Filtering Web Pages with Application Ontologies

Li Xu David W. Embley
Department of Computer Science Department of Computer Science
University of Arizona South Brigham Young University
Ixu@email.arizona.edu embley@cs.byu.edu
Abstract

Automatically recognizing which HTML documents on the Web contain objects that are “of
interest” for a user is non-trivial. As a step toward solving this problem for information filtering
in which a user expresses a long-term need for information with a specific profile, we propose
an approach based on ontological descriptions. The HTML documents we consider include
semistructured HTML documents, HTML tables, and HTML forms. Given the keywords and
values and kinds of values recognized by an ontological specification in an HTML document, we
apply several heuristics: (1) a density heuristic that measures the percent of the document that
appears to apply to the application ontology, (2) an expected-value heuristic that compares
the number and kind of values found in the document to the number and kind expected by
the application ontology, and (3) a grouping heuristic that considers whether the values of the
document appear to be grouped as application-ontology records. Then, based on machine-
learned rules over these heuristic measurements, we determine whether an HTML document
contains objects of interest with respect to an application ontology. Our experimental results
show that we have been able to achieve about 95% for both recall and precision.

Keywords: Information filtering, application-ontology filtering, conceptual-model-based fil-
tering, ontology specification, machine-learned classification, information retrieval.

Ontologically Filtering Web Pages 2

1 Introduction

The World Wide Web contains abundant repositories of information in HTML documents—indeed,
it contains so much that locating information entities that are “of interest” for a user becomes a
huge challenge. Even sorting through a tiny subset of HI'ML documents for particular objects of
interest is overwhelming. How can we automatically select just those documents that have the
needed information for a user?

In this paper, we focus on the specialized subproblem called information filtering (IF). IF
attempts to solve the problem of information gathering for long-term needs of a particular user
or user group. Typically, a user (or user group) needs information satisfying a particular query
specification or profile. The filter checks a document set (e.g. new documents that come on line
on the Web) and returns those that satisfy the query profile.

Search engines are not precise enough to filter documents on the Web. In order to find relevant
Web documents that contain information of interest, users issue queries composed of keywords
that express their interests. To evaluate the relevance of an HTML document to a user query,
search engines mainly apply keyword-based techniques to filter the document set based on common
terms that appear in both the user query and the Web page. The user query and the Web page,
however, are typically constructed independently. As research in [1] shows, however, people use
the same terms for the same concepts with a probability of less than 0.20. This fact helps explain
the imprecision in results returned by search engines.

More general information retrieval (IR) techniques [2] typically do not solve the IF problem
well either. Although IF and IR are two sides of the same coin [3], IR systems are usually designed
to facilitate retrieving information units quickly for relatively short-term information needs of a
diverse large group of users, whereas IF systems are commonly designed to personalize interests
of a particular user or a group of users to support the users’ long-term needs. Nevertheless, some
IR techniques may prove useful for IF. IR approaches like [4] and [5] that exploit semantics in
document content by embedding semantic mark-ups in meta languages could potentially help
solve the IF problem. Semantic annotation to mark up Web content, however, is still only being
explored and there are no encouraging results that are good enough to be practical [6, 7].

Other researchers have attempted to more directly solve the filtering problem. SIFT [8] uses
both a Boolean model and a VSM model for IF. Both models, however, rely on keywords, which
results in the same problem search engines encounter. In other systems [9, 10, 11], instead of
explicitly expressing user profiles, learning based techniques are applied to determine the informa-
tion needs of users based on user input documents. These IF systems transform the contents of a
set of documents to a concrete user query. The transformation is typically based on Al techniques,
but the inherit complexity of the transformation problem makes it difficult to solve the learning

task efficiently.

Ontologically Filtering Web Pages 3

In this paper, we present an approach to IF that applies an application ontology to explicitly
specify user interests. We base our approach on application ontologies [12], which are conceptual-
model snippets [13, 14] of standard ontologies [15, 16], and we apply techniques from data extrac-
tion [12, 17, 18], information retrieval [2, 19], and machine learning [20]. By exploiting the content
of HTML documents and using ontological specification in application ontologies, we construct
automated processes to filter document sets to satisfy a user’s information needs.

We call documents that contain items of interest relevant documents and documents that do
not contain items of interest irrelevant documents. For the automated processes to filter applica-
tion objects in Web documents, we must be careful not to discard relevant documents and not to
accept irrelevant documents. In order to measure the performance of the automated processes, we
use popular metrics available in information retrieval systems. A process that discards too many
relevant documents has poor recall—the ratio of the number of relevant documents accepted to
the total number of relevant documents. A process that accepts too many irrelevant documents
has poor precision—the ratio of the number of relevant documents accepted to the total num-
ber of documents accepted. The harmonic mean of the precision and recall, which is called an
F-measure, is a standard way to combine precision and recall. We wish to have an automated
recognition process that has a high F-measure, i.e. that has both high recall and high precision.

This paper presents our contribution to IF as follows. Section 2 contains some preliminaries
and provides an example to which we refer throughout the paper to illustrate our ideas. Section 3
describes application ontologies, on which we base our IF work. Section 4 presents the high-level
architecture of the IF framework we have built to recognize relevant HIT'ML documents for applica-
tion ontologies. Given an application ontology and a set of HIML documents, Section 5 explains
how we automatically obtain threshold statistics for determining document relevance using a set
of heuristics including: (1) a density heuristic, (2) an expected-values heuristic, and (3) a grouping
heuristic. Section 6 provides an empirical evaluation of our approach including our experimental
results, which—for the two applications we tried (car advertisements and obituaries)—each have
an F-measure of 95%. Section 7 describes related work and more particularly compares it with

our approach. Section 8 gives concluding remarks and our plans for future work.

2 Preliminaries

Before giving details of our approach, we first need to discuss our assumption about HTML

documents, application ontologies, and the filtering task.

2.1 HTML Documents

The HTML documents on the Web we consider include semistructured HTML documents such

as the lists of ads in Figure 1, HTML tables such as the one in Figure 2, and HTML forms such

Ontologically Filtering Web Pages 4

as the one in Figure 3(a), which when filled-in and processed, yields a table or a semistructured
list such as the one in Figure 3(b).

We assume that the HTML documents are data-rich and narrow in ontological breadth [12].
A document is data rich if it has a number of identifiable constants such as dates, names, account
numbers, ID numbers, part numbers, times, currency values, and so forth. A document is narrow
in ontological breath if we can describe its application domain with a relatively small ontological
model. The documents in Figures 1-3 are all data rich and narrow in ontological breadth.

When evaluating the relevancy of HTML documents to a particular application, we want
to exploit the contents rather than HTML tags and layout features. Thus, even though the
designers of the HTML documents express content in various ways, we recognize the documents
as relevant to the application mainly based on three patterns: multiple-record documents, single-
record documents, and application forms, which we distinguish by the contents with respect to
the application. The documents in Figures 1, 2, 3(b) are all multiple-record documents because
they contain similar descriptions of several different items. Figure 4 shows a car ad linked from
Honda Accord EX in Figure 2, which we call a single-record document because it declares the
various features of only one item—the Honda Accord EX for sale. In addition to single- and
multiple-record documents, Figure 3(a) is an application form. When considering a form, we may
have, in addition to the labeled form fields, (1) selection lists with possible values of interests, and
(2) the results returned, if we can automatically fill in and submit the form using default values

as discussed in [23, 24].

2.2 Filtering Task

Real-world applications require that the recognition of document relevancy be flexible, robust, and
scalable. Even if we can manually construct rules to automate this recognition, the automation
depends largely on how knowledgeable a human expert is, who makes the automatic rules for the
particular application domain. Especially when porting to a new application domain, existing
recognition rules may no longer be appropriate. To resolve these challenges, in our approach
we construct automatic recognition rules via machine learning. We reformulate the problem of
recognizing relevant HTML documents for an application into a classification task: given a set
of HTML documents consisting of semistructured HTML documents, HTML tables, and HTML
forms, we attempt to assign each HTML document a concept class, which is either relevant or
1rrelevant, with respect to a particular application. Using car ads as an example, we want to
classify the multiple-record document in Figure 1(a) as being relevant whereas we want to classify
the multiple-record document in Figure 1(b) as being irrelevant.

