
LOGICAL FORM IDENTIFICATION FOR

MEDICAL CLINICAL TRIALS

by

Clint A. Tustison

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Arts

Department of Linguistics and English Language

Brigham Young University

December 2004

Copyright c© 2004 Clint A. Tustison

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Clint A. Tustison

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Deryle W. Lonsdale, Chair

Date David W. Embley

Date Alan K. Melby

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Clint A. Tustison
in its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Date Deryle W. Lonsdale
Chair, Graduate Committee

Accepted for the Department

Lynn Henrichsen
Department Chair

Accepted for the College

Van C. Gessel
Dean, College of Humanities

ABSTRACT

LOGICAL FORM IDENTIFICATION FOR

MEDICAL CLINICAL TRIALS

Clint A. Tustison

Department of Linguistics and English Language

Master of Arts

Programming a computer to understand natural language has become increasingly

more important as the amount of natural language in electronic format has increased. One

of the areas where text understanding is valuable is medical literature. Most of the research

on information extraction and text understanding in medical literature has focused on med-

ical abstracts and researchers have used various tools to get interesting results. While med-

ical abstracts have proved very fruitful for this type of research, very limited research has

been done on extracting information and understanding text from medical clinical trials.

Clinical trials are very important to doctors and medical organizations and programming

a computer to automatically understand the data would be valuable. This thesis presents

LG-Soar, a system capable of parsing eligibility criteria in clinical trials and outputting

a semantic representation using predicate logic. This approach is different than other in-

formation extraction approaches to natural language in that it uses a cognitive modeling

engine to convert the parsed sentences into corresponding predicate logic forms. Initial re-

sults reveal that LG-Soar is a viable system for doing natural language text extraction and

understanding.

ACKNOWLEDGMENTS

I would like to thank the National Science Foundation for supporting this research.

Contents

Acknowledgments vi

List of Tables ix

List of Figures xi

1 Introduction 1

2 Literature Review 3

2.1 Information Extraction Domains . 3

2.2 Information Extraction Applications . 5

2.3 Information Extraction Methods . 7

2.4 Problems in Information Extraction . 10

3 Method 15

3.1 Clinical Trials . 15

3.2 Syntactic Parser . 18

3.3 Syntax-to-Semantics Conversion . 19

3.4 Output Formats . 21

4 System Description 23

4.1 Clinical Trials Corpus . 23

4.2 Pre-Processing . 23

4.3 Link Grammar Parser . 27

4.4 Syntax-to-Semantics Engine . 30

4.5 Output Formats . 36

vii

4.6 Summary . 37

5 Results 41

5.1 Evaluation Metrics . 41

5.2 Qualitative Results . 43

5.3 Quantitative Results . 43

6 Discussion 45

6.1 Benefits of LG-Soar . 46

6.2 Future Work . 46

7 Conclusions 49

References 53

A Examples Showing LG-Soar Process 55

B Examples of Incorrect Output 57

viii

List of Tables

2.1 Differences between dependency and link grammars 8

2.2 Ambiguities in English . 10

2.3 Prepositional phrase ambiguity . 11

4.1 Major link types and sublinkages . 29

4.2 Initial trace of syntax-to-semantics conversion by LG-Soar 32

4.3 Operators for A criterion equals serious heart problems 34

4.4 Productions used for A criterion equals serious heart problems 34

5.1 Confusion Matrix . 41

5.2 Sample LG-Soar output . 43

5.3 Initial LG-Soar quantitative results . 44

6.1 Comparison of relation capture for biology 45

A.1 LG-Soar processing examples . 56

B.1 Examples of incorrect output . 58

ix

x

List of Figures

2.1 Example syntactic constituency parse . 12

3.1 Logical form identification process . 16

3.2 Information included in clinical trials . 17

3.3 a of clinical trial NCT00042666 . 18

4.1 Tagged XML file of clinical trial NCT00042666 25

4.2 Link grammar output for A criterion equals serious heart problems 28

4.3 LG-Soar post-processing . 35

4.4 DRS for A criterion equals serious heart problems 37

4.5 Final XML output . 38

xi

xii

Chapter 1

Introduction

Google currently retrieves 4,285,199,774 web pages millions of times a day.1 More

and more people are accessing the huge amounts of data available electronically and are

becoming increasingly dependent on understanding this information. With an increase in

computing power, textual analysis and understanding has become an important area of

research in the fields of information extraction and natural language processing (NLP).

As electronic texts become more available to researchers (and humans in general),

an interesting dichotomy has emerged. On one hand, electronic text posted on the Internet

caters to users’ ability to read and analyze that information. Those interested in putting

information on the Internet design the data’s structure to be easy for humans to digest.

Data designed for human consumption must follow conventional syntactic and semantic

constraints of the users’ natural language.

On the other hand, humans have very limited computational capacity for analyzing

in any totality the vast amount of electronic information available. Recently, researchers

have turned to computing power to help humans access and process large quantities of

data on the Internet. This work has involved devising new strategies and algorithms to

convert electronic natural language text into various formats that can then be processed by a

computer. One of the ways this can happen is by using information extraction to manipulate

the data. Some information extraction strategies use natural language techniques, while

others rely more heavily on statistical methods. Many times, the type of data analyzed

determines the method used.
1http://www.google.com - Accessed July 2004.

1

Researchers design information extraction systems to perform various tasks, and

these tasks require various levels of linguistic processing. Some systems are only concerned

with parsing out the extracted information and therefore only require the use of a syntactic

parser. Other systems need more in-depth processing and include a semantic component

that can give some meaning to the extracted information. Yet other systems are dependent

on real-world knowledge and require a pragmatic component to relate the data gathered

from the system to outside information.

The Internet gives users information on nearly every subject known to man. While

the majority of these subjects are not interesting to researchers, a few subjects have caught

their attention. One area recently identified as being interesting is the medical domain.

Much of the NLP research done with medical literature has involved developing systems

that extract different types of relationships from text.

This thesis describes a general-purpose NLP tool designed to identify and extract

logical forms from medical clinical trials.2 Because of the various components which are

used in the design of this tool, LG-Soar is not only able to quickly and robustly parse this

type of natural language, but is also able to take that parsed output and derive a higher level

of semantic meaning than what would be gained by the parse itself. The corresponding

semantic information can then inform further processing that requires a more structured

meaningful input.

This thesis comprises five chapters. Chapter 2 is a review of different tools used to

extract and analyze information from electronic texts. In order to accomplish the task of

understanding the medical trials used in the current research, it is important that a syntactic

component and a syntax-to-semantic component work together. Chapter 3 will explain

the choice of components used in the LG-Soar system. Chapter 4 contains the technical

details of the LG-Soar system and outlines how the components work together to create a

robust engine. A discussion of the results and some concluding remarks form the basis for

chapters 5, 6, and 7.

2The term logical form in this work is defined as a predicate logic form representing the shallow semantics
of a given utterance. It is not to be confused with the standard usage of the term in current formalist syntax
and semantics, where the term applies to a post-syntactic level of semantic representation.

2

Chapter 2

Literature Review

Information extraction research has increased over the last few years. Traditionally

viewed as a tool used mainly by computer scientists, information extraction has emerged

as an engineering method useful in a variety of disciplines. Its versatility has helped the

field grow tremendously, and more research is continually being done to determine how to

improve the various methods and techniques used.

2.1 Information Extraction Domains

Information extraction systems need input, and this input can take many forms.

Since the invention of written language, text has become an important medium of infor-

mation exchange. The advent of the computer age and digital technology has lead to the

creation of media that can now be recorded and stored such as videos and DVDs. The in-

formation extraction field has attempted to keep pace by focusing on novel ways to extract

different types of information from various media, including web video clips (Rosenfeld

et al., 2003), and sports highlights (Radhakrishan et al., 2004).

2.1.1 Text

Text can take different forms, and usually the way the text is formatted will deter-

mine what method to use when attempting to extract information. Text can be classified

into one of three categories: unstructured (or free), structured, and semi-structured (Mag-

nani and Montesi, 2004).

3

Unstructured Text

Unstructured text follows natural language rules and grammar and is (for the most

part) understandable by a human. It is free in the sense that it does not fit into any type of

organizational structure such as would be found in a database or table. Newspaper articles

and medical abstracts are examples of free text.

Because free text consists mainly of natural language prose, natural language pro-

cessing techniques are often used when extracting information from this type of text. These

types of techniques include syntactic analysis, semantic tagging, domain recognition, etc.

While no unstructured text information extraction engine is able to perform at the same

level as a human, unstructured text techniques do provide useful results that can be used to

analyze various types of text.

Structured Text

Structured text refers to information that is contained in a database or information

that follows a very rigid format. When the structure of the data is known, information

extraction on this type of data is usually very straightforward. Regular expression and

pattern matching techniques are often very useful when attempting to extract the required

information.

Semi-Structured Text

Semi-structured text falls somewhere in between structured and unstructured text.

It is usually more difficult to extract information from this type of text because it is not

sufficiently structured to allow for full regular expression matching and, at the same time,

it does not contain text free enough to use only traditional NLP techniques such as syntactic

parsing and semantic tagging. Usually a combination of these techniques is used to extract

information from semi-structured text.

4

2.1.2 Web-Formatted Data

Information extraction initially dealt with text documents, usually newspaper arti-

cles or abstracts. However, with the recent Internet explosion, researchers have focused

more heavily on web-formatted data.

Text information on the web can take any of the forms mentioned earlier. Web text

often contains some combination of itemized or bulleted lists, hyperlinks, tables, or tags.

All of this information can be used as input for an information extraction engine, but care

must be taken when designing the system so that the correct structures can be identified

and extracted.

Additional information available on the web that is not easily identifiable is re-

ferred to as the hidden web. The hidden web contains information that usually can only

be accessed by filling out a form and submitting information. Since many web-based ap-

plications dynamically provide data to those searching for information, the web pages are

often generated dynamically each time a user fills out a specific query. Programs are being

developed (Liddle et al., 2001; Raghavan and Garcia-Molina, 2001) that attempt to extract

information from the hidden web.

