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Abstract. Researchers struggle to manage vast amounts of data com-
ing from hundreds of sources in online repositories. To successfully con-
duct research studies, researchers need to find, retrieve, filter, extract,
integrate, organize, and share information in a timely and high-precision
manner. Active conceptual modeling for learning can give researchers the
tools they need to perform their tasks in a more efficient, user-friendly,
and computer-supported way. The idea is to create “knowledge bundles”
(KBs), which are conceptual-model representations of organized informa-
tion superimposed over a collection of source documents. A “knowledge-
bundle builder” (KBB) helps researchers develop KBs in a synergistic
and incremental manner and is a manifestation of learning in terms of
its semi-automatic construction of KBs. An implemented KBB prototype
shows both the feasibility of the idea and the opportunities for further
research and development.

1 Introduction

In many domains, the volume of data is enormous and increasing rapidly. Un-
fortunately, the information a researcher requires is often scattered in various
repositories and in the published literature. Researchers need a system that can
help efficiently locate, extract, and organize available information so they can
analyze it and make informed decisions.

We address this challenge with the idea of a Knowledge Bundle (KB) and
a Knowledge-Bundle Builder (KBB). Active conceptual modeling for learning
(ACM-L) is at the core of our approach. As we explain below, a KB includes
an extraction ontology, which allows it to both identify and extract information
with respect to a custom-designed schema. (This constitutes the conceptual-
modeling part of ACM-L.) Construction of a KB itself can be a huge task—but
one that is mitigated by the KBB. Construction of the KB under the direction
of the KBB proceeds as a natural progression of the work a researcher does
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to manually identify and gather information of interest. As a researcher begins
to work, the KBB immediately begins to synergistically assist the researcher
and quickly “learns” and is able to take over most of the tedious work. (This
constitutes the active-learning part of ACM-L.)

In describing our KBB approach to building KBs, we first give a motivating
example of a bio-research study (Section 2). We then explain how the KBB plays
its claimed role in the bio-research scenario (Section 3) by defining what a KB is
and giving specific examples of KBB tools for building and using KBs. Finally,
we give the status of our implementation and mention current and future work
needed to enhance KBs and the KBB (Section 4) and then draw conclusions
(Section 5).

2 Motivation Scenario

Suppose a bio-researcher B wishes to study the association of TP53 polymor-
phism and lung-cancer. To do this study, B wants information from the NCBI
dbSNP repository5 about SNPs (chromosome location, SNP ID and build, gene
location, codon, and protein), about alleles (amino acids and nucleotides), and
about the nomenclature for amino-acid levels and nucleotide levels. B also needs
data about human subjects with lung cancer and needs to relate the SNP infor-
mation to human-subject information.

To gather information from dbSNP, B constructs the form in the left panel in
Figure 1. Form construction consists of selecting form-field types—e.g., single-
value fields, multiple-value fields, multiple-column/multiple-value fields, radio
buttons, and check boxes—and organizing and nesting them so that they are
a conceptualization of the information B wishes to harvest for the research
study. B next finds a first SNP page in dbSNP from which to begin harvest-
ing information. (The created form and located page need not have any skpecial
correspondence—no schema correspondence, no name correspondence, and no
special structure requirements—but, of course, the page should have data of in-
terest for the research study and thus for the created form.) B then fills in the
form by cut-and-paste actions, copying data from the page in the center panel
in Figure 1 to the form in the left panel.

To harvest similar information from the numerous other dbSNP pages, B
gives the KBB a list of URLs, as the right panel in Figure 1 illustrates (although
there would likely be hundreds rather than just the six in Figure 1). The KBB
automatically harvests the desired information from the dbSNP pages referenced
in the URL list. Since one of the challenges bio-researchers face is searching
through the pages to determine which ones contain the desired information, the
KBB provides a filtering mechanism. By adding constraints to form fields, bio-
researchers can cause the KBB harvester to gather information only from pages
that satisfy the constraints. B, for example, might only want coding SNP data
5 The Single Nucleotide Polymorphism database (dbSNP) is a public-domain archive

for a broad collection of simple genetic polymorphisms hosted by National Center
for Biotechnology Information (NCBI) at www.ncbi.nlm.nih.gov/projects/SNP/.
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Fig. 1. Form Filled in with Information from an SNP Page.

with a significant heterogeneity (i.e., minor allele frequency > 1%). Because of
this filtering mechanism, B can direct the KBB to search through a list of all
pages without having to first limit them to just those with relevant information.