Like a typical machine learning classification task, relevancy testing proceeds in two phases:

training and test. In the training phase, we supervise the machine to train a learner for an

Ontologically Filtering Web Pages

Last Updated
Monday, January 24, 2000 12:19pm Cars for Sale

DEPENDABLE CAR

1989 Subaru SW. Auto, AC, $1900 OBO. Call (336)835-8579.

FACTORY WARRANTY

1998 Elantra. Black 4 door w/ tinted windows. Auto, pb,

ps, cruise, am/fim cassette stereo, a/c. Excellent

condition pay off OBO. Call (336)526-5444 anytime & leave
message.

1994 HONDA ACCORD EX
Auto, power everything, jade green w/gold package. Under
100K miles. Call (336)526-1081 after 7pm.

1999 GRAND AM
27,000 miles, silver, auto, still under warranty. $14,000
OBO. Call (336)366-4996 anytime.

*53 Chevy Bel Aire. All original, looks like new. Serious
inquiries only. $8500. Call (336)468-8924 after 4 pm.

TWO GREAT CARS

1973 MGB convertible. British racing green. Mags, new
tires, 4-speed, 1 owner, excellent running condition.

$4500.

1977 Olds Cutlass Supreme. New white paint job w/ 1/2 red
Landau top, original mags & new tires. Auto., | owner,

low mileage, loaded. Call (336)984-2843.

95 FORD CONTOUR
5-speed, great condition, one owner, $5300. Call
(336)526-8853 & leave message if no answer.

SEIZED CARS FROM $500

Sports, luxury & economy cars, trucks, 4x4's utility and
more. For current listings, call 1-800-311-5048 ext.
10012.

1996 VW JETTA GL
26,000 miles. 4 door, 5-speed, AC, sunroof, 1 owner.
$11,000. Call (336)874-7317 anytime.

*85 Buick Park Avenue. $500. Head may be cracked. Will
run. Body good condition. Call (336)526-2768.

95 Ford Thunderbird. Loaded, V-8, 45K, $6995. Call S&J
Motors at (336)874-3403.

96 Mercury Tracer. 4 door, 5 speed, 34K, $4995. Call S&J
Motors at (336)874-3403.

*88 Firebird. V8, 5.0, fuel injected, T-tops, 109,000
miles, red, runs great. $1880. Call (336)526-1164
anytime.

1990 CONVERSION VAN
350 motor, auto, new tires, TV, VCR, captain chairs,
front & rear AC. $4,995. Call (336)320-2658 anytime.

COMMERCIAL WORK VAN
*95 Chevy Astro, V6, w/ac & fully equipped utility
shelves. $9400. Call (336)526-2675 & leave message.

(a) Car advertisements retrieved from http://
www.elkintribune.com/

Last update: Wednesday, December 22, 1999
Select a category

Apartment For Rent For Sale or Rent Lost or Found

For Rent Help Wanted
For Sale House For Rent
Apartment For Rent

ONE EFFICIENCY, 2 & 3 bdrm, all utilities paid.
Call 281-2051 -

For Rent
HOUSING SOLUTIONS - Free TV cable furn. $60/wk -
$210/mo. 281-4060. -

For Sale
1998 JD 455 mower, 60' deck. Call for price. Also,
homemade Go-Cart. Call after 5:30 pm 218-281-1128. -

For Sale or Rent
10,000 SQ. FT. office building. Handicap accessible.
Call 281-3631. -

Help Wanted

NOW HIRING full time and part time customer service
representatives. Advancement possible and weekly pay.
Must be able to work weekends and holidays. Apply at

Superamerica, 411 N Main St., Crookston, MN EOE -

PART-TIME AND weekend help working with developmentally
disabled adults. Call Melissa or Karen at 281-3872. -

REM-NORTHWEST Services, Inc. has a full time Program
Coordinator/Coordinator position open in Crookston
working with four developmentally disabled adults. Duties
include hiring, staff supervision, scheduling, oversight

of most areas of the home's operation. Applicant must be
18 years of age or older. Must have a high school diploma
or equivalent. One year experience serving people with
developmental disabilities preferred. Must have a valid
driver's license and driving record that meets REM's
insurability requirements. Insurance and benefits available.
If interested call for application at 218-281-5113. E.O.E. -

REM-NORTHWEST Services, Inc. has full and part time
Coordinator positions available in Crookston, MN,
working with citizens who are developmentally disabled.
Excellent benefits are offered including health, dental,

life, 401K and profit sharing for full and part time
employees working 20 hours a week or more. Exceptional
training is provided. Applicants must be 18, have a valid
driver's license and high school diploma or GED. Apply by
calling for application at 218-281-5113 or 1-800-532-7655.
E.OE.-

House For Rent

3 BDRM HOUSE $450/mo. 281-1970. 22 STEEL BUILDINGS,
NEW, must sell. 40x60x14 was $17,500 now $10,971; 50x100x16
was $27,850 now $19,990; 80x135x16 was $79,850 now $42,990;
100x175x20 was $129,650 now $78,850. 1-800-406-5126. -

Lost or Found
FOUND: Golden retriever about 4 months old. Found 7
miles south of Crookston. Call after 5:30 pm 281-1128. -

(b) Items for sale advertisements retrieved from
http://www.crookstontimes.com

Figure 1: A car-ads Web document and a non-car-ads Web document

Ontologically Filtering Web Pages

Vehicles

Search New
Pre-Owned
Specials

Get A Quote
Financing
Vehicle Pricing

Finance
Specials
Contact
Service
About

Home

4 BOB HOWARD HONDA

Pre-Owned Inventory

To see a list of all our cars, trucks, vans and SUY's, click here.

e Looking for a price quote? Check out our Quick Quote Faorm.
e MNeed financing? Try our new Pre-Approval Form.
s Check out our Internet Only Specials.

To search for a specific vehicle or model, use our easy search engine below, Our
inventory changes daily, so drop us an email or give us a call if you don't see the car
wol want, We will make sure vou find your dream car! You searched for:

o Al vehicles available,

66 matches found. ‘“ehicles 1 to 25 shown,

Make and Model [] Exterior

- Pontiac Firebird Contact Us 32,883 Blue e
r Acura BL 3.5 £23,988 26,657 Silver e
[T 2002 Honda &ccord Ex £21,988 13,875 White ie]
[T 2002 Honda Passport £20,998 10,410 Black o
M 2002 érnra PSY Tune-S ton arf 14 2na Rad =)
1 ZUUU LHEvVPOIeT Lamarg t 15,998 4o, 2 WENITE [L*])
[T 2001 Honda sccord Yalue Package $13,995 31,710 Silver [
[T 2001 Chewvrolet Silverado C1500 £13,988 28,022 Pewter =]

Show checked wehicles Mew search Show 25 more

all vehicles subject to prior sale, We reserve the right to make changes without
notice, and are not responsible for errors.

Bob Howard Honda Toll Free: 1-877-944-2842
14137 Broadway Extension Phone: 405-936-8666
Cklahoma City, OK 73013 Fax: 405-936-8674

E-mail: sales@bobhowardauto. dealerspace. com

Figure 2: HTML page with table from [21]

Ontologically Filtering Web Pages 7

1996 ACURA INTEGRA LS GREEN
wf TAN int. 6 CYLINDER 90,833mi.
AUTO FOR MORE INFO CALL 630-
241-4846 $7,995 Stock No. K-10318
SUPERIOR MOTOR SPORTS [More
Detail]

1996 ACTURA INTEGRA LS GREEN -
wi TAIN int, 4 CYLINDER 90,383mi.
AUTO $8,995 Stock No. K-10318

world Wide whaals LUXURY MOTORS [More Detail]

The Hottest Autemotive B8pot on the Netl

1994 ACTURA INTEGRA GREEIN w/
GRAY int. 4 CYLINDER 5 SFD. .If

Year: |1921 Tl te |2an 'l you are Looking for a Great car to fit
i = = = your Budget? Look no More! This
Dinlce: I FllMakes J Integra is Loaded with Power
Model: [All_Models Windows, Locks, Mirrors, Moonroof,
Air Cond., Alloys and Lots More!
Colar: [——=#i Colors = Drive it Home Today! Only at The
: Autobarn! $5,980 Stock No. VE4152B
e [0 Ml I THE AUTOBARN LIMITED
Beginsearch | [Beest | EVANSTON [More Detail]
(a) HTML form at [22] (b) Retrieved car ads after filling in the form in

Figure 3(a)
Figure 3: HTML form at [22]

application. During the training phase, the learner builds a classification model (e.g. decision
trees [20]) for the application. In the test phase, given an HTML document, the learner applies

the classification model to predict whether the document is relevant.