2.2 Information Extraction Applications

Because information extraction is a widely researched field, researchers have used

various techniques to extract data from different text domains. Each domain is unique and

presents specific challenges to overcome. Some of these domains are briefly discussed

below.

2.2.1 Book Reviews

One domain where information extraction approaches are used are recommender

systems. These systems analyze users’ likes and dislikes and recommend products to them.

One such system that uses information extraction techniques along with machine-learning

ones is LIBRA, a system developed at the University of Austin (Mooney and Roy, 2000).

This system recommends book titles to users based on prior training information given

5

to the system by the users themselves. A simple pattern-matching information extraction

algorithm is used to extract data about each book title from Amazon.com, which is then

presented to the user.

2.2.2 Genealogy

An extremely popular domain on the Internet is family history. Genealogy and

genealogy-related searches now account for a very large portion of all Internet search traf-

fic. Millions of people are accessing and posting genealogical information online. Because

so many people are doing genealogical research, few standards exist which the majority of

genealogy enthusiasts use to structure their information online. This makes it difficult for

researchers to design systems to adequately extract relevant data from genealogical sites on

the Internet.

As difficult as this can be, researchers have been attempting to do just that: extract-

ing information such as names, birthplaces, deathplaces, etc. in order to make better sense

of the huge amount of data available. Information extraction on this type of data has proven

to be doable and has produced some very good initial results (Walker and Embley, 2004).

2.2.3 Medline Abstracts

Another domain of information which has recently received a lot of attention from

information extraction researchers is the medical domain, specifically Medline abstracts.

These abstracts are sponsored by the U.S. government, as well as the National Institutes

of Health, and can be found online.1 The Medline database contains a wealth of informa-

tion about nearly every health topic imaginable, all from the National Library of Medicine.

Medline abstracts contain useful information about various disease- and health-related is-

sues. Because the information located in these abstracts is extremely useful, and because

of the sheer amount of information, Medline abstracts have become an important resource

for medical information extraction. Many researchers have turned their focus to extract-

ing various types of relationships found in these abstracts. These types of relationships

include gene relations (Stephens et al., 2001), protein inhibit relationships (Pustejovsky

1http://www.medlineplus.gov

6

et al., 2002), acronym-meaning pairs (Pustejovsky et al., 2001), abbreviation definitions

(Schwartz and Hearst, 2003), and molecular binding relationships (Rindflesch et al., 2000).

2.3 Information Extraction Methods

Multiple methods are used by researchers when developing information extraction

systems. Wrappers, ontologies, and parsers are some of the more popular tools used in

information extraction.

2.3.1 Wrappers

Wrapper generation is a relatively new information extraction method used in many

different systems. Wrappers are specialized programs that identify the interesting data

within a document using pattern-matching approaches.

While wrapper technology has traditionally focused on semi-structured and struc-

tured text, wrappers using NLP-based approaches are more appropriate for free-language

text documents. These NLP-approaches use traditional NLP techniques such as part-of-

speech tagging and syntactic and semantic parsing and analysis. Some of the more well-

known tools that have been developed using NLP approaches along with wrapper tech-

nology include RAPIER (Califf and Mooney, 1999), SRV (Freitag, 1998), and WHISK

(Soderland, 1999).

2.3.2 Ontologies

Another method for doing information extraction relies on the construction of light-

weight ontologies. These ontologies are built to recognize and organize the desired infor-

mation to be extracted. Significant work in ontology-based approaches has been done by

Brigham Young University’s DEG (Data Extraction Group) (Embley et al., 1999). Their

work has focused on extracting data from a variety of sources such as job announcements,

digital camera information, and automobile classified advertisements.2

2http://www.deg.byu.edu

7

Table 2.1: Differences between dependency and link grammars
Dependency Grammar Link Grammar
Notion of a root word No notion of a root word
Links are not labeled Links are labeled
A dependency exists between heads and dependents Links are undirected
Cycles are not allowed in the structure Links may form cycles
Grammar rules are dependency rules Grammar rules are lexical rules

2.3.3 Parsers

In order to do any type of structured analysis on free text, a component that can

parse the sentence into a syntactic representation is critical. This structure is necessary to

understand even minimally how the individual words of a text are related and how meaning

(at a very basic level) is derived. Theories and methodologies of syntactic parsing abound

and systems have been developed using particular theories as the basis for the way they do

the syntactic analysis. Due to the fact that a number of ways to derive the syntactic form

from a particular piece of textual information exist, the goal a particular system has, as well

as the type of text it will process, is extremely important when determining what type of

parser to use. Parsing strategies range from statistical to linguistic and the next section will

discuss a few of the different parsing approaches used by NLP researchers, including those

who do information extraction.

Lexical Dependency Parsing

One of the most popular parsers used in information extraction today is the Collin’s

parser (Collins, 1996), a parser which has proved to be successful in parsing large amounts

of data. This parser is based on lexical dependency theory, a theory which combines statis-

tics and probabilities of lexical dependencies occurring within an utterance to determine

the best parse. Lexical dependency parsing is similar to other approaches in that one of

its tenets is the importance of modeling the head-modifier relationship between pairs of

words.

8

Dependency and Link Grammars

Dependency grammars are based on the idea that a sentence can be analyzed by

connecting the words in a sentence using links. The link grammar parser uses some of the

tenets outlined by dependency grammar theory, but there are differences that exist between

the two. Table 2.1 outlines the major differences between dependency and link grammar

formalisms as found in (Sleator and Temperley, 1991). An elaboration of these differ-

ences can be found in Schneider’s work on constituency, dependency, and link grammars

(Schneider, 1998).

Exemplar-Based Parsing

Another parsing approach used among researchers is exemplar-based parsing. This

approach uses approaches similar to statistical techniques. The main difference between

these exemplar-based approaches and other statistical approaches is that the former are

lazy learners (all the training data is stored), while the latter are greedy learners (once the

knowledge has been abstracted from the training data, the training instances are discarded).

Two examples of exemplar-based systems that have proven successful in a variety of NLP

tasks are TiMBL (Daelemans et al., 1999) and Analogical Modeling (Jones, 1996; Skousen,

1989; Skousen et al., 2002).

Morpho-Semantic Parsing

One parsing strategy that has been used in the medical language field is morpho-

semantic parsing (Baud et al., 1998). Most linguistic-based parsing systems tend to focus

their efforts on parsing text at the word level. While this has proved successful in a number

of applications, it is not always the best choice. In morpho-semantic parsing, the division

for the parse is actually at the morpheme level, rather than the word level. This method

excels when parsing data where rich semantic information is encoded in the morphemes

of a given word. Medical vocabulary is well-known for its use of morphemes and these

morphemes encode rich semantic data about the meaning of a particular word. By parsing

out this information, information extraction systems can better understand the data.

9

Table 2.2: Ambiguities in English

Lexical Ambiguity
1. I got a bat for Christmas. a. bat = animal

b. bat = baseball equipment

Structural Ambiguity
2. . . . good coaches and players. a. [NP good coaches and players]

b. [NP good coaches] and [NP players]

Quantificational Ambiguity
3. Everyone loves someone. a. ∀x[∃y[loves(x, y)]]

Everyone loves some person or other.
b. ∃y[∀x[loves(x, y)]]

There is one person everyone loves.

Morphological Ambiguity
4. Clint’s. . . a. Clint’s a linguist. [is]

b. Clint’s always worked hard. [has]
c. Clint’s thesis is done. [possession]

2.4 Problems in Information Extraction

Information extraction researchers want to create robust systems that can rapidly

process incoming text. Despite these goals, researchers tend to program their systems to

focus more heavily on either speed or robustness. This is often determined by the needs and

desires of the end user. In order to develop a system that rapidly processes text in a robust

fashion, many challenges must be overcome. One of these challenges is dealing with the

text itself.

2.4.1 Ambiguity

Natural language is notorious for its ambiguity. Ambiguity can arise for a vari-

ety of reasons, and each of these can be combined with others to create very difficult-to-

understand sentences for even native speakers of the language in question.

Four types of ambiguities which occur in English text are presented in Table 2.2,

and it is easy to see how multiple readings or parses can be interpreted from a single sen-

tence. Even though the examples only show two different readings for each sentence,

typical English sentences are generally much longer, and therefore much more ambiguous.

10

Table 2.3: Prepositional phrase ambiguity
No. of PPs No. of Parses
2 2
3 5
4 14
5 132
6 469
7 1430
8 4867

Sometimes they can result in hundreds of different parses, some which are grammatically

correct and some which are not.

A variety of factors contribute to the number of parses a single sentence can contain.

Quantifier clauses, relative clauses, conjunctions, and prepositions are just some of the

devices used in English which are notorious for increasing the ambiguity of a particular

sentence. Table 2.3 shows how prepositional phrases in a sentence can drastically increase

the number of possible parses.

With just four prepositional phrases, a sentence such as The man on the sand with

the dog on the leash by the ocean fell results in fourteen different parses. Prepositions

alone have the ability to quickly make a sentence highly ambiguous. Add to the sentence

any type of lexical, scope, or morphological ambiguity and the number of parses of a single

sentence drastically increases.

Humans are generally able to make sense out of ambiguous phrases and sentences

when they are kept to a minimal. In order to be effective (as long as the goal of the parser

is not to specifically model human behavior), information extraction systems must be able

to determine not only the number of different parses a sentence can have, but which parses

are grammatically correct and which are not. They must also be able to determine, based

on a number of internal and external clues, which one of the many possible parses is the

most likely or most correct in a given context.

11

2.4.2 Text Difficulty

Another problem often faced by information extraction systems is determining the

level of text that will be analyzed. Textual information varies in terms of difficulty. Even

newspaper text varies, for example, and one can quickly understand this problem by com-

paring the text difficulty of a small local newspaper and the Wall Street Journal. Add to

that the variation of difficulty that occurs across domains, and the text register can become

quite problematic.

2.4.3 Pragmatics

Another challenge for information extraction systems is trying to deal with contex-

tualized meaning, or pragmatics. In order for a computer to understand natural language

text and convert it to a machine-readable format, it must understand at minimum the syntac-

tic information encoded within the utterance. In order to understand the deeper meanings

within the electronic texts, though, a semantic component must also be included, which

can help to resolve any ambiguities that may arise after the syntactic analysis has been

performed. Additional real-world pragmatic information can be used in conjunction with

syntactic and semantic information to provide additional meaning.

