time should be “not
specific”).

This service returns some possible times when the meeting can take place.

As a programmer translate this into a signature, .¢. specify, the name of the service, the
input parameters along with their types, the output parameters along with their types,
and in and out constraints, if any.

Pestvg Tiees (s amw,g&ﬂ Henkes 1 loft, shag e
e or e Far ¢
Roarns +BBE T2 o b mktﬁ

Ot Conshrints * st astardby (Tie rat)

Figure 4.9: A service description and the signature provided by one of the individuals.

We received 12 completely filled-in worksheets from 12 different individuals, 8 of which turned in worksheets several weeks before the remaining 4. Using methods similar to those used in our shopping applications, we used the concepts and data formats in the first 8 worksheets to build the global ontology. We used the concept names, data formats, and service signatures in the other 4 worksheets to build four agents. We implemented the agents based on ideas presented in [8]

4.3.1 Results

 The MMS needed to map 28 concepts in the agents’ code to global concepts. The MMS generated 22 mapping pairs of the form (Local, Global), of which 22 were correct, yielding (22/28) or 79% recall and (22/22) or 100% precision. The four agents used four different formats for date, instances of which are “25 Apr 04”, “4/25/04”, “4-25-2004”, and “4.25.04”. The MMS recognized all four of these formats and no others, yielding 100% recall and precision. The four agents used only one time format, namely a format with 12-hours with AM or PM. The MMS recognized this format, yielding 100% recall and precision.

4.3.2 Discussion

The MMS missed 6 concepts, namely Initiator, Authority, Scheduledby, PersonsInvited, DateFormat, and TimeFormat. The first three concepts are synonyms for the concept Inviter; the fourth concept is synonym for the concept Invitee; the fifth concept is meant to be a synonym for the concept Date; and the sixth concept is meant to be a synonym for the concept Time. Because the concept recognizers for Inviter, Invitee, Date, and Time do not have these synonyms, the MMS missed these 6 concepts. Although an obvious fix for the problem of missing the first 4 concepts is to add more synonyms to the global concept recognizers (e.g. adding Initiator to the Inviter recognizer), this fix raises the same concerns we discussed in section 4.1.2. We believe that missing the 5th (DateFormat) and 6th (TimeFormat) concepts is inevitable because these concepts are not synonyms for Date and Time. Most likely they originated because of a subject’s misunderstanding of the semantics of the two boxes (6 and 8) in figure 4.5.

4.4 Summary Discussion

The MMS performed reasonably well on the three applications, and we expect that the MMS can perform even better if we strengthen our concept recognizers using the techniques we discussed in section 4.1.2. We realize that using concepts derived from websites and meaningful names or phrases requested from subjects reveals our assumption that the concept names must be human readable in order for the MMS to work properly. However, we believe that this assumption is quite reasonable especially for agents, which typically use ontological concepts, with human readable names, to define their knowledge and to communicate with other agents.

Chapter 5

Related Work

We are aware of two related research efforts. We will describe each in enough detail and show the similarities and the differences with our work. We will also show the novelty of our approach.

1 Facilitating Message Exchange through Middle Agents [13]

In [13] the authors tried to overcome the problem that agents must agree in advance on a message format. To overcome the problem, they presented what they called “a shallow-parsing template approach.” A message template can be used in combination with an advertised service description, which basically defines a service’s input parameters and output parameters, to construct and exchange messages among agents.

There are three types of agents, namely provider agents, requester agents, and middle agents. Each provider agent, in the system, sends descriptions of its services to a middle agent. The descriptions consist of (1) the definition of each service in terms of its input parameters and output parameters, (2) a query template for each service, which can be used by a requester agent to query the provider agent, and (3) a reply template for each service, which helps a requester agent parse the response of the provider and get the information. The middle agent stores these descriptions in its database.

Communication among agents proceeds as follows. A requester agent communicates first with the middle agent specifying the name of the requested service. The middle agent tries to match this name with the names of the services that the middle agent stores. If a match is found, then the middle agent sends back the name of the provider agent(s), the query template(s), and the reply template(s) to the requester agent. The requester agent selects a provider agent, if there are several providers, and fills in the query template and sends this template to the provider agent.

Although this approach somewhat overcomes the requirement to pre-agree on a content language, it still suffers from some problems. (1) It requires agents to share ontologies so that they can understand with no ambiguity the meaning of the terms in the query and the reply. (2) It requires provider agents to send description of their service to the middle agent. (3) The use of message template establishes an upper bound on the expressivity of agent communication by restricting the number of valid messages that two agents (provider and requester) can exchange to those specified by the template in the advertised description. (4) It requires that agents (providers and requesters) be able to parse templates, which to some extent is tantamount to the agents agreeing on the content language of a message.