3 Application Ontologies

We define an application ontology to be a conceptual-model instance that describes a real-world
application in a narrow, data-rich domain of interest. Each of our application ontologies consists
of two components: (1) an object/relationship-model instance, which describes sets of objects, sets
of relationships among objects, and constraints over object and relationship sets, and (2) for each
object set, a data frame, which defines the potential contents of the object set. A data frame for
an object set defines the lexical appearance of constant objects for the object set and establishes
appropriate keywords that are likely to appear in a document when objects in the object set
are mentioned. Figure 5 shows part of our car-ads application ontology, including object and
relationship sets and cardinality constraints (lines 1-8) and a few lines of the data frames (lines
9-18). The full ontology for car ads is about 600 lines long. Our obituary ontology, which is the
other application ontology we discuss in this paper is about 500 lines long, but it references both

a first-name lexicon and a last-name lexicon, which each contain several thousand names.

Ontologically Filtering Web Pages

. BOB HOWARD HONDA

— Pre-Owned Inventory
Search New .
PreOag At Howard Auto Group we have created an Internet sales department to give our
Specials customers an alternative buying experience. Once you have found a vehicle you like
Get A Quote we will be glad to give you our lowest no haggle price right up front! Then if you
Financing like that price yvou can complete the transaction with your Internet manager. He can
Vehicle Pricing also quote you a payment, interest rate and if you have a trade in give you an
evaluation of your trade in, Remember the Internet department is designed to provide
Finance the fastest and friendliest service to the Internet user and to ensure a totally
2 different buying experience! If you have any questions please feel free to give a call
Specials at 405-936-8666 or toll free 877-944-2842 or drop us an e-mail. Your Internet
sales staff at Howard AutoNet is waiting to help you. Kvle, Brendon, Shane, DK, Rory,
Contact Mitesh, Mic, Steve, Karriem, Jay,Traci, and Ryan.
Service

Schedule a test drive

About .
Send Me Mare Information

Elomy 2002 Honda Accord EX $21,988

. A
Conditioning
s Driver Side
Air Bag
» Passenger
Side Air Bag
s Anti-Lock
Brakes
o AM/FM
Cassette .
o Security Click on photo to enlarge
Features
s Alloy Wheels
» butomatic Price $21,9858
Transrission Mileage 13,875 miles
» Bucket Body Type Car
Seats
. Compact Body St_/IeCoupe
R — ExteriorWhite
e Cruise Transmission Automatic
Contral Engine 3.0L 6 cyl Fuel Injection
« Front Wheel Fuel Type Gas
ID”t“e tont Stock Number 350291 4
* ETMRLEn VIN 1HGCG225624018644

Wipers
e Man |inht

Figure 4: Linked page with additional information [21]

Ontologically Filtering Web Pages 9

1. Car [-> object];

2. Car [0:0.975:1] has Year [1:*];

3. Car [0:0.925:1] has Make [1:*];

4. Car [0:0.908:1] has Model [1:*];

5. Car [0:0.45:1] has Mileage [1:*];

6. Car [0:0.8:1] has Price [1:*];

7. Car [0:2.1:*] has Feature [1:*];

8. PhoneNr [1:*] is for Car [0:1.15:*];
9. Year matches [4]

10. constant {extract “\d{2}”;
11. context “\b’[4-9]\d\b”;
12. substitute <7 -> "19”
13.

14. Mileage matches [§]

15.

16. keyword “\bmiles\b”, “\bmi\.”, “\bmi\b”,
17. “\bmileage\b”;

18. .

Figure 5: Car-ads application ontology (partial)

An object set in an application ontology represents a set of objects which may either be lexical
or nonlexical. Data frames with declarations for constants that can potentially populate the
object set represent lexical object sets, and data frames without constant declarations represent
nonlexical object sets. Year (Line 9) and Mileage (Line 14) are lexical object sets whose character
representations have a maximum length of 4 and 8 characters respectively. Make, Model, Price,
Feature, and PhoneNr are the remaining lexical object sets in our car-ads application; Car is the
only nonlexical object set.

We describe the constant lexical objects and the keywords for an object set by regular ex-
pressions using the Perl syntax. When applied to a textual document, the extract clause in a
data frame causes a string matching a regular expression to be extracted, but only if the context
clause also matches the string and its surrounding characters. A substitute clause lets us alter
the extracted string before we store it in an intermediate file, in which we also store the string’s
position in the document and its associated object set name. One of the nonlexical object sets is
designated as the object set of interest—Car for the car-ads ontology. The notation “[-> object]”
in Line 1 designates the object set of interest.

We denote a relationship set by a name that includes its object set names (e.g. Car has Year
and PhoneNr is for Car). The min:maz pairs and min:ave:max triples in the relationship-set
name are participation constraints: min designates the minimum number of times an object in
the object set can participate in the relationship set; ave designates the average number of times
an object is expected to participate in the relationship set; and maz designates the maximum
number of times an object can participate, with * designating an unknown maximum number of

times. The participation constraint on Car for Car has Feature, for example, specifies that a car

Ontologically Filtering Web Pages 10

Training Phase Test Phase

Training Documents / \ Test Documents
Ontology

Training Data

/ ‘7 Test Data

Training Classifier Data Extractor

Classification Model Heuristics @

L Processor) / .

Relevancy Predication

Single-Record Form
Decision Tree Decision Tree
Y

Multiple-Record
Decision Tree

Figure 6: High-level architecture for recognizing relevant HTML documents for an application

need not have any listed features, that a car has 2.1 features on the average, and that there is no
specified maximum for the number of features listed for a car.

For our car-ads and obituaries application ontologies, we obtained participation constraints as
follows. To make our constraints broadly representative, we selected ten different regions covering
the United States and found one car-ads page and one obituary page from each of these regions.
From each of these pages we selected twelve individual car-ads/obituaries by taking every n/12-th
car-ad/obituary, where n was the total number of car-ads/obituaries on the page. We then simply
counted by hand and obtained minimum, average, and maximum values for each object set in

each relationship set and normalized the values for a single car ad or obituary.

4 Architecture for Web Document Filtering

In Figure 6, we present a high-level architecture of our approach for checking relevancy of HTML
documents for an application. In the architecture, one application Ontology, which specifies
object and relationship sets and data frames for an application, is predefined independently of
HTML documents. Given an HTML document, we use an HTIML Parser to parse the document.
For each document, we collect two kinds of text components. One kind is the text that appears
in the whole document, which we call the document text component. The other kind are text
fragments that appear within individual forms in the document, each of which we call a form
text component. A form text component includes the text that labels form fields and values in

selection lists. If the document does not contain any form, the set of form text components is

Ontologically Filtering Web Pages 11

empty. Note that the document text component of an HTML document subsumes all the form
text components that appear within the forms as well as the text that is outside the forms in
the document. The Data Extractor applies the application ontology using ontology-based data-
extraction techniques [12] to retrieve data from all the document and form text components in
the document.

Based on the data extracted from a text component, which is either a document text component
or a form text component, we construct a list of heuristics to evaluate the relevancy of the text
component to the application ontology by a Heuristics Processor. Each individual heuristic
processor evaluates the relevancy of a document to the application ontology. We normalize a
measure for each individual heuristic as a confidence measure in the range from 0 to 1. The higher
the confidence value, the more confidently we consider the text component appropriate for the
application ontology for the particular heuristic. As will become evident, in our approach, we
construct heuristics that are tightly dependent on the specification of application ontologies in a
flexible and robust way.

We formalize the evaluation of HTML-document relevancy to an application as follows. An
application ontology O specifies the application. HTML documents are structured objects: a
document consists of a document text component and a set of form text components. More
precisely, a document d is a sequence of text components, written d = [tq,tf,,...,t5,], where n is
the number of forms in the document d. Note that d = [t4] if the document d does not contain
any form. Given the application ontology O and an HTML document d = [t4,tf,,...,t5,], We
use m heuristic rules to compute m confidence measures Hy, = (hy, ho, ..., hy,) for the document
text component tg and use the same m heuristic rules to compute Hy 5 = (hi1, higy ooy i) for
each form text component ty, (1 < i < n). Thus we describe the similarity between the HTML

document d and the application ontology O as a heuristic vector dy =< H;,, H; fl,...,Ht >

fn
over n+1 m tuples of confidence measures. Since we reformulate the recognition of document
relevancy into a classification problem, we attempt to assign dy to either a concept class ¢p, which
represents positive (relevant to the application), or ¢y, which represents negative (irrelevant to

the application).