IP

NP

the black sheep

I′

I VP

V′

V

walked

PP

up the road

Figure 2.1: Example syntactic constituency parse

12

Figure 2.1, for example, shows a syntactic parse of the sentence The black sheep

walked up the road in a typical constituent tree structure. However, the output of the parse

only gives limited meaning to the utterance. It is not until semantic rules are applied that

a meaning becomes more apparent. Pragmatic information, however, helps to develop the

meaning even further by looking at

“language from the point of view of the users, especially of the choices they

make, the constraints they encounter in using language in social interaction,

and the effects their use of language has on the other participants in an act of

communication” (Crystal, 1997).

It is this type of contextualization that informs the reader or hearer of this utterance that

black sheep might not necessarily mean a four-legged animal with black wool, but rather a

wayward person. The idea that words can and do have meanings relating to concepts in the

real world is something on which most information extraction systems do not deal with.

Conclusion

As we have just outlined, the information extraction research field is very broad and

involves many researchers doing different types of projects with different goals. While in-

formation extraction tools and systems have been developed for a wide variety of domains,

we have seen that a few tools have been created to extract information from medical liter-

ature. These tools, however, have not been used to process literature from medical clinical

trials.

While the various components used in the system described in this thesis have al-

ready been developed independently by other researchers, there has been no collaboration

to integrate the components together to create a robust predicate logic extraction system.

This research focuses on how these tools have been integrated together, as well as the

changes that had to be made to the system components in order to have a viable extraction

tool.

The next chapter discusses the components used in the system and also describes

why these components were chosen for this particular project.

13

14

Chapter 3

Method

As outlined in the previous chapter, information extraction systems are usually do-

main specific. The medical text domain is a very rich area that has not been fully explored

by information extraction researchers. Most of the current work in medical information ex-

traction has focused on extracting information from Medline abstracts. This thesis presents

LG-Soar, a logical form identification and extraction tool that is capable of extracting pred-

icate logic structures from another type of medical text, namely medical clinical trials. The

process is outlined graphically in Figure 3.1. The rest of this chapter describes the steps

the system goes through in order to accomplish the predicate logic extraction. This chapter

also explains why the components used in this system were chosen and how they work

together.

3.1 Clinical Trials

Clinical trials are used by medical professionals as a tool for recruiting patients

to undergo new treatments or receive experimental medications in order to improve pa-

tient health. In 1997, the Food and Drug Administration (FDA) realized the importance

of providing a systematic registry of clinical trials that could be accessed both by patients

and providers and called for the development of such a system. The National Library of

Medicine (NLM) and the National Institutes of Health (NIH) undertook the project and two

years later unveiled an online repository of clinical trials (McCray, 2000). This repository

of trials currently contains about 8,800 studies which are sponsored by various organiza-

tions including the NIH, other federal agencies, and private industries.1 This repository

1http://www.clinicaltrials.gov

15

Figure 3.1: Logical form identification process

of clinical trials receives about 3,000,000 page views per month.2 With so much attention

being given to ways to increase patient survival rates and decreasing the time it takes for

experimental new drugs to reach patients, the need for improving and automating access to

the information in clinical trials repositories is very important.

When providers have clinical trials to post on the website, they can log into a per-

sonal account where they have access to the forms used for uploading the clinical trial

information to the repository. For the eligibility section, there is a text box provided

which the providers use to enter in the criteria for their particular trial. No format re-

strictions are placed on how the information is entered. In addition to the text box for

the eligibility criteria, there is a dropdown menu where providers can choose which gen-

der the trial is intended for. Also, there are dropdown boxes and text boxes for informa-

tion regarding the age of the patient for the clinical trial. The user interface a provider

is presented with when entering eligibility information for a clinical trial can be seen at

http://prsinfo.clinicaltrials.gov/elig.html.

Clinical trials contain a wealth of information about specific treatments or experi-

mental drugs being tested to aid in the comfort and recovery of patients. Each trial located

in the online repository is divided into a series of sections that contain specific information

2http://www.clinicaltrials.gov/ct/info/about - Accessed July 2004.

16

Recruitment Status
Sponsor
Purpose
Description of the purpose of the trial

Condition, intervention, phase (in table format)
MEDLINEplus related topics
Study type
Official title
Further study details

Eligibility
Ages and sexes eligible for study
Description of inclusion and exclusion criteria
Location and contact information
Names, addresses, telephone numbers, e-mail addresses
Recruitment status at specified trial locations

More information
Links to more information (e.g., related Web sites)
Publications relevant to the study (if available)
Study identification numbers (submitted by data providers)
National Library of Medicine identifier (e.g., NCT00001789)
Date study started
Date recruitment status verified
Date last updated

Figure 3.2: Information included in clinical trials

regarding the trial that is useful to providers and patients. Figure 3.2 shows a hierarchy of

the different components mentioned in each individual clinical trial.

This thesis is concerned with the information located specifically in the Eligibility

section of a clinical trial. As indicated by the name, and as shown in Figure 3.2, this section

contains a listing of the requirements that a person must satisfy in order to participate in the

trial. Depending on the trial, this section can contain eligibility criteria, ineligibility criteria

or both. The eligibility criteria section lists requirements the patient must have or follow,

and the ineligibility criteria section lists requirements that the patient must not have in order

to be eligible for the trial. In addition to the eligibility and ineligibility criteria located in

each trial, nearly every eligibility section includes information outlining both the age(s) a

patient should have and also the gender necessary in order for the patient to be eligible. An

example section of a web page containing clinical trial eligibility requirements is shown in

Figure 3.3.

17

Figure 3.3: a of clinical trial NCT00042666

A text preprocessing stage locates and extracts the criteria from the eligibility sec-

tion of trial web pages and converts the criteria to XML. XML is used because it can be

easily defined to represent the information in which we are interested. The criteria from the

newly-formatted XML document is then used as input to the next phase of the process, the

syntactic parser.

3.2 Syntactic Parser

The next step in the process involves using a syntactic parser to take the natural lan-

guage criteria and produce a corresponding syntactic representation. In order to accomplish

this step, we use the link grammar parser (Sleator and Temperley, 1991).

18

3.2.1 Link Grammar

We chose to use the link grammar parser (LG parser) for a variety of reasons. The

off-the-shelf version of the parser comes already bundled with detailed information regard-

ing English and the relationship of English words to each other. A dictionary file and a

grammar file are both included in the distribution, which make it possible to modify the

way the system runs natively.

The raw ability of the parser to robustly parse text is its biggest advantage. The

parser can parse a wide variety of syntactic constructions, including many rare and id-

iomatic ones. The parser is robust; it is able to skip over portions of the sentence that it

cannot understand, and then assign some structure to the rest of the sentence. It is able to

handle unknown vocabulary and make reasonable guesses from context and spelling about

the syntactic categories of unknown words. This is important because many specialized

words found in clinical trials are not in the parser’s dictionary. Misspellings can also be

processed. It also has knowledge of capitalization, numerical expressions, and a variety

of punctuation symbols and can parse these as having relationships to other words in a

sentence.

Another advantage of the LG parser is its speed. It is written in the C programming

language and can run through high volumes of text without substantial delay. The parser

also comes packaged with an API so it can be easily integrated with other applications and

be freely downloaded for academic and research purposes.3

Finally, the LG parser has been used by a number of researchers to perform var-

ious natural language tasks where parsing incoming information is paramount. Some of

these projects have included parsing news video subtitling content (Nakamura and Kanade,

1997), processing ambiguities in an answer extraction system (Molla and Hess, 2002), and

understanding speech using prosody techniques (Hunt, 1994).

3.3 Syntax-to-Semantics Conversion

The ability to identify and output logic forms from text is a complicated task that

involves more than the ability to parse a sentence. The information being parsed must also

3http://bobo.link.cs.cmu.edu/link

19

be understood. Some systems do this by filling in predetermined templates of information

about the domain in which they are working. In essence, they do regular expression pattern

matching on the text to find information they know already exists within the data. In a

similar manner, our system needed a way to convert the syntactic representation generated

from the syntactic parser to a more meaningful semantic representation.

The way this system does this is by using a syntax-to-semantics conversion tool.

It uses a cognitive modeling architecture called Soar to translate the parsed sentence into

logical form. This section will describe Soar in general and discuss some of features of the

architecture that make it a desirable tool for this particular system.

3.3.1 Soar

The Soar architecture plays a vital role in this work. Soar is a model and theory of

cognition which has the ability to model human cognitive processing (Newell, 1994). As an

attempt to represent a unified theory of cognition, Soar goes beyond normal programming

languages by having. . .

...embedded in it a specific theory of the appropriate primitives underlying

symbolic reasoning, learning, planning, and other capabilities...necessary for

intelligent behavior (Laird, 2003).

The goal of Soar researchers is to develop and model intelligent agents, and various appli-

cations have resulted. Projects include NL-Soar (Lewis, 1993) (a system to model how

humans use natural language), Instructo-Soar (Huffman and Laird, 1995) (a system to

model learning in humans), and Tac-Air-Soar (Jones et al., 1999) (an intelligent system

for simulating military airborne missions). A wealth of information about Soar programs

and related research, along with information on how to download the architecture free of

charge is located at http://sitemaker.umich.edu/soar.

Because the goal of Soar is to model human cognition, certain characteristics must

be available in Soar to model behavior. According to Newell, cognitive behavior, and

therefore cognitive architectures, must exhibit the following six characteristics (Newell,

1994):

20

1. Be goal-directed

2. Reflect a rich detailed environment

3. Reflect a large amount of knowledge

4. Require the use of symbols and abstractions

5. Be flexible, and a function of the environment

6. Require learning from the environment and experience

The LG parser and the Soar cognitive modeling architecture have been integrated to form

Link-Grammar Soar, or LG-Soar. These six characteristics are therefore present in LG-

Soar and make it a system capable of translating natural language input to a semantic

representation. A more detailed explanation of how these six characteristic fit within the

Soar architecture and theory will not be discussed here. In the next chapter, we will discuss

in detail how Soar is able to perform the syntax-to-semantics conversion for clinical trials.