Agents in our system do not have any of these problems. They do not have to share ontologies. They do not have to send descriptions of their services to middle agents; in fact they do not have to send anything at all to advertise their services. Our system will extract these services. In our system, agents have no limit on the type of messages they can exchange. Our system does not require agents to agree on a content language or to use any particular communication language.

2 LARKS: Dynamic Matchmaking among Heterogeneous Software

 Agents in Cyberspace [16]
In [16] the authors tackle the problem of finding a service provider. To do that, they used middle agents and defined a language called LARKS (Language for Advertising and Request for Knowledge Sharing). Using this language, agents can specify their services and send descriptions of these services to a middle agent that stores them in its database. Matchmaking is defined as the process of finding an appropriate service provider for a request through the middle agent. The matchmaking process has the following general form. (1) Provider agents send descriptions of their services specified in LARKS to a middle agent. (2) The middle agent stores these descriptions. (3) A requester agent sends a request specified in LARKS for a provider agent that is capable of answering the request. (4) The middle agent matches the request against all the advertised services and returns the result(a list of provider agent name(s).

It immediately follows that the middle agent does not participate in any communication between the agents; it only returns the name of the provider agent(s) that can answer the request. The requester agent then communicates with the provider agent(s). This research assumes, of course, that agents (providers and requesters) share ontologies, use the same communication language, and pre-agree on a content language. Because the system developed by the authors can match requests against services only if both are represented in LARKS, the authors require agents to use LARKS to specify their services and requests.

Since our system does not require agents to send descriptions of their services to any middle agent, there is no need for a specification language such as LARKS. In addition, when an agent requests a service, the agent communicates only with our system. Our system then finds a service provider, communicates with the service provider, and returns information back to the requesting agent.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have developed a system to allow agents to communicate with no need to share ontologies, use a common communication language, and pre-agree on a content language. Instead, our MMS, which has a predefined global domain ontology, maps local agent concepts to global domain concepts and uses these mappings to translate requests and services to terms specified in the global domain ontology. With requests and services all expressed in common ontological terms matchmaking is straightforward.

Under the assumption that local agent concept names are human-readable, our system has been able to map these names to its global ontology. Tests we conducted in three domains (Computer-Shopping, Book-Shopping, and Meeting Scheduling) show that for these three applications our system performs with an average of 87% recall and an average of 93% precision for concept recognition, an average of 100% recall and an average of 96% precision for units recognition, and an average of 100% recall and precision for data format recognition.

6.2 Future Work

Although we have largely achieved our initial goal of enabling agents within a prespecified domain to communicate on the fly without the usual pre-agreement requirements, much remain to be done.

1. The local-global mapping process should be strengthened by generalizing the recognizers and adding some reasoning rules as we proposed in chapter 4 so that the MMS is able to correctly recognize more concepts (increase the recall) and to automatically resolve most (if not all) of anomalies we discussed previously (increase the precision).

2. The matchmaking capability should be extended so that the system can do partial matching not just exact matching of requests and services.

3. The framework should be extended to handle all types of knowledge sharing among agents, not just queries.

References

[1] P. A. Bernstein and E. Rahm. A Survey of Approaches to Automatic Schema

 Matching. The VLDB Journal, Vol. 10, No. 4, pp. 334-350. 2001.

[2] J. M. Bradshaw. Software Agents. AAAI Press, Menlo Park, California. 1997.

[3] D. W. Embley, B. K. Kurtiz, and S. N. Woodfield. Object-Oriented Systems Analysis:

 A Model Driven Approach. Yourdon Press, Englewood Cliffs, New Jersey. 1992
[4] T. Finn, Y. Labrou, and J. Mayfield. KQML as an Agent Communication Language.

 Chapter 14, pp. 291-316. Software Agents. J. M. Bradshaw (ed.). AAAI Press,

 Menlo Park, California. 1997.

[5] T. Finn, D. McKay and R. McEntire. KQML as an Agent Communication Language.

 Proceedings of the 3rd International Conference on Information and Knowledge

 Management, ACM Press, Gaithersburg, Maryland, Vol. 1, No. 2, pp. 456-463.

 November 1994.

[6] M. Frank, N. F. Noy, and W. Staab. The Semantic Web Workshop at the 11th

 International WWW Conference (WWW-2002). SIGMOD Record, Vol. 31, No. 3,

 pp. 64-67. September 2002.

[7] M. Genesereth and S. Ketchpel. Software Agents. Communications of the

 ACM, Vol. 37, No. 7, pp. 48-53. July 1994.

[8] N. R. Jennings and A. J. Jackson. Agent-Based Meeting Scheduling: A Design and

 Implementation. IEEE Electronics Letters Journal, Vol. 31, No. 5, pp. 350-352.

 March 1995.

[9] Y. Labrou. Semantics for an Agent Communication Language KQML. PhD

 Dissertation, University of Maryland. 1997.