4.1 Training Phase

In the training phase, we train a learner using a Training Classifier, which for our work is the
popular machine learning algorithm C4.5 [20]. C4.5 is a rule post-pruning decision-tree algorithm.
The learning task is to check the suitability of documents for a given application ontology (i.e. to
do binary classification by returning “Y” (yes) when a document is suitable and returning “N” (no)
otherwise). The bias of C4.5 favors the shortest rule, so that if several rules are equally accurate,

a decision tree with the fewest branches is chosen. Actually, the training classifier could use other

Ontologically Filtering Web Pages 12

learning algorithms. Indeed, our research group has tried both multivariate statistical analysis [25]
and logistic regression [26] as alternative learning algorithms (although only for multiple-record
documents).

Considering all three patterns (multiple-record documents, single-record documents, and ap-
plication forms), we divide the learning task into three subtasks: (1) suitability of a document
text component that describes multiple records for one application ontology, (2) suitability of a
document text component that represents an individual singleton record for one application on-
tology, and (3) suitability of a form that yields information for one application ontology. C4.5
learns a decision tree for each of the three subtasks.

We use supervised learning in our approach to train the learner. For each application, a human
expert selects a set of HI'ML documents for the application ontology as Training Documents.
The expert selects training documents for each subtask considering the different kinds of HTML
documents in the real world. For example, for the car-ads application, we selected semistructured
HTML documents as well as HTML tables containing multiple car ads as training documents for
the subtask to train the learner so that the learner can obtain the knowledge it needs to classify
a multiple-record car-ads document. Various design patterns of HTML tables, including the page
in Figure 2 for example, can be considered as training documents.

The human expert provides the learner with Training Data as follows. For each training
document d, the expert creates a training example either for the document text component in d
or for one of the form text components in d, if any.! A training example, e = (Hy,cy), is a list
of values H,, one for each heuristic rule, plus a concept class c,, which is either cp for a positive
training example or ¢y for a negative training example. The training data contains three groups of
training examples, each of which is for one of the three subtasks. For a training document d in the
set of training documents, if it contains a form f; relevant to O, the expert uses the list of heuristic
values H; o which is obtained from the form text component ty,, to construct a positive training
example (Hy . cp) for the subtask specifying the relevancy of a form to the application ontology
O. Otherwise if the form f; is not relevant to O, the experts builds a negative training example
(Hy o cn) for the subtask. If the document is a single-record document relevant to O, the expert
uses the list of heuristic values H;,, which is obtained based on the document text component
tq, to build a positive training example (Hy,, cp) for the subtask specifying the relevancy of a
single-record document relevant to O, or vice versa a negative training example. Similarly, the
expert uses H;, obtained from the document text component of an HTML document to build
a training example for the subtask specifying the relevancy of a multiple-record document with

respect to O.

Typically, an informational HTML document contains its primary information either directly on the page or
behind one of its forms. The human expert should train the learner by selecting the component that appears to
contain the primary information for the document.

Ontologically Filtering Web Pages 13

Input: an HTML document d, an application ontology O,
and a classification model Mo (11, T2, 73).
Output: prediction
Build dH = <th, Htf1 5 Htfz g eeey Htfn> for d
//check the document text component in d
call EvaluateDocText(d, H,, Mo)
//check the form text components in d
for each Hy, in dyg where 1 <i<n
call EvaluateFormText (d, H, i Mo)
Output the prediction for d

Figure 7: Test algorithm to recognize relevant HI'ML documents

The C4.5 algorithm knows how the heuristic values in the training examples should be op-
tionally combined to best match application ontologies with text components that appear in
documents. Thus the learner builds a Classification Model, which we denote as Mo, as the
output of the training phase. The classification model contains three decision trees. One tree 71
is a set of rules to decide if a document is a single-record document relevant to an application
ontology, which we call a single-record tree. The second decision tree 7 is a set of rules to decide
if a document is a multiple-record document relevant to an application ontology, which we call
a multiple-record tree. The last decision tree 73 is a set of rules to decide if an HTML form is

relevant to an application ontology, which we call an application-form tree.

4.2 Test Phase

In the test phase, we use a set of HTML documents, which we call Test Documents, to evaluate
the performance of the learner trained in the training phase for the application ontology O. Given
the classification model built in the training phase, we use the algorithm in Figure 7, which is
the Classifier in Figure 6, to test the relevancy of an HI'ML document. The input to the test
algorithm is the classification model and an HTML document d from the set of test documents.
The output is a prediction about the relevancy of d to O. The classification model has three
decision trees at its disposal and classifies a document with a positive prediction if the learner
classifies the document as positive based on any one of the three decision trees.? Figure 8 shows
two subprocedures of the test algorithm that check the relevancy based on the evaluation over
either a document text component or a form text component. In Figure 6, the Test Data consists
of the heuristic vectors computed in the algorithm for the test documents, and the Relevancy

Predictions are the predictions output from the test algorithm for the test documents.

2C4.5 trains the learner to obtain the classification model by applying three sets of training examples indepen-
dently in the training phase. Thus, in the test phase, it is possible that the learner classifies a test document as
both a single-record document and a multiple-record document relevant to the application ontology based on the
document text component in the document. Moreover, it also could predict that one relevant document contains
both relevant forms as well as a singleton record or multiple records for the application. In our approach, however,
in the test phase, we are only interested in a prediction. Thus, we declare a document to be relevant if any one of
the three trees in the classification model returns cp, a positive result.

Ontologically Filtering Web Pages 14

sub EvaluateDocText(d, Hy,, Mo)
//check a document text component
Evaluate H;, using 7 and obtain ¢;
Evaluate H;, using 7 and obtain ¢y
if either ¢; or ¢y equals cp
Output cp for the document text component of d
else
Output ¢y for the document text component of d

sub EvaluateFormText(d, Hy, , Mo)
//check a form text component
Evaluate H; 5 using 73 in Mo and obtain ¢
Output ¢ for the form text component of f;

Figure 8: Subprocedures of prediction algorithm

Input: an HTML document d, an application ontology O,
a sample size N, and a classification model Mo (11, T2, 73).
Output: prediction
call LocateUsefulLinks(d, Mo, N) and output L
Randomly select subsequent links Lg from L
for each linked page d’ in Lg
Compute H;,, over the document text component of d’
call EvaluateDocText(d', H;, , Mo) and output ¢’
if ¢ equals cp
Retrieve text from d’
Insert the text in d
Compute H;, over the document text component ¢4 of d
if t4 in d is modified
Evaluate H;, using 7 and output ¢
else
call EvaluateDocText(d, Hy,, Mop) and output ¢
Output ¢ for the document text component of d

Figure 9: Evaluation of the document text component of an HTML document by applying relevant
linked pages

Ontologically Filtering Web Pages 15

sub LocateUsefuleLinks(d, Mo, N)

Collect all the links L in d

Group L into groups by link-address prefixes

Sort the groups in descending order by sizes

for each group G in the groups
Sample and evaluate N links in G based on Mo
If the group of linked document is relevant

Output G and break the loop

if no group is found

Output an empty set

Figure 10: Subprocedure to locate useful links in an HT'ML document

In the algorithm of Figure 7, the learner classifies an HTML document by exploiting the
two kinds of text components (regular text and form text) that appear in the document based
on the classification model Mp. In addition to the text components within the document, the
learner can check available linked pages and pages returned from form filling to further evaluate
the document. The HTML table in Figure 2 contains several links, some of which lead to more
detailed descriptions of the car ads in the document. Figure 4 is one of the linked pages from the
top page in Figure 2. If we can determine that a linked page (e.g. the document in Figure 4)
is relevant to the application, we can use this information to help classify the top page (e.g. the
document in Figure 2). Intuitively, if a top page leads to multiple relevant linked pages, we have
more confidence that the top page contains multiple records that are of interest. Figure 9 shows
the algorithm to evaluate the document text component of a multiple-record HTML document
by exploiting relevant documents in linked pages. Because of the expense of retrieving potentially
many dozens of linked pages, the algorithm does not explore all linked pages from the top-page
HTML document d. Instead, we first call the subprocedure in Figure 10 to locate a group of
potentially useful links from d. Since we believe that the useful links in a multiple-record document
are likely to all be together in a common repository, the procedure to locate the useful links first
groups links in d by (longest) common URL prefix and then sorts the groups of links in descending
order based on the number of links in each group since the number of the links that are of interest
usually is the largest in a relevant multiple-record document. To both discard spurious groups of
links with only one or two members and to avoid processing all the links in a group, we choose
a small threshold N (we chose N = 5 for our algorithms). Then, in the loop of the algorithm in
Figure 10, if the number of the links in a group is less than N, we ignore the evaluation of the
group, and if the number of links is greater than N, we only evaluate IV of them. We evaluate the
links in a group by checking the relevancy of the top-level document d with the text of the linked
pages inserted into d.