3.4 Output Formats

Two different output formats were chosen for this particular project because of their

ability to represent logical forms of text. One of the output formats is a Discourse Repre-

sentation Structure and the other is first-order predicate calculus (FOPC) expressions. Dis-

course Representation Theory (DRT) is a formal linguistic theory for describing semantic

and pragmatic relationships within single utterances or across utterances (Kamp and Reyle,

1993). FOPC is also an ideal formalism for representing semantic information. Both of

these formalisms are state-of-the-art tools for representing semantic information. They can

also be interchanged and their outputs can be translated between the two formalisms. The

difference between the formalisms used in this project is their roles in terms of their out-

put. Discourse representation structures (DRSs) are ideal for visually representing logical

output while output represented as FOPC is better when additional processing needs to be

done on the text.

Predicate calculus is used in many intelligent systems in order to provide a mean-

ingful representation of language being fed into the system. In fact, the predicate logic

produced by LG-Soar is actually used in another project that uses the logic form produced

by LG-Soar to match clinical trial eligibility criteria with patients’ medical records (Parker,

21

2003). This is just an example of a way that predicate logic generated from medical clinical

trials could be useful in NLP-based biomedical applications.

Having sketched the major components of the system, we are now ready to describe

these components along with the technical details of how they are all integrated with each

other to produce a system capable of extracting predicate logic from text.

22

Chapter 4

System Description

The previous chapter outlined the method used for extracting predicate logic from

clinical trials. This section provides a technical description of LG-Soar and the various

components that comprise the system.

4.1 Clinical Trials Corpus

Since clinical trials were used as the input for this project, we developed a way to

automatically crawl the clinical trial repository and download a number of trials to use as

a corpus. The clinical trials repository uses a search page which anyone can use to access

any of the more than 8,000 trials online. There are different ways that searching can be

done. Trials can be located by trial number, disease/condition, trial location, or age group,

for example. In order to get a broad sampling of trial criteria, we programmed our search

to download all of the trials that have a Utah trial location. This totaled 246 different trials.

After we downloaded all of the trials, we generated a file containing all of the

criteria from the 246 trials we downloaded previously. The number of criteria we pulled

from the 246 trials totaled 4707. However, some of the criteria were duplicates. After

removing duplicates, the total number of criteria in the corpus was 4566.

4.2 Pre-Processing

In order to run the clinical trials through the LG-Soar system, some preprocessing

on the text must first take place. Three main steps need to happen before the text extracted

from the HTML page of a clinical trial is ready to be sent through LG-Soar. First, the

HTML file is converted to its corresponding XML. Next, the relevant information in each

23

trial is tagged. Finally, some additional processing takes care of some problematic linguis-

tic issues in regards to the criteria themselves.

4.2.1 HTML to XML Conversion

Because this thesis is only concerned with processing the information in the eligibil-

ity criteria section, the first step is to identify this specific section of each HTML document

and separate it from the rest of the information on the page. In order to accomplish this,

we used a pre-existing Python script which takes the HTML page, finds the relevant part of

the document, and then converts it to XML.

The new XML file containing the clinical trial eligibility criteria has only three

unique tags: <criteria>, <criterion>, and <text>. These tags identify the spe-

cific information that LG-Soar will be processing. This project is only concerned with

part of the information located between the <text> and </text> tags. The important

information is the natural language describing the actual criteria.

4.2.2 Tagging Relevant Information

Once the XML file has been generated from the original HTML, the next step con-

sists of tagging each criterion. This is a necessary step because of the fact that some of

the information contained between the <text> and </text> tags is not criteria. This

non-criterion information gives additional information regarding the criterion, but it will

not be sent on to be processed by the rest of the system. For example, this information

might mention whether the criterion is an inclusion or exclusion criterion or whether it re-

lates to the patient or the disease. In order to determine which information is necessary to

process and send on, a Perl script is called that looks for patterns to avoid. Since most of

the patterns are somewhat consistent across trials, only a handful of patterns are needed to

look for the correct structures. A numerical tag is then appended onto the tag containing

the criteria as shown in Figure 4.1.

24

<criteria trial="http://www.clinicaltrials.gov/ct/show/NCT00042666">
<criterion>
<text>Eligibility</text>
<text val="1">Ages Eligible for Study: 18 Years and above,</text>

</criterion>
<criterion>
<text>Eligibility</text>
<text val="2">Genders Eligible for Study: Both</text>

</criterion>
<criterion>
<text>Eligibility</text>
<text>Criteria</text>
<text>Inclusion Criteria:</text>
<text val="3">A diagnosis of recurrent or refractory Diffuse

B-cell Non-Hodgkin’s lymphoma.</text>
</criterion>
<criterion>
<text>Eligibility</text>
<text>Criteria</text>
<text>Inclusion Criteria:</text>
<text val="4">Adequate organ functions.</text>

</criterion>
<criterion>
<text>Eligibility</text>
<text>Criteria</text>
<text>Inclusion Criteria:</text>
<text val="5">Able to swallow capsules.</text>

</criterion>
<criterion>
<text>Eligibility</text>
<text>Criteria</text>
<text>Exclusion Criteria:</text>
<text val="6">More than 3 prior treatments for this disease.</text>

</criterion>
<criterion>
<text>Eligibility</text>
<text>Criteria</text>
<text>Exclusion Criteria:</text>
<text val="7">Serious heart problems.</text>

</criterion>
</criteria>

Figure 4.1: Tagged XML file of clinical trial NCT00042666

25

4.2.3 Dummy Subject Addition

After converting the trial to XML and tagging the criteria, the actual natural lan-

guage processing starts and is what this thesis is most concerned with. This final stage of

preprocessing manipulates the natural language text of the criterion so that it can be pro-

cessed by the rest of the system. Another Perl script performs this processing, as well as

some additional formatting which will be described shortly.

Because of the components used in LG-Soar, the text input into the system must

follow certain conventions. The most important one is the requirement that the text form

a complete sentence, where the term complete can for now be loosely defined as a subject

followed by a verb, with other constituents.

The reason this constraint must be satisfied is because the LG parser, which will be

discussed in the following section, requires it. While it is possible to change this require-

ment by manipulating the grammar of the parser, for this project it proved to be impractical

and unnecessary. Most of the clinical trials in the registry contain criteria that are complex

noun phrases. Out of the more than 8,000 trials currently online, only a small percentage

have criteria structured as complete sentences.

To correctly handle these complex noun phrases and convert them into complete

sentences, a dummy subject and verb were prepended to each criterion. A criterion equals

was the dummy material we chose to add.

Not all of the criteria in the clinical trials are complex noun phrases; some are actual

sentences or other structures. Automatically prepending a subject and verb to each criterion

makes these structures ungrammatical for the LG parser. As such, not all of the criteria can

be processed; however, most of the criteria can.

Two situations arise where criteria do not consist of complex noun phrases. These

are the gender and age criteria. As was mentioned previously, gender and age information

in clinical trials is entered separately from other criteria. For this reason, age and gen-

der data is usually formatted similarly across clinical trials. We did some additional Perl

processing to convert these structures to sentences that could be read into the LG parser.

The results of prepending the dummy subject and verb and processing the gender and age

information can be seen below:

26

1. A criterion equals an age greater than 18 years.
2. A criterion equals both genders.
3. A criterion equals a diagnosis of recurrent or
refractory Diffuse B-Cell Non-Hodgkin’s lymphoma.
4. A criterion equals adequate organ functions.
5. A criterion equals an ability to swallow capsules.
6. A criterion equals more than 3 prior treatments for
this disease.
7. A criterion equals serious heart problems.

Additionally, the capitalization of the initial word in each criterion was converted to lower

case while keeping acronyms intact.

Adding a dummy subject and verb were not the only things we did to manipulate the

text before being input into the next phase of the system. Another area where we decided to

change the data were instances where the first word in the criterion could be nominalized in

order to produce a grammatical reading from the parse. So for instance, the criterion able

to swallow capsules would be rendered as an ability to swallow capsules so that when the

dummy subject and verb are added, the sentence could be parsed correctly. While this is

an ad hoc approach, there are significant instances where this happens and it increases the

performance of the system.

4.3 Link Grammar Parser

Once the HTML of the clinical trial has been converted to individual sentences,

they are ready to be processed by the link grammar parser. The system reads in a .txt file

containing each criterion on a separate line in the file and parses each sentence individually.

Then the sentence is analyzed by the syntax-to-semantics conversion engine (Soar) before

going on to the next sentence.

The parser’s role in this is to produce a syntactic representation for each of the

sentences. Appropriate links are attached to each of the constituents in the sentence and the

links are drawn, followed by the syntactic output. Because English is highly ambiguous, a

single input sentence has the potential of having multiple parses or readings. However, in

this project, we do not consider additional readings and instead use the first parse provided

by the parser which usually (but not always) reflects the correct syntactic structure of the

27

 +----------------------------Xp---------------------------+
 | +-------------Op------------+ |
 +-----Wd-----+ | +---------A--------+ |
 | +--Ds--+----Ss----+ | +----AN---+ |
 | | | | | | | |
LEFT-WALL a criterion.n equals.v serious.a heart.n problems.n .

 LEFT-WALL Xp <---Xp----> Xp .
 (m) LEFT-WALL Wd <---Wd----> Wd criterion.n
 (m) a Ds <---Ds----> Ds criterion.n
 (m) criterion.n Ss <---Ss----> Ss equals.v
 (m) equals.v O <---Op----> Op problems.n
 (m) serious.a A <---A-----> A problems.n
 (m) heart.n AN <---AN----> AN problems.n
 . RW <---RW----> RW RIGHT-WALL

Figure 4.2: Link grammar output for A criterion equals serious heart problems

natural language input. The link grammar parser does come with the ability to change how

parses are scored, but such changes were not implemented in the work described in this

thesis.