For the research scenario, B may also wish to harvest information from other
sites such as GeneCard. B can use the KBB with the same form to harvest from
as many sites as desired. Interestingly, however, and as an example of the learning
that takes place, once the KBB harvests from one site, it can use the knowledge
it has already gathered to do some of the initial cut-and-paste for B. In addition
to just being a structured knowledge repository, the KB being produced also
becomes an extraction ontology capable of recognizing data items it has already
seen. It can also recognize data items it has not seen but are like the data it has
seen—e.g., numeric values or DNA snippets.

Using KBs as extraction ontologies also lets bio-researchers search the lit-
erature. Suppose B wishes to find papers related to the information harvested
from the dbSNP pages. B can point the KBB to a repository of papers to search
and cull out those that are relevant to the study. Using the KB as an extraction
ontology provides a sophisticated query of the type used in information retrieval
resulting in high-precision document filtering. For example, the extraction on-
tology recognizes the highlighted words and phrases in the portion of the paper
in Figure 2. With the high density of not only keywords but also data values
and relationships all aligned with the ontological KB, the KBB can designates
this paper as being relevant for B’s study.
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Fig. 2. Paper Retrieved from PMID Using an Extraction Ontology.

Fig. 3. Some Human Subject Information Reverse-Engineered from INDIVO.

For the human-subject information and to illustrate additional capabilities
of the KBB, we suppose that a database exists that contains the needed human-
subject information. The KBB can automatically reverse-engineer the database
to a KB, and present B with a form representing the schema of the database.
B can then modify the form, deleting fields not of interest and rearranging
fields to suit the needs of the study. Further, B can add constraints to the
fields so that the KBB only gathers data of interest from the database to place
in its KB. Figure 3 shows an example of a form reverse-engineered from the
INDIVO database, tailored to fit our research scenario. The icons in the form let
a user tailor the form: modify a form-field title (pencil icon), delete a form field
(× icon), insert or nest a new form field (choice list of icons to insert respectively
a single-value form field, a multiple-value form field, a multiple-column/multiple-
value form field, and radio-button and check-box selection fields).

With all information harvested and organized into an ontology-based knowl-
edge bundle (the KB), B can now issue queries and reason about the data to
do some interesting analysis. Figure 4 shows a sample SPARQL query over the
data harvested from the pages referenced by the six URLs listed in Figure 1. The
query finds three SNPs that satisfy the query’s criteria and for each, returns the
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Fig. 4. Screenshot of our Web of Knowledge Prototype.

dbSNP ID, the gene location, and the protein residue it found. In our prototype,
users may click on any of the displayed values to display the page from which the
value was extracted and to highlight the value in the page. As Figure 4 shows,
users may alternatively click on one or more check boxes to access and highlight
all the values in checked rows. The values rs55819519, TP53, and His Arg are
all highlighted in the page in the right panel of Figure 4.

3 KBs and KBBs

Having provided a scenario in which a researcher can use KBs built synergisti-
cally through a KBB, we now explain exactly what a KB is and how a KBB syn-
ergistically builds them. In doing so, we emphasize that although our research-
study scenario specifically targets bio-research, our definitions and explanation
here do not. It should be clear that a KBB can assist intelligence-gathering
researchers in all areas—scientific, business, military, and government.

We define a knowledge bundle (KB) as a 7-tuple (O, R, C, I, S, A, F ):

– O is a set of intensional object sets, and are one-place predicates—sometimes
called concepts or classes; they may also play the role of properties or at-
tributes. (Examples: Person(x), Amino Acid(x), Country(x), Color(x).)

– R is a set of intensional relationship sets among the object sets, and are n-
place predicates (n ≥ 2). (Examples: Person(x) is citizen of Country(y),
Sample(x) taken on Date(y).)
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– C is a set of constraints over O and R, limited so that (O, R, C) consti-
tutes a decidable fragment of first-order logic. (Examples: ∀x(Student(x) ⇒
Person(x)), ∀x(Sample(x) ⇒ ∃1y(Sample(x) taken on Date(y)))

– I is an instantiation of the object and relationship sets in O and R; when
I satisfies C, I is a model for (O, R, C). (Examples: Sample(“SMP9671”)
taken on Date(2009-03-25), Color(“green”).)

– S is a set of inference rules, horn-clause statements. (Example: BrotherOf(x,
y) :- Person(x), Person(y), SiblingOf(x, y), Male(x).)