[10] Y. Labrou and T. Finn. Comments on the Specification for FIPA Agent

 Communication Language. Technical Report, University of Maryland, Baltimore,

 Maryland. February 1997.

[11] logic.stanford.edu/kif/dpans.html
[12] G. A. Miller. WordNet: A Lexical Database for English. Communications of the

 ACM, Vol. 38, No. 11, pp. 39-41. November 1995.

[13] T. R. Payne, M. Paolucci, R. Singh and K. Sycara. Facilitating Message Exchange

 through Middle Agent. Proceedings of the 1st International Joint Conference on

 Autonomous Agents and Multi-Agent Systems, Bologna, Italy, pp. 561-562. July

 2002.
[14] shopping.yahoo.com
[15] H. A. Soukhanov. The American Heritage Dictionary of the English Language.

 Third Edition, Houghton Mifflin Co., New York. 1992.

[16] K. Sycara, S. Wido, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking Among

 Heterogeneous Software Agent in Cyberspace. Chapter 5, pp. 173-203. Autonomous

 Agents and Multi-Agent Systems. Kluwer Academic Publishers, Netherlands. 2002
[17] totalcampus.com/store/default.asp
[18] KQML Developers. Software user's manual prepared for United States Air Force,

 Versions 1.8 and 1.95. March 1995.

[19] Specification of the KQML Agent-Communication Language - plus example

 Agent Policies and Architectures. By the DARPA Knowledge Sharing Initiative

 External Interfaces Working Group. 1993.

[20] www.addall.com
[21] www.alibris.com

[22] www.amazon.com
[23] www.backoffice.be/shop/compufind.html.asp

[24] www.barnesandnoble.com
[25] www.bbf.ca/sellers.asp?qlid=49&qlname=Montreal

[26] www.buy.com
[27] www.cdw.com
[28] www.circuitcity.com/home.jsp
[29] www.compusa.com
[30] www.dealtime.com/xPP-PC_Desktops
[31] www.dell.com

[32] www.fipa.org
[33] www.gateway.com
[34] www.half.com

[35] www.half.ebay.com
[36] www.plasmakings.com/productdetail.asp?level=178&catid=179&productid=2131
[37] www.price.com
[38] www.pricegrabber.com/search_attrib.php/page_id=9/ut=80bbaa7052328c49
[39] www.shopping.hp.com
[40] www.ubid.com
[41] www.walmart.com
[42] www.whsmith.co.uk

Message-Service

Matching

Message

Handling

Service call

MMS

MMS

 Messages

Request

Message-Service

Matching

Message

Handling

public BookInfo[] BookInformation (LinkedList Author_Name,String ISBN)

public String getISBN(String Title)

public double getAmt(String P)

…

Agent’s Exported Services

Date Format: “Month/Day/Year”

…

Data Format

Price Unit: “US$”

ProcessorSpeed Unit: “GHz”

…

Units of Measurement

(Local, Global)

--

(Price, Price)

(ProcessorClockSpeed, ProcessorSpeed)

(ProcessorClass, ProcessorType)

(RamStandardSize, MemoryCapacity)

(Date, Date)

…

Computer-Shopping Domain

Response

Response Handling

Response Handling

The matched service

Services

repository

Services

repository

Translation repository

Translation repository

Translation

Translation

Response to the message

String PcMake = “IBM”;

double Price = getPrice(PcMake);

Agent 2

Agent 1

� System means the system that we implemented.

� The problem of finding a service provider is not the focus of this research and we assume that this problem is solved. When the MMS receives a request from its agent, it chooses an agent’s address from its registry and sends the request to it.

� That is, a message and a service do not match if the message provides more or less information than the service needs.

� The MMS can, of course, list the external calls and prompt an agent’s programmers to confirm that the calls are indeed external.

� We created, in the MMS, a function for each Java built-in type (primitives such as strings and doubles, and collections such as lists and hashtables).

� The user-defined types must be Java classes and currently the MMS requires all the fields of the types have public visibility.

� The API is one of the MMS modules that mediate between the MMS and an agent.

� Recall that this type is a Java class that the MMS knows, and therefore the MMS can create an instance of it.

� Any combination of fields can constitute a service. For example, in a form with 6 fields, the number of possible services (excluding services with 0 input parameters) is C(6,1) + C(6,2) + … + C(6,6) = 63, where C(k,j) = (k!/(j!(k-j)!)).

� We removed the space from the name of the field so that it would be accepted by Java compiler.

� Since the returned information by a form (in computer-shopping application) is the same no matter what field names we used, we defined the return type of all the generated services (from a particular form) to be PcInfo.

� Instances of these three formats are: April 2004; Apr 2004; and 25 April 2004.

PAGE
61

_1139495127

_1140585723

_1139476038

_1139477176