The link grammar parser has a dictionary of about 60,000 word forms each di-

vided up into one of 50 different files based on four part-of-speech categories (adjectives,

adverbs, nouns, and verbs). Each part of speech is further broken down into different cat-

egories relating to that part of speech. For example, there are three different adjective

files, one containing -est adjectives, one containing -er adjectives, and the other containing

miscellaneous types.

In order for the parser to determine how to parse an utterance, it must first determine

the grammaticality of the input sentence. A sequence of words is considered a sentence if

three conditions are met. These constraints are summarized below:

1. PLANARITY: Links cannot cross.

2. CONNECTIVITY: Links must indirectly connect all the words together.

3. SATISFACTION: Correct links must be used to connect the words together.

A parse of a grammatical sentence is shown in Figure 4.2.

The first noticeable difference between the grammatical parse in Figure 4.2 (which

represents the link grammar formalism) and the grammatical parse in Figure 2.1 (which

28

Table 4.1: Major link types and sublinkages
Link Major link role Sublinkage role
Xp connects punctuation to words connects the period at the end

of sentence
Ds connects determiners to nouns number agreement on deter-

miner (singular)
Ss connects subject-nouns to fi-

nite verbs
noun agreement (singular)

Os connects transitive verbs with
their objects

verb agreement (singular)

Wd connects main clauses to the
left wall

used specifically in declara-
tive sentences

A connects attributive adjectives
to nouns

none in this instance

AN connects noun modifiers with
nouns

none in this instance

represents a more traditional linguistic tree parse), is the structure. The link grammar parse

is a more linear or flat structure, while the traditional linguistic parse depicts relationships

in a more hierarchal fashion.

The other difference is the actual nodes or links that connect all of the words in the

sentence together. In the traditional approach shown in Figure 2.1, only a handful of nodes

are used. However, in the link grammar formalism, there are a total of 107 major link-

age categories, and each of these categories can have related sublinkages. These linkages

provide the information for understanding how words relate to one another.

When we undertook this project, LG-Soar could only derive a semantic representa-

tion from a few of the links provided by the LG parser. In order to increase the coverage

of the system, we programmed LG-Soar to interpret the logical form for a wide range of

different links, such as those corresponding to prepositional phrases, relative clauses, ad-

jectives, adverbs, negation, modals, nominal compounds, imperatives, and conjunctions.

In Figure 4.2, there are a total of seven major link types: X, W, D, S, O, A, AN.

Each of these links contains additional information in the form of sublinkages (represented

by the lowercase letters). Table 4.1 shows how the links encode information about the

sentence.

29

Figure 4.2 shows how a parse of A criterion equals serious heart problems would

be represented syntactically by the LG parser. Different links connect the words in the

sentence. These links are the key to extracting the semantic meaning from the syntactic

output. LG-Soar is able to look at the listing for each word link pair and its label to gather

the semantic information. The next stage consists of using a syntax-to-shallow-semantics

engine to determine the semantic meaning.

4.4 Syntax-to-Semantics Engine

Soar is a production-driven system which uses productions to tell the program about

the state of the world and the knowledge it has about the way that world functions. Produc-

tions are a series of if-then rules used to determine the condition of the world and whether

or not actions can take place in relation to those conditions. The conditions on the left-hand

side (LHS) of the rule represent the if part of the rule, while the actions on the right-hand

side (RHS) represent the then part. Conditions test for the presence or absence of data

stored in the knowledge base of the system. If all the conditions are properly met, the rule

fires and the actions on the RHS of the production execute. Actions can add or remove

structures from working memory, perform miscellaneous functions like write output to the

screen, or call additional procedures written in Tcl (Tool Command Language) to perform

other actions.

4.4.1 Knowledge Representation in Soar

While Soar productions perform actions that change the state of the world, another

element encodes knowledge about the world that the productions must access in order to

understand how the world is put together. This component is called working memory and

encodes necessary information about the world, such as the present state or conditions of

the world and objects within that world, as well as future goals the program might have. The

way Soar structures this information is by using states. States contain relevant knowledge

about the current condition of the objects within the world in which Soar is operating. By

having this knowledge accessible, working memory can allow productions to change the

state of the world in accordance with goals and subgoals the system might have.

30

4.4.2 Soar Processing in LG-Soar

This next section will describe how Soar is used to convert the output produced by

the LG parser to a logical representation of the semantics of the input criteria. Soar goes

through two stages when accomplishing this task. The first stage consists of defining the

semantic relationships that exist between the different words, and the next stage consists of

looking for specific relationships that exist and producing the appropriate logical form for

those relationships. While most of the work done for this thesis focused on developing the

second phase, both phases will be explained.

Defining Relationships Using Soar

As mentioned above, the first step in the Soar process is to identify the relationships

that exist from the output given by the LG parser and was already in place for this project

(Lonsdale et al., 2001). One of the differences mentioned earlier between dependency

grammar and link grammar is that the latter does not identify a root node or word within

the utterance. This has implications for doing semantic analysis because in order to derive

a semantic meaning, the root of the utterance needs to be identified. Once this word is

identified, relationships of other words to that word can be identified and semantic meaning

can be determined. Since the LG parser does not do this, it was necessary to encode the

information in Soar to be able to accomplish this task. The way that Soar does this is by

looking at the links generated by the LG parser. Knowing what those links stand for, and

which constituents can combine together, Soar can then use productions that encode the

knowledge about those links and determine the semantic relationships.

The Soar phase that takes care of this step consists of nearly 150 Soar productions

that identify link/constituent positions and convert them to semantic equivalents.

Table 4.2 outlines the first 10 steps LG-Soar goes through for the sentence A cri-

terion equals serious heart problems once the link grammar output has been defined and

passed on. This step is the beginning of defining the semantic representation of the sen-

tence. After Phase 1 is complete, then comes Phase 2, which will be described next.

31

Table 4.2: Initial trace of syntax-to-semantics conversion by LG-Soar
Operator Type Description
1: O2 (find-root) This production finds a root word for the sentence

In this first case, the root is set to LEFT-WALL.
2: O4 (find-root) The same operator fires but this time another

root is found, this time the word x.
3: O5 (give-root-ref) This gives the root word a reference, which

is the word equals.
4: O6 (add-center) This recognizes that the word equals needs

to be treated as a verb type.
5: O8 (add-arg) This recognizes the *S* link from the link grammar

parser and proposes that it treat the word attached to it
(criterion) as the external argument of the sentence.

6: O10 (add-center) This is similar to the previous add-center operator
except that instead of recognizing equals
as a verb type, it recognizes the word criterion
as being a third person type.

7: O12 (add-arg) This recognizes that the word x has an
argument which can be described as being a definite
description (an).

8: O9 (add-arg) This recognizes the *O* link from the link grammar
output and proposes that the word attached to this link
(in this case the word is problems) be treated
as the internal argument for the sentence.

9: O13 (add-center) This is the same as the previous add-center operator
except that it recognizes the object of the sentence,
problems, as being a third person type.

10: O15 (add-arg) This recognizes the *A* link from the output
generated by the link grammar parser and
proposes that it be treated as an adjective modifying
a noun, which in this case is serious (the adjective)
modifying problems (the noun).

32

Outputting Logical Form

As pointed out previously, two phases are necessary when converting link grammar

syntactic output to a semantic representation. The first phase was outlined briefly above,

and it consists of translating the links into a semantic equivalent. This includes such actions

as finding appropriate roots in the sentence and identifying various constituents such as the

internal and external arguments.

The next phase in the process is the phase that actually outputs the appropriate log-

ical form for the input sentence, or criterion in this case. Soar productions look for ways

sentences are structured in the Soar world or model, and decide if the appropriate condi-

tions are met so that actions which output the right constituents are executed. The Phase

1 output (which is also the starting point for Phase 2) is a state that represents how the

world is structured. In order for this information to be processed, however, additional Soar

productions are proposed and fired that take the information existing in the state and de-

cide how to best output it logically. Phase 2 consists of over 150 Soar productions. These

productions test to see whether certain structures are present in the state or knowledge of

the system and then translate these to logical output. Most of the information that is rele-

vant to the structure of the text is located in the ˆmodel attribute of the identifier S1. The

system has a model that outlines the various components that make up the core knowledge

of the sentence. The model contains several individual ideas that are each assigned vari-

able names. In this case, the variable names are N2, N3, N4, N5, and N6. These ideas

are the main ideas of the sentence and do not include constituents such as determiners or

prepositions.

Each idea contains information important to the knowledge of the system. For

example, the predicate problems is assigned the variable name N6, which is then converted

to the predicate statement problems(N6). In another example, the predicate equals is given

the variable name N3. Also, based on the information given to the system by the model,

we can see that equals has two arguments. An external argument and an internal argument

are on the model and provide a reference to equals. This information is then converted to

a predicate argument structure, or equals(N2,N6), where N2 is the variable name for the

predicate criterion.

33

Table 4.3: Operators for A criterion equals serious heart problems
Number Production Type Output
1 adj-noun-noun*seq No output
2 adj-noun-noun*arg No output
3 feature-feature indef(N2)
4 compound-adj-noun-noun serious(N6) & heart_problems(N6); criterion(N2)
5 ext-nuc-int equals(N2,N6)
6 processing-complete No output

Table 4.4: Productions used for A criterion equals serious heart problems
Number Description
1 This finds each of the ideas on the model and puts an

augmentation on the idea stating that it has been recognized so
further processing can take place.

2 This is similar to the previous one except that it
organizes the ideas that have been recognized by the previous
production.

3 This outputs the predicate-argument structure of
indefinite and definite modifiers attached to nouns.

4 This outputs the predicate-argument structure
corresponding to sentence structures consisting of an adjective
followed by two nouns, as in serious heart problems.
It also outputs the predicate-argument structure for the
external argument x.

5 This production outputs the predicate-argument structure for
the external and internal arguments.

6 This production verifies that all the ideas in the model have
been recognized. It then calls the correct output mechanism
which displays the output accordingly (either as a DRS in
CLIG or text in an .xml file.

34

Figure 4.3: LG-Soar post-processing

Once the state has been created and the model contains the information describing

the relationships between the ideas in a sentence, the next step consists of calling Soar

productions which take that information and output it in a logical form.