– A is a set of annotations for data-value instances in object sets in O; each
data value v may link to an appearance of v in a source document. (Example:
Codon(72) may link to the appearance of 72 in the SNP page in Figure 1.)

– F is a set of data frames [Emb80]. Data frames are abstract data types,
linguistically augmented to include recognizers for object and relationship
instances and operation instantiations as they appear in documents and free-
form user queries. (Examples: the instance recognizer [ACGT]([ACGT])+ for
a DNA snippet, (Country | Nation | Republic | ...) as keywords indicating
the presence of a country concept.)

The triple (O, R, C) is an ontology.6 In our implementation, we use OWL to
represent ontologies. Adding the I component allows us to populate the ontol-
ogy. The quadruple (O, R, C, I) characterizes information and is an information
system or database. In our implementation, we use RDF for storing instances
with respect to OWL ontologies. The quintuple (O, R, C, I, S) characterizes a
computational view of knowledge. Adding the S component allows us to reason
over the base facts in the information system. In our implementation, we use
SWRL rules and the Pellet reasoner. The sextuple (O, R, C, I, S, A) charac-
terizes a platonic view of knowledge. Adding the A component provides a form
of authentication since users can trace knowledge back to its source; it thus pro-
vides a form of “justified true belief,” which Plato insists is part of the definition
of knowledge [PlaBC]. Completing the septuple by adding the F component,
linguistically grounds the knowledge [BCHS09,HLF+08],7 making the KB also
be an extraction ontology. Further, having an extraction ontology enables a KB
to be an active learner, where we consider active learning to be the ability to
automatically find facts in source documents that pertain to the KB’s ontology,
annotate them, and add them to the KB.

Finding facts in source documents and adding them to the bundle of col-
lected knowledge is the essence of building KBs for research studies. Letting
KBs themselves assist in the task goes a long way toward automating the KB-
building process. This automation is non-trivial, and full automation is likely
6 Researchers disagree about the definition of an ontology, but we adopt the view that

an ontology is a formal theory captured in a model-theoretic view of data within
a formalized conceptual model. Since the elaboration of our triple (O, R, C) is a
predicate-calculus-based, formalized, conceptual model, we call it an ontology.

7 Both LexInfo [BCHS09] and OpenDMAP [HLF+08] are independently developed
complementary, efforts, aimed at linguistically grounding ontologies. As both their
work and ours explores this wide-open research area, the projects have much to
contribute to and learn from each other.
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impossible. Hence, we aim to construct KB-building tools that synergistically
work well with users and incrementally take on more and more of the burden of
KB construction.

A KB-Builder (KBB) is a tool suite to aid in the construction of KBs. More
specifically, it is a tool suite to largely automate the building of KBs. In our
approach to providing a KBB tool suite, we focus on tools (1) to build KBs
via form specification and automated information harvesting and (2) to reverse-
engineer structured and semi-structured information sources into KBs.

Form-based Ontology Creation and Information Harvesting. While we do not
assume that bio-researchers and other decision-making researchers are expert
users of ontology languages, we do assume that they can create ordinary forms
of the kind people routinely use for information gathering. A KBB interface lets
users create forms by adding various form elements as the clickable icons in the
data and label fields of the form in Figure 3 indicates. Users can specify any and
all concepts needed for a study, can specify relationships and constraints among
the concepts, and can nest, customize, and organize their data as they wish.
From a form specification, the KBB generates a formal ontological structure,
(O, R, C). Each label in a form becomes a concept of O. The form layout
determines the relationship sets in R among the concepts and determines the
constraints in C over the concepts and relationship sets. Given a form, a user
can cut-and-paste data from source documents into the form fields to create the
I and A components of a KB. When harvesting from sites like the NCBI dbSNP
repository which have hundreds of pages all formatted in a similar way, the KBB
can infer from the user’s cut-and-paste actions the patterns it needs to harvest
the desired information from all pages on the site. These patterns consist of
paths in DOM trees of HTML pages along with left and right context and list
delimiters to locate data within DOM-tree nodes. To build the F component of a
KB, the KBB creates instance recognizers in two ways as it harvests information:
(1) by creating lexicons and (2) by identifying and specializing data frames in
a data-frame library. For lexicons, the KBB simply makes a list of names of
identifiable entities, which it can then later recognize and classify. For data-frame
recognizers, we initialize a data-frame library with data frames for common items
we expect to encounter—e.g., all types of numbers, currencies, postal codes, and
telephone numbers, among many others. When recognizers in these data frames
recognize harvested items, they can classify the items with respect to these
data frames and associate the data frames with concepts in the ontology. Some
automatic specializations are possible, such as numbers with as-yet-unknown
units. For more complex pattern recognition, experts can add recognizers.