As already mentioned, we also use information on pages returned by automatic form filling

[23, 27].> Figure 11 shows the algorithm to further evaluate an HTML form by considering a

3We point out that automatic form filling does not always yield results as explained in [23, 27]. Thus, we can

Ontologically Filtering Web Pages 16

Input: an HTML form f;, an application ontology O,
and a classification model Mo (11, T2, 73).

Output: prediction
Retrieve a document d’ by filling in and submitting f;
Compute H;, over the document text component of d’
call EvaluateDocText(d', Hy,,, Mo) and output c
Output ¢ for the form f;

Figure 11: Evaluation of an HTML form using a retrieved document obtained by form filling

document retrieved by form filling. We can exploit the retrieved documents using two strategies
based on the preference of system users: if system users prefer a better recall ratio, we evaluate
a test document d using the algorithm in Figure 11 if the learner classifies d as irrelevant to the
application ontology based on the form alone; otherwise, if system users prefer a better precision
ratio, we evaluate a test document d using the algorithm in Figure 11 if the learner classifies d as

relevant to the application based on the form alone.

5 Recognition Heuristics

In the high-level architecture of our approach in Figure 6, the heuristics processor computes
heuristic measures over document and form text components that appear in a document. In our
approach, we consider three kinds of heuristics: density heuristics, an expected values heuristic,
and a grouping heuristic. Given an application ontology O, the set of density heuristics measure
the densities of constants and keywords defined in the application ontology O that appear in
a text component tg, which is either a document text component or a form text component.
The expected-values heuristic uses the Vector Space Model (VSM) [19], a common information-
retrieval measure of document relevance, to compare the number of constants expected for each
object set, as declared in O, to the number of constants found in t4 for each object set. The
grouping heuristic measures the occurrence of groups of lexical values found in ¢4 with respect to
expected groupings of lexical values implicitly specified in O.

The next three subsections define these heuristics, explain the details about how we provide a
measure for each heuristic, and give examples to show how they work. When reading these sub-
sections, bear in mind that in creating these heuristics, we favored simplicity. More sophisticated
measures can be obtained. For example, for density measures we could account for uncertainty
in constant and keyword matches [28]. For expected values, we could more accurately match
object sets with recognized values by using more sophisticated downstream heuristics [12, 29].
For grouping, we could first compute record boundaries [30] and rearrange record values [29].
However, more sophisticated measures are more costly. We have chosen to experiment with less

costly heuristics, and, as will be shown, our results bear out the seeming correctness of this choice.

only apply this technique when automatic form filling does yield results.

Ontologically Filtering Web Pages 17

5.1 Density Heuristics

A text component tg parsed from an HTML document d that is relevant to a particular application
ontology O should include many constants and keywords for object sets defined in the ontology.
Based on this observation, we define a set of density heuristics. We compute the density heuristics
with respect to an application ontology and each object set that has keywords or constants specified
in the ontology. In both counts we exclude the characters in HTML tags. We compute the density

of t4 with respect to an application ontology O as follows:
Density(ty, O) = total number of matched characters / total number of characters

where total number of matched characters is the number of characters of the constants and key-
words recognized by O in tg, and total number of characters is the total number of characters in

tqy. Further, we compute the density of t; with respect to an object set o in O as follows:
Density(ty, o) = total number of matched characters for o / total number of characters

where total number of matched characters for o is the number of characters of the constants and
keywords recognized by regular expressions specified for o in t4, and total number of characters is
the same as in the computation of Density(ty, O).

We must be careful, of course, not to count characters more than once. For example, in the
phrase “asking only 18K,” a car-ads application ontology might recognize “18K” as potentially
both a price and a mileage. Nevertheless, we should only count the number of characters as three,
not six. Further, we need determine whether we count the value “18K” for a price or for a mileage.

Consider the document text component ¢4, in the multiple-record document d, in Figure 1(a).
Recall that the nonlexical object set of the car-ads application ontology is Car, and the lex-
ical object sets are Year, Make, Model, Mileage, Price, Feature, and PhoneNr. Some of
the lexical values found in ¢4, include “1989” (Year), “$1900” (Price), “100K” (Mileage),
“Auto” (Feature), “Cruise” (Feature), “(336)835-8579” (PhoneNr), “Subaru” (Make), and
“SW” (Model). The keywords “Cars for Sale” for the object set of interest C'ar, “miles” and
“mileage” for Mileage, and “Call” for PhoneNr appear in d,. The total Number of characters
in tg, is 1992, whereas the number of matched characters is 696. Hence, the Density(tq,, O)
is 0.3493 = 696/1992. For each object set in the car-ads application ontology O, there is also
a density measure. For example, the number of matched characters for Make is 47. Therefore,
Density(tq,, Make) is 0.0236 = 47/1992.

When we apply the density heuristics for the car-ads application ontology to the document
text component tg4, of the document d;, in Figure 1(b), the densities are much lower. Although
no makes, models, or car features appear, there are years, prices, and phone numbers and the

ontology (mistakenly) recognizes “10,000” (in “10,000 SQ. FT.”) and “401K” (the retirement

Ontologically Filtering Web Pages 18

plan) as potential mileages. Altogether, 229 characters of 2627 are recognized by the car-ads
ontology. Thus the density to the car-ads application ontology Density(tq,, O) is 0.0871. There
are also eight other densities, one for each object set. For example, the document text component
of dy contains keywords and values for PhoneNr, and the density for PhoneNr is 0.0533. The
density for C'ar is 0.0 since the document text component does not contain any keywords for the

object set of interest, Car, in the car-ads application ontology.

5.2 Expected-Values Heuristic

We apply the VSM model to measure whether a text t; parsed from an HTML document d has
the number of values expected for each lexical object set of an application ontology O. Based on
the lexical object sets and the participation constraints in O, we construct an ontology vector Vp.
Based on the same lexical object sets and the number of constants recognized for these object
sets by O in t4, we construct a document vector V;,. We measure the relevance of t; to O with
respect to our expected-values heuristic by observing the cosine of the angle between V;, and Vp.

To construct the ontology vector Vo, we (1) identify the lexical object-set names (these become
the names of the coefficients of V) and (2) determine the average participation (i.e. the expected
frequency of occurrence) for each lexical object set with respect to the object set of interest
specified in O (these become the values of the coefficients of V). For example, the ontology vec-
tor for the car-ads application ontology is < Year:0.975, Make:0.925, Model:0.908, Mileage:0.45,
Price:0.8, Feature:2.1, PhoneNr:1.15 >, where these values are the average participation-constraint
values obtained as explained in Section 3. Thus, for a typical single car ad we would expect almost
always to find a year, make, and model, but we only expect to find the mileage about 45% of the
time, the price about 80% of the time. Further, we expect to see a list of features that on the
average have a couple of items in it, and we expect to see a phone number and sometimes more
than one phone number.*

The names of the coefficients of V;, are the same as the names of the coefficients of V. We
obtain the value of each coefficient of V;, by automatically counting the number of appearances
of constant values in t; that belong to each lexical object set. Table 1 shows the values of the
coefficients of the document vector for the document text component of the car-ads document
in Figure 1(a), and Table 2 shows the values of the coefficients of the document vector for the
document text component of the non-car-ads document in Figure 1(b).

We have discussed the creation of a document vector as though correctly detecting and clas-
sifying the lexical values in a text in a document were easy—but it is not easy. We identify
potential lexical values for an object set as explained in Section 3; this can be error-prone, but we

can adjust the regular expressions to improve this initial identification and achieve good results

4Tt is easy to see that the variance might be useful, as well, but we found that the expected numbers were
sufficient to get good results for the examples we tried.

Table 1:

Ontologically Filtering Web Pages

Name of Lexical Corresponding Lexical Values Number of
Object Set Found in the Document Lexical Values
Year 1989, 1998, 1994, 1999, ’53, 16
1973, 1977, 95, 1996, ...

Make Subaru, HONDA, Chevy, Olds, 10
FORD, VW, Buick, Mercury, ...

Model SW, Elantra, ACCORD, GRAND AM, 12
Cutlass, CONTOUR, JETTA, ...

Mileage 100K, 27000, 26000, 45K, 34K, 109000 6

Price $1900, $14,000, $8500, $4500, $5300, 11
$11,000, $6995, $4995, $1880, ...