In A criterion equals serious heart problems, each of the productions in Table 4.4

fires because the state has conditions that match against what the productions are looking

for. Once the processing-complete operator is reached, the logical form that is output is

ready to be put through the post-processor.

4.4.3 Post-Processor

The main purpose of the post-processor in the LG-Soar system is to clean up the

output that has been generated by the Soar engine. As was outlined earlier, some pre-

processing takes place when a criterion is read into the system. The pre-processing adds

a dummy subject and verb to each criteria which makes it possible for the criterion to be

parsed by the link grammar parser. However, because the dummy subject and verb are not

actually part of the criterion extracted from the clinical trial, it is extraneous information

that needs to be taken out. The post-processor removes the extraneous information.

In order to do the necessary cleanup, we used Prolog. Prolog is a logical and

declarative programming language that is widely used in artificial intelligence programs

and contains facts and rules about a system’s knowledge. We programmed a series of Pro-

log axioms to do some natural language processing on the output generated by LG-Soar

up to this point. These axioms remove the dummy subject and verb from each criterion,

eliminate any redundancies that occur, and filter out any irrelevant data as shown in 4.3.

35

The subject and verb are removed along with their corresponding arguments because they

do not provide any additional information about the criteria and were in fact not even in the

original criteria from the clinical trial. Other changes, such as the fact that the & is changed

to & occur in order to produce a valid XML document.

4.5 Output Formats

Once the post-processor has been called, the criteria are finally ready to be output.

The logical form output can be either output visually or to a file and in order to accomplish

this, we had to do a few things with the system. We wrote additional Soar productions

which take the internal structure of the Soar model and output the corresponding informa-

tion to a display type of our choosing. We also integrated the CLIG system with LG-Soar

to be able to visualize the output graphically.

4.5.1 Discourse Representation Structures

One possible output format for the system is Discourse Representation Structures

(DRSs). When DRSs need to be output, we use CLIG, the Computational Linguistics

Interactive Grapher. This is a program that was designed to represent various types of

linguistic structures (Konrad, 1995). It can be readily integrated into other programs where

different linguistic structures can be represented and viewed. The grapher can display X-

bar trees, DRSs, feature-value structures, or any combination of these. Users can also add

interactive hyperlinks and buttons to the output. We had to integrate CLIG with the rest of

the system in order to use it for graphically outputting DRSs.

While CLIG is not ideally formatted for all computational applications, it does have

its benefits and uses. First, it is easy to see the representation of the parsed sentence, and

hence is beneficial for testing and debugging. When a sentence does not parse correctly,

it is easy to see where the parse went wrong. The incorrect parse can then be tracked

back to where the error occurs in the LG-Soar code. When newer syntactic structures

are programmed in LG-Soar, CLIG is useful to see how the current system treats them,

thereby testing what needs to be done to correct the representation. The DRS representing

A criterion equals serious heart problems can be seen in Figure 4.4.

36

Figure 4.4: DRS for A criterion equals serious heart problems

4.5.2 XML

The next type of output used in this project is XML. The goal of this project is to

convert eligibility criteria to a predicate logic form. This output can then be used as input

to other systems that want to access the information found in the clinical trial. In order to

use the output, a medium of exchange must be used that will work for everybody needing

to access the data. XML is this medium of exchange.

When the XML file that is generated from the HTML is created, it puts the nec-

essary criteria in between <text> tags. This information is then sent to a .txt file which

can be read into the LG-Soar system. After LG-Soar creates the predicates for each of the

incoming criteria, the system uses another Perl file to merge the newly-created predicates

back into the XML file surrounded by <pred> tags which are located just under the cor-

responding criteria. Figure 4.5 shows part of a final XML file. This file contains both the

natural language of the criteria as well as the predicate output. It is then ready to be used

as input for any other system needing that information.

4.6 Summary

Because we used many different components in this system, considerable integra-

tion was necessary to process the incoming text. We used various programming languages

such as Perl, Prolog, Tcl, and Python to get the components to work together.

37

<criteria trial="http://www.clinicaltrials.gov/ct/show/NCT00042666">
<criterion>
<text>Eligibility</text>
<text val="1">Ages Eligible for Study: 18 Years and above,</text>
<pred val="1">age(N4) & quantification(N5,greater_than)

& measurement(N4,N5) & units(N5,years)
& magnitude(N5,18)</pred>

</criterion>
<criterion>
<text>Eligibility</text>
<text val="2">Genders Eligible for Study: Both</text>
<pred val="2">both_genders(N4)</pred>

</criterion>
... (ADDITIONAL CRITERIA) ...
<criterion>
<text>Eligibility</text>
<text>Criteria</text>
<text>Exclusion Criteria:</text>
<text val="7">Serious heart problems.</text>
<pred val="7">serious(N6) & heart_problems(N6)</pred>

</criterion>
</criteria>

Figure 4.5: Final XML output

The work described is significant for a variety of reasons. First of all, we improved

the Soar/Link-Grammar parser interface by allowing a file containing one sentence per line

to be read in with a single command. However, no more than one sentence per line is

allowed. The first version of the system only allowed one sentence at a time to be input at

the command line. We also created various Perl scripts which did some text manipulation

on the clinical trials. One script extracts the actual criteria from an XML file so they

can be sent to the LG parser while another script numbers the criteria in the XML file.

Yet another script merges the criteria with corresponding predicate logic structures into an

XML file. Another significant contribution was that we changed the grammar file for the

LG parser so that more syntactic constructions could be parsed correctly. This improved

the final results that we obtained. We also wrote numerous Tcl procedures which send

Soar information to CLIG so that predicate argument structures can be formatted correctly

and we programmed various Prolog axioms to filter out unimportant information from the

structures generated by LG-Soar. In order to tie the entire system together, we automated

38

the predicate-extraction process so that the XML file corresponding to a clinical trial can be

input into the system and the corresponding predicate argument structures of each criterion

in the trial can be output. This whole process can be accomplished with a single command.

Finally, we evaluated the system with a new evaluation program written by Vasile Rus. This

evaluation program is specifically intended for evaluating precision and recall of predicates

and arguments output by a logical form extraction system and we directly applied it to

medical clinical trial information for the first time ever with this project.

39

40

Chapter 5

Results

This chapter reports on the metrics used to evaluate LG-Soar as an IE tool. We

explain the metrics used to evaluate the output generated by the system and report on the

actual results obtained from running the system.

5.1 Evaluation Metrics

Information extraction is a broad field where researchers are developing different

applications to perform various activities. Even though the applications vary, most IE sys-

tems are evaluated using three measurements: precision, recall, and F-measure.

5.1.1 Precision and Recall

Precision and recall measurements are best determined by using a counting tech-

nique referred to as a confusion matrix. Table 5.1 shows a confusion matrix.

When an entity is extracted, we have to determine whether it is correct. The ex-

tracted entities that are correct are the true positives; the incorrectly extracted entities are

the false positives; the entities that are not extracted but should have been are the false

Table 5.1: Confusion Matrix
Predication

+ -
answer [+] true positive false negative
answer [-] false positive true negative

41

negatives. True negatives are the entities that are not extracted and should not have been.

Generally, true negatives are not used in information extraction system evaluations.

From this matrix, precision and recall can be measured. In short, precision mea-

sures the correctness of the output, while recall measures the completeness of the output.

According to Hobbs,

When you promise to tell the whole truth, you are promising 100% recall.

When you promise to tell nothing but the truth, you are promising 100% preci-

sion (Hobbs, 2002).

When using these evaluation metrics for logic form identification and extraction,

they are measured on two separate levels: the predicate level and the argument level. The

way these are determined are outlined below.

Argument precision:

No. Correctly Identified Arguments

No. All Identified Arguments
(5.1)

Predicate precision:

No. Fully Identified Predicates

No. All Identified Predicates
(5.2)

Argument recall:

No. Fully Identified Arguments

No. Arguments To Be Identified
(5.3)

Argument precision:

No. Correctly Identified Predicates

No. All P redicates To Be Identified
(5.4)

5.1.2 F-Measure

Another measure that has gained popularity among researchers evaluating informa-

tion extraction systems is the F-measure. This metric takes both precision and recall into

42

Table 5.2: Sample LG-Soar output
Original Source LG-Soar Output
Adenocarcinoma of the pancreas adenocarcinoma(x) & of(x,y)

& pancreas(y)
Brain metastasis brain_metastasis(x)
Femoral neck osteoporosis femoral(x) & neck_osteoporosis(x)
Pregnancy pregnancy(x)
High risk of VTE VTE(x) & risk(y) & of(y,x) & high(y)
Controlled COPD controlled(x) & COPD(x)
Genders eligible for Study: Female female_gender(x)

consideration to determine an overall score of a system by calculating the harmonic mean

of the two measurements (van Rijsbergen, 1979).

F=
2 ∗ (recall ∗ precision)

recall + precision
(5.5)

5.2 Qualitative Results

The LG-Soar system outputs predicate logic structures. Table 5.2 shows some in-

teresting output results from the clinical trial corpus. Appendix A shows three examples

of criteria and the process they go through in order to be output correctly, while Appendix

B shows some results of criteria that for various reasons were not output correctly by the

system.

5.3 Quantitative Results

In order to compute the results of the LG-Soar system, we used a logical form

identification evaluation system developed by organizers of the Senseval ’03 logic form

identification task. Senseval is an organization committed to furthering research in lan-

guage and computation by organizing a series of tasks available to researchers worldwide.

The purpose of these competitions is to foster more interest and eventually more success

in dealing with natural language problems computationally. This past year was the first

year a logical form identification event has been scheduled. The organizers developed an

43

Table 5.3: Initial LG-Soar quantitative results
Precision Recall F-Measure

Argument 70% 61% 65%
Predicate 65% 63% 64%

evaluation program written in C that anyone can use who is developing logical form iden-

tification tools.1 The evaluation tool takes as input a gold form file (which contains the

correct handcoded predicate/argument structures) and a logic form file (which contains the

output generated by a particular system). The results which are returned consist of both

predicate and argument precision and recall.