Reverse-Engineering Structured and Semi-structured Data to KBs. Struc-
tured repositories (e.g., relational databases, OWL/RDF triple stores, XML
document repositories) and semi-structured repositories (e.g., human-readable
tables and forms, hidden-web display pages) may contain much of the informa-
tion needed for a research study. For structured repositories, reverse-engineering
processes (e.g., for relational databases [MH08]) can turn these repositories into
knowledge bundles. Further, the results of reverse engineering can be nested form
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schemas like the one in Figure 3. In this case, researchers can use the techniques
mentioned in the previous paragraph to custom-tailor reverse-engineered KBs by
restructuring the generated forms to become the (O, R, C)-ontologies they want.
They can also limit the data extracted from the database to the I-values they
want, and they can use the techniques mentioned in the previous paragraph to
produce F -component lexicons and data frames. For structured repositories such
as relational databases that allow view definitions, S-component construction is
possible, yielding rules for reasoning. Although the reverse-engineering process
for semi-structured repositories is even more challenging than for structured
repositories, it is nevertheless feasible for many documents (e.g., for human-
readable web tables [GBH+07,PSC+07]).

4 Implementation Status and Future Work

We have implemented an initial prototype of our KBB as part of our Web-of-
Knowledge (WoK) project [ELL+08]. Currently, as Figure 1 shows, our prototype
lets users create ontologies via forms, fill in the form from a machine-generated
web page in a hidden-web site, and harvest information from the remaining sib-
ling pages of the hidden-web site [Tao08,TEL09]. We have not yet, however,
added constraint filtering to forms. Our WoK prototype can also automatically
reverse-engineer machine-generated sibling tables from hidden-web sites into
forms and automatically establish the beginnings of a KB extraction ontology
[Tao08]. Although not yet integrated into our WoK prototype, we have imple-
mented a way to reverse-engineer an XML-Schema document into a conceptual
model, which is compatible with our KB ontologies [AKEL08]. Using extraction
ontologies coded by hand, we can successfully do high-precision filtering of semi-
structured web documents [XE08], but we have not yet brought this up to the
level we need for high-precision document retrieval for free-running text as indi-
cated in Figure 2. In another WoK subproject we have developed a way to gener-
ate an ontology from a collection of human-readable tables. We can interactively
interpret tables [Pad09], semantically enhance them [LE09], and merge them
into a growing ontology [Lia08] using automated schema integration techniques
[XE06]. We have yet to make all these components work together to achieve the
overall goal of automatically growing ontologies by reverse-engineering coordi-
nated collections of human-readable tables. The current implementation of our
WoK prototype also allows users to access and query the data in a KB as the
screenshot in Figure 4 shows.

Although some of our work is complete, we still have much to do to solidify
and enhance what we have already implemented and to extend it to be a viable
research-study tool. We plan further research as follows. (1) We have defined
and implemented data frames for concepts corresponding to nouns and adjec-
tives, but we should also define data frames for relationships in connection with
verbs and prepositions. (2) Our current system expects source documents divided
into distinct records, but to extract selected information from free-running text,
we need to relax the record-boundary constraints and be able to recognize a
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record of interest, and its extent, without any boundary information. (3) Our
reverse-engineering efforts have proven to be successful, but we should take these
approaches even further, for instance, by inferring schemas from general semi-
structured data like the dbSNP page in Figure 1. (4) Although not a scientific
workflow system by itself, a KBB can become an integral part of a workflow
system; embedding a KBB inside of a workflow system being used to gather in-
formation for research studies (e.g., scientific workflow systems [LAB+06]) could
greatly enhance and help automate the information harvesting facilities of these
systems.

5 Concluding Remarks

Several related fields of research are at the heart of our work: information extrac-
tion [Sar08], information integration [ES07], ontology learning [Cim06], and data
reverse engineering [Aik98]. The KB/KBB approach discussed here is a unique,
synergistic blend of techniques resulting in a tool to efficiently locate, extract,
and organize information for research studies. (1) It supports directed, custom
harvesting of high-precision technical information. (2) Its semi-automatic mode
of operation largely shifts the burden for information harvesting to the machine.
(3) Its synergistic mode of operation allows research users to do their work with-
out intrusive overhead. The KB/KBB tool is a helpful assistant that “learns as
it goes” and “improves with experience.”
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