Feature Auto, Black, 4 door, pb, ps, cruise, 29
am/fm, cassette, stereo, green, ...

PhoneNr (336)835-8579, (336)526-5444, 15
(336)526-1081, (336)366-4996, . ..

Lexical values found in the multiple-record car advertisements in Figure 1(a)

Name of Lexical Corresponding Lexical Values Number of
Object Set Found in the Document Lexical Values
Year 1999, 1998, 60, 401K, 50, 80 6
Make 0
Model 0
Mileage 10,000, 401K 2
Price $17,500, $10,971, $27,850, $19,990, 8
$79,850, $42,990, $129,650, $78,850
Feature 0
PhoneNr 281-2051, 281-4060, 218-281-1128, 281-3631, 11
281-3872, 218-281-5113, 218-281-5113,
800-532-7655, 281-1970, 800-406-5126, 281-1128

Table 2: Lexical values found in the multiple-record Items for Sale document in Figure 1(b)

19

Ontologically Filtering Web Pages 20

[12]. After initial identification, we must decide which of these potential object-set/constant pairs
to accept. In our downstream processes, we use sophisticated heuristics based on keyword prox-
imity, application-ontology cardinalities, record boundaries, and missing-value defaults to best
match object sets with potential constants. For upstream ontology/document matching we use
techniques that are far less sophisticated and thus also far less costly. In our simple upstream
procedures we consider only three cases: (1) when multiple specializations of an object set are
present, a recognized string appears without required accompanying keywords, (2) a recognized
string has no overlap either partially or completely with any other recognized string, and (3)
a recognized string does overlap in some way with at least one other recognized string. If one
object set o is a specialization of another object set described in an application ontology, the
keywords specified for o in the application ontology are mandatory. For example, there are several
dates in an obituaries application: Death Date, Birth Date, Funeral Date, View Date, and
Interment Date. All dates are specializations of Date in the obituary application ontology. To
distinguish the multiple kinds of dates in HTML documents, it is necessary to use keywords to
sort out the difference. For Case 1, we reject a recognized string if keywords are not present. For
Case 2, we accept the recognized string for an object set even if the sophisticated downstream
processes would reject it. For Case 3, we resolve the overlap simplistically, as follows. There are
three subcases: (1) exact match, (2) subsumption, and (3) partial overlap. (1) If a lexical value
v is recognized as potentially belonging to more than one lexical object set, we use the closest
keyword that appears before or after v to determine which object set to choose; if no applicable
keyword is found, we choose one of the object sets arbitrarily. (2) If a lexical value v is a proper
substring of lexical value w, we retain w and discard v. (3) If lexical value v and lexical value w
appear in a Web document, such that a suffix of v is a prefix of w, we retain v and discard w.

As mentioned, we measure the similarity between an ontology vector Vp and a document
vector V;, by measuring the cosine of the angle between them. In particular, we use the Similarity
Cosine Function defined in [19], which calculates the acute angle Similarity(ty,O) = cos 6 =
P/N, where P is the inner product of the two vectors, and N is the product of the lengths of
the two vectors. When the distribution of values among the object sets in V;, closely matches the
expected distribution specified in Vo, the angle 6 will be close to zero, and cos 6 will be close to
one.

Consider the car-ads application ontology O in Figure 5 and the Web document d, in Fig-
ure 1(a). The coefficients of V for O are 0.975, 0.925, 0.908, 0.45, 0.8, 2.1, and 1.15, which are the
expected frequency values of lexical object sets Year, Make, Model, Mileage, Price, Feature,
and PhoneNr, respectively for a single ad in the car-ads application ontology. The coefficients
of V,, for d, are 16, 10, 12, 6, 11, 29, and 15 (see the last column of Table 1), which are the

actual number of appearances of the lexical values in d,. We thus compute Similarity(tq,,O) to

Ontologically Filtering Web Pages 21

be 0.9956. Now consider the car-ads application ontology O again and the Web document dp in
Figure 1(b). The coefficients of Vp are the same, but the coefficients of V; " for dy are 6, 0, 0, 2,
8, 0, and 11 (see the last column of Table 2). We thus compute Similarity(ts,,O) to be 0.5669.

5.3 Grouping Heuristic

A text tg of an HTML document d likely applies to an application ontology if the values in the
text form groups that can be recognized as records for O. As a simple heuristic to determine
whether the recognized values are interleaved in a way that could be considered consistent with
potential records of O, we consider the group of values in a document that should appear at most
once in each record and measure how well they are grouped.

We refer to an object set whose values should appear at most once in a record as a I-maz
lexical object set. Maximum participation constraints in an ontology constrain the values of the
1-max object sets to appear at most once in a record. For example, in the car-ads application
ontology, the 1-maximum on Car in the relationship set Car [0:0.975:1] has Year [1:*] specifies
that Year is a 1-max object set. Other 1-max lexical objects in the car-ads ontology are Make,
Model, Mileage, and Price.

Instead of counting the number of 1-max lexical objects in an application ontology O, a more
accurate counting approach is to sum the average values expected for the 1-max objects in O.
Since the average values expected for Year, Make, Model, Mileage, and Price in the car-ads
ontology are 0.975, 0.925, 0.908, 0.45, and 0.8, respectively, the anticipated number of lexical
values from these object sets in a car advertisement is 4.058. To obtain an expected group size,
we truncate the decimal value of the sum.

The expected group size n is an estimate of the number of 1-max object-set values we should
encounter in a document within a single record. On the average, each record should have n 1-
max object sets. Thus, if we list all recognized 1-max object-set values in the order they occur
in a document d and divide this sequence into groups of n, each group should have n values
from n different object sets. The closer a document comes to this expectation, the better the
grouping measure should be. For the multiple-record car-ads Web document in Figure 1(a),
Figure 12(a) shows the first four groups of 1-max lexical object-set values extracted from the
document. Similarly, Figure 12(b) shows the first four groups of 1-max lexical object-set values
extracted from the document in Figure 1(b).

We measure how well the groups match the expectations with a grouping factor (denoted
Grouping), which is calculated as follows:

Sum of Distinct Lexical Values in Each Group

G ing(tq, 0) =
rouping(ta, O) Number of Groups X Expected Number of Values in a Group

For example, the number of extracted groups from the document text component t4, of d, in

Figure 1(a) is 13 (1 group of 2, 5 groups of 3, and 7 groups of 4). Since the number of anticipated

Ontologically Filtering Web Pages 22

Year: 2000 Year: 1999

Year: 1989 Year: 1998

Make: Subaru Year: 1960

Model: SW Mileage: 10000

-- Nr of Distinct "One Max" Object Sets: 3 -- Nr of Distinct "One Max" Object Sets: 2
Price: 1900 Mileage: 401000

Year: 1998 Year: 1940

Model: Elantra Price: 17500

Year: 1994 Price: 10971

-- Nr of Distinct "One Max" Object Sets: 3 -- Nr of Distinct "One Max" Object Sets: 3
Make: HONDA Year: 1950

Model: ACCORD Price: 27850

Mileage: 100000 Price: 19990

Year: 1999 Year: 1980

-- Nr of Distinct "One Max" Object Sets: 4 -- Nr of Distinct "One Max" Object Sets: 2
Model: GRAND AM Price: 79850

Mileage: 27000 Price: 42990

Price: 14000 Price: 129650

Year: 1953 Price: 78850

-- Nr of Distinct "One Max" Object Sets: 4 -- Nr of Distinct "One Max" Object Sets: 1
(a) First four groups of 1-max lexical values ex- (b) First four groups of 1-max lexical values ex-
tracted from Figure 1(a) tracted from Figure 1(b)

Figure 12: Groups of 1-max lexical values extracted from HTML documents

lexical values in each group is four, Grouping of t4, is

2x1)+Bx5)+(4x7)

(1+5+7) x4 = 0.8653

Grouping(ty,,0) =

By way of comparison, the number of extracted groups from the document text component ¢4, of
HTML document dp in Figure 1(b) is 4 (1 group of 1, 2 groups of 2, and 1 group of 3). Since the

number of anticipated lexical values in each group is four, the Grouping factor for ¢4, is 0.5.

6 Empirical Evaluation

We evaluated our approach on two real-world applications: car ads and obituaries. Our goals
were to evaluate system performance over multiple kinds of HTML documents for real-world

applications.