In order to test our system, we randomly selected twelve different clinical trials

from the government-sponsored online repository. From those twelve trials, 102 criteria

were extracted and after exact duplicates were removed, a total of 77 criteria remained.

Out of the 77 criteria available to run through the system, only about half of them

were able to be parsed by the LG parser. For reasons of ungrammaticality, the other half of

the critieria were not parsed and thus not sent on to the rest of the system. After running

these 34 criteria through the system, we achieved the results outlined in Table 5.3. As

can be seen, precision and recall measures for both the predicates and arguments hover

between 60-70%. To relate those numbers to the definitions given above for precision and

recall, we can see that 70% of the arguments and 65% of the predicates were accounted for

exactly, while 65% of the arguments and 64% of the predicates had at least some of the right

information.

In the next chapter we will discuss how these initial results compare to other re-

searchers attempting to extract different relationships from biomedical literature.

1http://www.cs.iusb.edu/vasile/logic/indexLF.html

44

Chapter 6

Discussion

In this section we will discuss some of the implications for the results that were

obtained when running LG-Soar on medical clinical trials.

As was mentioned earlier, information extraction is a widely researched field and

nearly every domain of information is unique in terms of what the extracted information

consists of. These differences often make it difficult to compare different tools across

domains even though similar evaluation metrics are used (i.e. precision and recall). So

for example, the success rate of name extraction from newspaper articles currently hovers

around 90%. However, relation extraction is lower around 80%, and event extraction hovers

around 60% (Hirschman, 2002). While the current LG-Soar system is not at the level that

name extraction is, Table 6.1, which is adapted from Pustejovksy (Pustejovsky et al., 2002),

shows that it is very comparable to other relational or event extraction systems.

Another interesting finding that occurred when we compared our results with other

research in the biological domain was that typical medical extraction systems tend to have

high precision values but low recall values. The reason this is so is because most other

Table 6.1: Comparison of relation capture for biology
Source Relation DB Prec Recall
Craven ’99 location Yeast 92% 21%
Rindflesch ’00 binding MEDLINE 73% 51%
Proux ’00 interact Flybase 81% 44%
Pustejovsky ’02 inhibit MEDLINE 90% 57%
Tustison ’04 argument Clinical Trials 70% 61%
Tustison ’04 predicate Clinical Trials 65% 63%

45

researchers doing extraction on biomedical literature are looking for specific relationships.

When the relationship is found, they can usually find the arguments associated with that

relation. However, if they do not find that relation initially, they have a more difficult time

finding the arguments associated with it. For this reason these other systems tend to have

higher precision values but lower recall values. With LG-Soar, the relationships we are

looking for are more general. We are looking for all of the predicate and argument relation-

ships that exist in a trial. Precision tends to be lower because there are more relationships

to find; however, recall is higher because of the fact that LG-Soar can usually find at least

part of the relationship, whereas other approaches are more hit and miss in what they do.

6.1 Benefits of LG-Soar

While many improvements could still be made to the system to make it more robust,

there are many benefits the system has that make it a worthwhile tool when doing predicate

logic identification and extraction. First, the components which make up the system are all

freely downloadable for research purposes, and they can be integrated together in ways to

create interesting applications. Also, the system is not domain specific. While this thesis

has focused on its use in the medical domain, we have tested it with other text information

such as newspaper headlines and genealogical data (Tustison, 2004). In order to use other

types of text, relatively minor changes would be needed to the overall system and, depend-

ing on the types of structures prevalent in the new input, a few new productions would have

to be written. This makes LG-Soar a good tool to use when extracting predicates from text.

6.2 Future Work

Initial results obtained from running LG-Soar on medical clinical trials show that

it is a promising approach to the emerging field of logical form identification. However,

more research on the project could invariably produce better results and provide for some

more interesting discussion. There are a few areas of research on the LG-Soar system that

would be beneficial to the system overall.

Early on in the discussion we mentioned that in order to send most of the criteria

to the LG parser, a dummy subject and verb had to be added to each one. Well, because

46

eligibility criteria can be formatted any way the provider entering the data wants, there are

times that the criteria are complete sentences and not noun phrases. As can be imagined,

this will cause problems for the parser and the sentence will not parse because the dummy

subject and verb will be added to a sentence that already has a subject and verb. By adding

an additional pre-processing step that would do some analysis on the incoming criteria to

determine if it is already a complete sentence, the number of criteria that could be parsed

would increase, thereby increasing the performance of the system.

Another area that could use improvement is the LG parser itself. While we did

make some changes to the parser when implementing it in our system, it remains virtually

untouched in how it performs when downloaded from the Internet. One way that the parser

could be improved is by improving the grammar file of the parser. The best approach

to doing this would be to conduct a more in-depth corpus analysis on the criteria in the

medical trials to determine the types of structures that are currently not able to be handled

by the parser or are handled incorrectly. A far-reaching example is units. Units are an

understudied area of linguistics and many times the parser labels a unit or a unit value pair

with an incorrect link. This has further implications when the parse is passed to the Soar

engine because the wrong link will produce an incorrect predicate argument relationship.

Two minor changes that could be added to increase the robustness of the parser

would be to look at the scoring algorithm used by the parser and determine if it could

be improved, and the other change would be to add medical vocabulary to the parser’s

dictionary. Both of these changes, however, would have a small impact on improving

performance of the system because of the parser’s ability to already score parses fairly

correctly and also because the parser is able to robustly handle unknown words that might

be fed in.

Along with improving the grammar file of the parser, the Soar engine could be

improved by increasing the number of syntactic structures it can correctly handle. Also, it

would be interesting to turn on learning in Soar to see how well it can recognize similar

structures coming in to the system. A final area of future work would be to integrate the

system with semantic web agents to see if they could work in conjunction to crawl for

information about clinical trials and eligibility criteria.

47

48

Chapter 7

Conclusions

This thesis has described LG-Soar, a system capable of extracting predicate logic

structures from medical clinical trials. While the importance of predicate logic in intelligent

systems has been known for quite some time, only recently have researchers started to

combine many of the information extraction and natural language processing tools and

resources together in order to develop systems to automatically do this.

By automating the process, new programs can be developed that will have intelli-

gent capabilities. In this thesis we have described a system we have created that that can

take semi-structured clinical trials and produce a corresponding predicate logic represen-

tation. This output in particular is currently being used as input for an intelligent system

that automatically matches patients with clinical trials (Parker, 2003). The predicate logic

outputted by LG-Soar gets matched up with similar concepts in a medical database. These

concepts can then be compared to concepts found in a particular patient’s medical record.

The process will help speed up the time it takes to recruit patients for clinical trials because

the process can be done automatically. Doctors will no longer have to rely solely on face-

to-face meetings with a patient to find out whether or not the patient is eligible for a certain

clinical trial. Using predicate logic as input as described above is just one way it can be

used to create systems that can make intelligent decisions about different situations.

While LG-Soar is by no means the final answer concerning the question of how

to best go about extracting logical structures, it does present an interesting solution to the

problem. Due to the fact that predicate logic identification research is relatively new, there

are no traditional approaches. In order to understand how to best go about the process of

automatically extracting predicates, researchers need to present different ideas and methods

49

to the information extraction community as a whole in order to stimulate further research

and comparisons with other approaches. As more and more researchers become interested

in this problem, and as more conferences and discussion take place which are devoted to

uncovering solutions, not only will overall results improve, but standards will develop that

will help determine how these systems can be better evaluated. If this thesis has helped to

stimulate further discussion on different approaches to the problem of logical form identi-

fication and extraction, it will have been a success.

50

Bibliography

Baud, R., Lovis, C., Rassinoux, A.-M., and Scherrer, J.-R. (1998). Morpho-semantic pars-
ing of medical expressions. In Proceedings of the AMIA Annual Symposium, pages
760–764, Orlando, FL, USA. Hanley & Belfus.

Califf, M. E. and Mooney, R. J. (1999). Relational learning of pattern-match rules for infor-
mation extraction. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pages 328–334, Menlo Park, CA, USA. AAAI.

Collins, M. (1996). A new statistical based parser based on bigram lexical dependencies.
In Proceedings of the 34th Annual Meeting of the Association for Computational Lin-
guistics, pages 184–191, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Crystal, D. (1997). A Dictionary of Linguistics and Phonetics. Blackwell, Oxford, UK.

Daelemans, W., Zavrel, J., van der Sloot, K., and van den Bosch, A. (1999). TiMBL:
Tilburg Memory Based Learner, version 2.0, reference manual. Technical Report
ILK-9901, Tilburg University, Netherlands: ILK Research Group.

Embley, D., Campbell, E., Jiang, Y., Liddle, S., Lonsdale, D., Ng, Y.-K., and Smith,
R. (1999). Conceptual-model-based data extraction from multiple-record web doc-
uments. In Data and Knowledge Engineering, pages 227–251.

Freitag, D. (1998). Information extraction from HTML: application of a general machine
learning approach. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pages 517–523, Menlo Park, CA, USA. AAAI.

Hirschman, L. (2002). Natural language processing for biology. MITRE Corporation.

Hobbs, J. R. (2002). Information extraction from biomedical text. Journal of Biomedical
Informatics, 35:260–264.

Huffman, S. B. and Laird, J. E. (1995). Flexibly instructable agents. Journal of Artificial
Intelligence Research, 3:271–324.

Hunt, A. J. (1994). Improving speech understanding through integration of prosody and
syntax. In Proceedings of the 7th Australian Joint Conference on Artificial Intelli-
gence, pages 442–449.

Jones, D. (1996). Analogical Natural Language Processing. Studies in Computational
Linguistics. University College London Press.

51

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P. G., and Koss, F. V. (1999).
Automated intelligent pilots for combat flight simulation. AI Magazine, 20(1):27–41.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic: Introduction to Modeltheoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory.
Kluwer Academic Publishers, Dordrecht, The Netherlands.

Konrad, K. (1995). The CLIG grapher for linguistic data structures. http://www.ags.uni-
sb.de/ konrad/clig.html.

Laird, J. (2003). Soar 8 tutorial. http://www.eecs.umich.edu/ soar/tutorial.html.

Lewis, R. (1993). An Architecturally-based theory of Human Sentence Comprehension.
PhD thesis, Carnegie Mellon University.

Liddle, S., Yau, S., and Embley, D. (2001). On the automatic extraction of data from the
hidden web. In Proceedings of the International Workshop on Data Semantics in Web
Information Systems, pages 27–30.

Lonsdale, D., Hutchison, M., Richards, T., and Taysom, W. (2001). An integrated system
for processing information from genealogical text. In Workshop on Technology for
Family History and Genealogical Research.

Magnani, M. and Montesi, D. (2004). A unified approach to structured, semistructured and
unstructured data. Technical Report UBLCS-2004-9, University of Bologna.

McCray, A. T. (2000). Better access to information about clinical trials. Annals of Internal
Medicine, 133(8):609–614.

Molla, D. and Hess, M. (2002). Dealing with ambiguities in an answer extraction system.
In Proceedings of ATALA Workshop on Representation and Treatment of Ambiguity in
Natural Language Processing, pages 21–24.

Mooney, R. J. and Roy, L. (2000). Content-based book recommending using learning
for text categorization. In Proceedings of DL-00, 5th ACM Conference on Digital
Libraries, pages 195–204, New York, NY, USA. ACM Press.

Nakamura, Y. and Kanade, T. (1997). Semantic analysis for video contents extraction:
Spotting by association in news video. In Proceedings of the Fifth ACM International
Conference on Multimedia, pages 393–401.

Newell, A. (1994). Unified Theories of Cognition. Harvard University Press.

Parker, C. (2003). Generating medical logic modules for clinical trial eligibility. BYU
Computer Science Master’s Thesis Proposal.

Pustejovsky, J., Castano, J., Cochran, B., Kotecki, M., and Morrell, M. (2001). Auto-
matic extraction of acronym-meaning pairs from Medline databases. In Proceedings
of Medinfo, pages 371–375.

52

Pustejovsky, J., Castao, J., Zhang, J., Kotecki, M., and Cochran, B. (2002). Robust rela-
tional parsing over biomedical literature: Extracting inhibit relations. In Proceedings
of the 7th Pacific Symposium on Biocomputing, pages 362–373.

Radhakrishan, R., Xiong, Z., Divakaran, A., and Ishikawa, Y. (2004). Generation of sports
highlights using a combination of supervised and unsupervised learning in audio do-
main. Technical Report TR2003-144, Mitsubishi Electric Research Laboratories.

Raghavan, S. and Garcia-Molina, H. (2001). Crawling the hidden web. In Proceedings
of the 27th International Conference on Very Large Databases, pages 129–138, San
Francisco, CA, USA. Morgan Kaufmann.

Rindflesch, T., Rajan, J., and Hunter, L. (2000). Extracting molecular binding relation-
ships from biomedical text. In Proceedings of ANLP-NAACL, pages 188–195, San
Francisco, CA, USA. Morgan Kaufmann.

Rosenfeld, A., Doremann, D., and DeMenthon, D., editors (2003). Video Mining, chapter
Unsupervised Mining of Statistical Temporal Structures in Video. Kluwer.

Schneider, G. (1998). A linguistic comparison constituency, dependency, and link gram-
mar. Master’s thesis, University of Zurich.

Schwartz, A. and Hearst, M. (2003). A simple algorithm for identifying abbreviation defi-
nitions in biomedical text. In Pacific Symposium on Biocomputing, pages 451–462.

Skousen, R. (1989). Analogical Modeling of Language. Kluwer Academic Publishers.

Skousen, R., Lonsdale, D., and Parkinson, D. B. (2002). Analogical Modeling: An
exemplar-based approach to language. John Benjamins.

Sleator, D. and Temperley, D. (1991). Parsing English with a link grammar. Technical
Report CMU-CS-91-196, Carnegie Mellon University.

Soderland, S. (1999). Learning information extraction rules for semi-structured and free
text. In Machine Learning, pages 233–272, Hingham, MA, USA. Kluwer Academic
Publishers.

Stephens, M., Palakal, M., Mukhopadhyay, S., Raje, R., , and Mostafa, J. (2001). Detecting
gene relations from Medline abstracts. In Proceedings of the Pacific Symposium on
Biocomputing, pages 483–496.

Tustison, C. (2004). Automatically extracting predicate argument structures from natural
language text. Lacus Forum XXX.

van Rijsbergen, C. (1979). Information Retrieval. Butterworths.

Walker, T. and Embley, D. (2004). Automating the extraction of genealogical information
from the Web. In Fourth Annual Workshop on Technology for Family History and
Genealogical Research. Brigham Young University.

53

54

Appendix A

Examples Showing LG-Soar Process

This appendix shows just three examples of criteria that are input into the LG-Soar
system. The table outlines the the corresponding parse output by the LG parser and then
shows the final output produced by the system.

55

Ta
bl

e
A

.1
:
L
G

-S
oa

r
pr

oc
es

si
ng

ex
am

pl
es

O
ri

gi
na

lI
np

ut
Sy

nt
ac

ti
c

P
ar

se
F
in

al
O

ut
pu

t
H

is
to

ry
of

ca
nc

er
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
X
p
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

ca
nc

er
(N

5)
&
a
m
p
;

hi
st

or
y(

N
4)

+
-
-
-
-
-
W
d
-
-
-
-
+

+
&
a
m
p
;

of
(N

4,
N

5)

+
-
-
D
s
-
-
+
-
-
-
-
S
s
-
-
-
-
+
-
-
-
O
s
-
-
-
+
-
-
M
p
-
-
+
-
-
J
p
-
+

+

+
+

+
+

+
+

+

L
E
F
T
-
W
A
L
L
a
c
r
i
t
e
r
i
o
n
.
n
e
q
u
a
l
s
.
v
h
i
s
t
o
r
y
.
n
o
f
c
a
n
c
e
r
.
n
.
+

Fe
m

or
al

ne
ck

os
te

op
or

os
is

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
X
p
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

fe
m

or
al

(N
6)
&
a
m
p
;

+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
O
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

+
ne

ck
_
os

te
op

or
os

is
(N

6)

+
-
-
-
-
-
W
d
-
-
-
-
+

+
+
-
-
-
-
-
-
-
-
-
-
A
-
-
-
-
-
-
-
-
-
-
+

+

+
+
-
-
D
s
-
-
+
-
-
-
-
S
s
-
-
-
-
+

+
+
-
-
-
-
-
A
N
-
-
-
-
+

+

+
+

+
+

+
+

+
+

L
E
F
T
-
W
A
L
L
a
c
r
i
t
e
r
i
o
n
.
n
e
q
u
a
l
s
.
v
f
e
m
o
r
a
l
[
?
]
.
a
n
e
c
k
.
n
o
s
t
e
o
p
o
r
o
s
i
s
[
?
]
.
n
.

A
ge

el
ig

ib
le

fo
r
st

ud
y:

18
ye

ar
s
an

d
ab

ov
e

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
X
p
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

ag
e(

N
4)
&
a
m
p
;

+
-
-
-
-
-
W
d
-
-
-
-
-
+

+
-
-
-
O
p
c
-
-
+

+
gr

ea
te

r_
th

an
(N

4,
N

5)
&
a
m
p
;

+
+
-
-
D
s
-
-
+
-
-
-
-
S
s
-
-
-
-
+
-
-
O
s
-
-
+
-
-
M
a
m
-
-
+
-
-
M
V
t
-
-
+

+
D
m
c
n
+

+
m

ea
su

re
m

en
t(
N

5)
&
a
m
p
;

+
+

+
+

+
+

+
+

+
+

un
its

(N
5,

N
6)
&
a
m
p
;

ye
ar

s(
N

6)

L
E
F
T
-
W
A
L
L
a

c
r
i
t
e
r
i
o
n
.
n
e
q
u
a
l
s
.
v
a
g
e
.
n
g
r
e
a
t
e
r
.
a
t
h
a
n
1
8
y
e
a
r
s
.
n
.

&
a
m
p
;

m
ag

ni
tu

de
(N

5,
18

)

56

Appendix B

Examples of Incorrect Output

In this appendix, we present 15 different examples of criteria found in the clinical
trials repository. These examples are criteria that are currently not parsed out correctly in
the LG-Soar system. By studying these examples, future researchers can have a snapshot
of specific ways to improve the functionality of the system.

Input Output Reason for Incorrect or In-
complete Output

Hemoglobin greater than 9
g/dL

No output Does not parse because the
units g/dL confuse the parser.

No prior tyrosinase:368-376
(370D), gp100:209-217
(210M), or ART-1:26-35
(27L) peptides

neg(N5) &
prior_tyrosinase(N5)

Parser does not know how
to treat the number combina-
tions. In this example, the
parser treats prior as a noun.

Karnofsky 60-100% No output Does not parse because of the
% sign.

HLA-A2 positive No output Does not parse because posi-
tive in the link grammar dic-
tionary is an adjective and
therefore the input is not a
complete sentence.

Prior chemotherapy allowed prior(N4) &
chemotherapy(N4)

The word allowed is not in the
output. Also, prior is here
treated as an adjective.

Any age age(N4) No contextual information is
given about what any refers to
semantically.

An estimated 5,000 obese
diabetic subjects from the
Look AHEAD clinical trial.
There will be 2,500 women
(50%) and 30% minorities.

No output There is no output because
there are two sentences per
line fed into the system, which
is not allowed at this time.

Patient has used concomitant
medications that may
suppress the immune system.

No output More work needs to be done
with modals in LG-Soar.

57

Are likely to have bleeding
disorders.

No output The input already contains a
verb. This verb conflicts
with the dummy verb equals
which is added during pre-
processing.

Ascites (abdominal fluid) ascites(N4) Soar is not programmed to
handle links identifying extra
symbols, e.g. parentheses.

Pregnancy/breastfeeding. No output The parser does not know how
to treat the / symbol.

4. Women known to be
pregnant

No output Some criteria are numbered,
which causes problems for the
parser.

Physical examination within
normal limits;

No output Does not parse because of the
semicolon. The LG parser re-
quires a sentence to terminate
in a period or nothing.

Table B.1: Examples of incorrect output

58