6.1 Applications and HTML documents

Figure 13 shows the graphical versions of the two application ontologies. The car-ads application
in Figure 13(a) is representative of many simple applications, whereas the obituaries application

in Figure 13(b) is representative of more complex applications. Not only does the obituaries

Ontologically Filtering Web Pages

0:0.925:1
0:0.908:1) €&

1:*
poeemssenea ; ﬁ has¢
i Model :

Person
1

Deceased Person
has Relationship to
Person

Deceased ~ .
Person

o1 To1 o1 : Viewing Date: Date i

1
0:0.10:1

R, : 1 0:0.40:1
i Viewing : has
has i Address: ———————— Viewing

i Address (1 0:0.40:1

; ; 0:0.40:1

""""""""" 0:0.40:1

Interment : A

H : h
i Address: Address 4 has

i Funeral : -
i Address: :

(b) Obituary application ontology

Figure 13: Graphical versions of application ontologies

23

Ontologically Filtering Web Pages 24

Application Multiple- Record Single-Record Form
(semistructured/table/negative) | positive/negative | positive/negative

Car Ads 31/112/363 614/636 50/69

Obituaries 68/0/135 62/135 30/32

Table 3: Training data for car ads and obituaries

application have more object sets and relationship sets, but these object and relationship sets are
also more complex. One relationship set is ternary, more than one object set is nonlexical, and
several relationship sets are specializations—for example, both Birth Date and Death Date are
specializations of Date as denoted by “: Date” following the name of these object sets.

For the car-ads application, we collected three sets of HI'ML documents: semi-structured
HTML documents, HTML tables, and HTML forms. For the obituaries application, we collected
only semistructured and HTML form documents. (Obituaries rarely, if ever, appear as tables
having attributes such as Deceased Name, Age, Death Date, etc.) We divided the documents
for each application into two sets: training documents and test documents. Table 3 shows the
characteristics of the training data for car ads and obituaries obtained from the training docu-
ments. For each application, there were three sets of training examples, one each for single-record
documents, multiple-record documents, and application-forms.

Table 4 shows the distributions of semistructured HT'ML documents, HT'ML tables, and HTML
forms in the test documents. For the car-ads application, 10 of the semistructured HTML docu-
ments contained multiple-record car ads, and 10 of them contained single-record car ads. All the
HTML tables contained multiple-record car ads. For the obituaries application, the semistruc-
tured HTML documents contained 20 multiple-record documents and 10 single-record documents.
Among the 20 multiple-record obituary documents, 10 documents contained only partial obituar-
ies. These 10 documents led to linked pages, some of which contained complete obituary records.
The 10 HTML form documents for each application contained application forms but no single-
or multiple-records of interest. The negative documents collected for each application contained
documents with applications similar to those of the application ontologies. For example, we in-
cluded forms to retrieve used auto parts, car reviews, and motorcycle sales to test the learner
trained for car ads, and we included birth and marriage announcements, genealogy records and
forms, and bibliographies to test the learner trained for obituaries. We assumed that if our fil-
tering methodology could sort out differences among closely related applications, it could easily
reject vastly different application documents (e.g. country descriptions, rail and flight schedules,
university home pages, and molecular biology data). Indeed, the system made no mistakes re-
jecting obituaries and obituary like applications for car ads and rejecting car ads and car-ad like

applications for obituaries.

Ontologically Filtering Web Pages 25

| Application | Semistructured | HTML Table | HTML Form | Negative |

Car Ads 20 10 10 40
Obituaries 30 0 10 40

Table 4: Test documents for car ads and obituaries

Even though some of the semistructured HTML documents and HTML table documents in Ta-
ble 4 contained additional irrelevant application forms (e.g. user registration forms), we expected
that the learners would produce appropriate predictions based on the document text components
that appear in the documents rather than the irrelevant form text components. For the HTML
form documents, since they did not contain application records, we expected that the learners
would produce the positive predictions using the application-form decision trees based on form

text components that appear within forms.

6.2 Classification Models

Figure 14 and Figure 15 respectively show the classification models the learners built for car ads
and obituaries. Each classification model contains three decision trees for an application ontology
O, which are for multiple-record documents, single-record documents, and application forms.

“yvsm” and

Within one tree, a node denotes a predicate using heuristics measures. For example,
“grouping” are two measures for a text component ¢4 computed based on the heuristics calculations
of expected-values, Similarity(ty, O), and grouping, Grouping(ty, O). The “density” is a density
measure Density(ty, O) of the text component t4 with respect to the application ontology O—
for either car ads or obituaries. The object-set names “Car” and “Deceased Person” denote the
densities of the keywords specified for the object sets of interest in the two application ontologies.
Other object-set names denote densities of lexical values and keywords for object sets in the two
application ontologies. For example, Make denotes a density Density(ty, Make) of the text
component ty with respect to the lexical object set Make in the application ontology for car ads.
The parenthetical numbers (z/y) following “Y” and “N” for a decision-tree leaf L give the total
number of training examples z classified for L and the number of incorrect training examples y
classified for L.

Given the decision trees for the two applications in Figure 14 and Figure 15, we can see that
the learners used different combinations of heuristics to check the relevancy. For both applica-
tions, however, the learners largely exploited density heuristics. Figure 14 shows that the learner
trained for the car-ads application applied only the density heuristics to classify application forms.
Figure 15 shows that “vsm”, the expected-values heuristic, was not useful for the learner of the

obituaries application.

Ontologically Filtering Web Pages

density <= 0179178

| van <= 0.768438:N (440.0/10)

| vam > 0.768438

| M fleage <= 0.00666

| | Year<= 0.009579:N (17.0)
| | Year> 0.009579

| | | Prdoe<=0.000641:N (0)
| | | Pdce>0.000641:Y (.0)

M ake <= 012701 | | M ileage > 0.00666:Y (3.0)

| Car<=0006143:N (74.0/70) density > 0179178

| Car> 0006143 grouping <= 0604167

| | Genstty <= 0161905:N @0/ 0) | | Price<=0007174:N 6.0/1.0)

| | density > 0161905:Y (5.0) | Price > 0.007174:Y (.0)

M ake > 012701:Y (36.0) groupng > 0604167:Y (134 0)
(a) Form decision tree (b) Multiple-record tree

Price <= 0.001732

| Car<=0.008435:N (545.0/1.0)

| Car>0.008435

| Feature <= 0.006432:N (10.0)

| Feature > 0.006432:Y (19.0/3.0)
Price > 0.001732

M ake <= 0.001559:N 39.0/30)

M ake > 0.001559

| | vam <= 0598958

| | | PhoneNr<=0002147:N 31.0/40)
| | PhoneNr> 0.002147:Y 28.0/30)

| vam > 0598958

| | grouping <= 0611111

| | | gwuping <= 0519231:Y (50.0/3.0)
| | | gouping>0519231:N (1002 .0)
| | gwuping > 0611111:Y (518.0/2.0)

(c) Single-record tree

Figure 14: Classification model for car ads

Ontologically Filtering Web Pages

FuneralD ate <= 0.002303

| DeathDate <= 0.022727

| | Deceased Person <= 0.009384:N (34.0/40)
| | Deceased Person > 0.009384:Y (5.0/1.0)

| DeathDate > 0.022727:Y (5.0)

FunemlD ate > 0.002303:Y (18.0/1.0)

(a) Form decision tree

groupng <= 0277778

Relative Name > 0.047308

goupng > 0277778

Bith Date <= 0.036281

DeathDate <= 0001617

FunemlDate <= 0.013723:N (7.0/1.0)
FunemlDate > 0.013723:Y (3.0)

| | | DeathDate > 0001617

| Tnterm entA ddress <= 0.022565

| density <= 0.070368

| | Deceased Person <= 0006863

| | | density <= 0.040834:N (3.0/1.0)

| | | density > 0040834:Y (14 .0)

| | Deceased Person > 0.006863:N (3.0)
| | | | | density > 0.070368:Y 36.0)

| | | | tewmentAddress> 0022565:N @.0/1.0)
| BithDate > 0.036281:N (3.0)

D eceased Person > 0.023715:N (7.0)

27

Death Date <= 0.005002

| FunemlDate <= 0.010844:N (119 .0)
| FuneralDate > 0.010844:Y (9.0/4 0)
Death Date > 0.005002

| density <= 0118065:N (7.0)

| density > 0118065:Y (68.0/5.0)

(b) Multiple-record tree

RelbtveName <= 0.047308:N (109.0/10)

| DeathDate <= 0.00202:N 4.0/1.0)
| | DeathDate > 0.00202:Y & .0)

D eceased Person <= 0.023715

(c) Single-record tree

Figure 15: Classification model for obituaries

Ontologically Filtering Web Pages 28

6.3 Experiments

For each application, we performed two sets of experiments. First, we measured the precision,
recall, and the F-measure of our approach, including an investigation of how sensitive the per-
formance is with respect to the analysis of linked pages and the application of the form-filling
methods in [23, 27]. Second, we conducted studies to evaluate the contributions of heuristics:
Densities, Expected Values, and Grouping. For all the experiments, we evaluated the performance

of the learners on the test documents described in Table 4.

6.3.1 Results

We evaluated the performance of our approach based on three measures: precision, recall, and the
F-measure. Given (1) the number of relevant documents N determined by a human expert, (2) the
number of correct relevant documents C' selected by our approach, and (3) the number of incorrect
relevant documents I selected by our approach, we computed the recall ratio as R = C/N, the
precision ratio as P = C/(C 4 I), and the F-measure as F' = 2/(1/R + 1/P). We report all these

values as percentages in Table 5.

Application Number Number | Number | Recall | Precision | F-Measure
Applicable Doc.’s | Correct | Incorrect % % %

Car Ads 40 39 2 98 95 96

Obituaries 40 38 2 95 95 95

Table 5: Results of the test algorithm in Figure 7

Observe that two negative documents and one relevant document for car ads were classified
incorrectly (two incorrect positive responses and one incorrect negative response), and that two
relevant documents and two negative documents for obituaries were classified incorrectly (two

incorrect negative responses and two incorrect positive responses).

6.3.2 Form Filling and Linked Pages

As explained earlier, in addition to the text components that appear in a document, we can also
exploit auxiliary information such as linked pages or retrieved documents obtained by form filling.
First, we applied a strategy that prefers a better precision ratio. The learner used the algorithm
in Figure 11 to re-evaluate the application forms that the learner classified as positive responses
using the test algorithm in Figure 7. Figure 16(a) shows a form to locate car dealers, which
the algorithm in Figure 7 incorrectly classified as a form for car ads. By applying the methods
to fill in forms, we retrieved the document in Figure 16(b), which contains dealer information
rather than car ads. With this additional information, the learner caught the incorrect positive

response for the document in Figure 16(a) and classified it as negative, irrelevant to the car-ads

Ontologically Filtering Web Pages

Dealer Locator

Enter The Zip Code, Select Either U.5.A Or Canada
And Select A Manufacturer

Zip | I
Country |Unitec1 States v[
Manufacturer| v[

Chevrolet
Chriwzler —
Dodze

Ford

GEM

GMC

Honda

Hyundal -

(a) Dealer locator

Click on the Location Mame for details about the location
The E icon nex to the Location Mame indicates Special Events at that Location

BEG
Mame Bob Smith BhW

Address 7050 Topanga Canyon Blvd |, Canoga Park CA 91303 mapﬂ?it
Fhone (818) 345-3144

Country United States Map & Directions
Specialty BhWW
[= crrony wast e i
Mame Century WWest BhW
Address 4245 Lankershim Blvd., Universal City CA 91618 mapoit

Phone 300447-8871
Country United States Map & Dirsctions
Specialty BhW

(b) Retrieved document by filling in form in Figure 16(a)

Figure 16: An incorrect positive response for car ads

29

Ontologically Filtering Web Pages 30

UNIVERSAL VEHICLE SEARCH
TEAR NAEE NODEL STATE
[2000 | | [41abana |
Fill in one or more of the above fields and click GO E’}
to search »r»
Leave a field blank to see all of those listings...

(a) Car form

UNIVERSAL SEARCH RESULTS

Select a column to sort these results in alpha-numeric order.
Uncheck the sort box to sort the results in reverse order

oYEAR | # VEHICLE o OCATION oMILES | ® PRICE

Parsche 211 CARRERA 4 Cabriclet -

2001 LOADED | MY Scarsdale 400 £120000
2001 Mitsubizhi GALANT GTZ2 UT South Jardan 10000 $22000
2001 Ford EXPLORER SPORT TH Callas 22000 $18500
2001 Ford ESCAPE LT FL Hallandale 2000 $24000
2001 Chrysler PT CRUISER WA Salemn 2500 $20000
2001 Chevwrolet IMPALS LS CA Redding 1z000 $20500
2001 Chevwrolet CAVALIER LS WA Rustburg 2000 $1i0000
2000 Valeo S70 AL Montgomery 26000 $25500
2000 valkswagen JETTA GLX WA Falls Church 27000 $z21500
2000 valkswagen CABRIC GLS Convertible PA Huntingdon Yalley 13000 $18500
2000 Toyoka TUNDRA MC winston Salem 25000 $z22500
2000 Taoyota TUNDRA Ch Grass Walley 19000 $21000

(b) Retrieved document by filling in form in Figure 17(a) (partial)

Figure 17: An incorrect negative response for car ads

application. With this strategy the learner improved its precision from 95% to 98%. Second,
we applied a strategy that prefers a better recall ratio. The learner re-evaluated the negative
responses using retrieved documents obtained by applying form filling. Figure 17 shows both a
form in Figure 17(a) that the learner classified as irrelevant using the test algorithm in Figure 7
and the relevant document in Figure 17(b) obtained by filling in the form in Figure 17(a). By
using the algorithm in Figure 11 to re-evaluate the form in Figure 17(a), the learner caught the
incorrect negative response and improved its recall from 98% to 100% for the test set of the car-ads
application in Table 4.

The other auxiliary information we use in our system is information on linked pages. Fig-
ure 18(a) shows a document that contains only partial obituaries. By applying the algorithm in
Figure 9, the learner caught the incorrect negative response by considering the linked pages—

for example, the relevant document in Figure 18(b) for the first link in Figure 18(a). Thus the

Ontologically Filtering Web Pages

06/19: Kanderis, Mike M,

06/16: Torres, Josephine P,
Born: 02/01/1924

06/11: Larsen, Rex Farrell
Born: 04/06/1916

06/11: Qliver, Donna Joy

Born: 09/15/1924

06/10: Anderson, Doug M.
Place of death: Mayfield, Utah

Born: 03/11/1920
06/10: Atkin, Lee Clawson
Place of death: 5t. George, Utah
Born: 12/11/1932

06/10: Brady, Brittany Kensie

Born: 07/28/1983

06/10. Cass, Betty Louise
Place of death: American Fork, Utah

Born: 10/09/1923

(a) Obituaries that require re-evaluation (partial)

31

Obituary: Mike M. Kanderis

1925 ~ 2003

Mike M. Kanderis of Littleton, Co, preceded in death
by his wife Grace; father of Shane, Denniz and Jennifer;
brother of Stella Melonakis and Mary Spencer. Also
survived by six grandchildren.

Active member of El Jebel Shrine, ROJ #13%8 and
Sandblasters.

Wisitation Wednesday, 4-7 p.m. Horan & McConaty
Family Chapel, 31091 So. Wadsworth Blvd., Funeral
zervices Thursday, 2 pan. St Catherine Greek Orthodox
Church, 5555 So. Yosemite, Greenwood Village, CO.
Scottizsh Rite Roge Croix Services Friday 12 noon, at
MMunicipal Cemetery, Grand Junction, CO.

Mernorial remembrances to Shrine Hospitals for
Children, 4625 W. 5oth Ave, Denver, C0 80212

(b) A linked page (partial)

Figure 18: An incorrect negative response for obituaries

learner improved its recall measure from 95% to 98%. Note that we included 10 HTML docu-
ments containing only partial obituaries similar to the HTML document in Figure 18(a) in the
test documents. The test result shows that the learner for obituaries missed only one such page
without analyzing linked pages. That means that the partial obituaries usually provided enough

informative information for the learner to classify them as positive, relevant documents.

6.3.3 Other Incorrect Positives and Negatives

Figure 19 shows an incorrect positive response for the obituaries application, a marriage submission
form that contains the keyword “obituary”. The form in Figure 19, however, requires that a user
manually fill the text fields. Thus the full automatic classification procedure cannot catch this
incorrect positive response.

Figure 20 shows an incorrect positive response, a motorcycle-sale page (Figure 20(a)), for

the car-ads application; and an incorrect positive response, a bibliography of an American hero

Ontologically Filtering Web Pages 32

Enter your Bride's Surname:

Enter your Bride's Given Name(s):

Enter your Groom's Surname:

Enter your Groom's Given Name(s):

Enter the date of the marriage dd Month yyyy : Please format your dates.

Date Format Help

Enter your Michigan County:

Enter your Source (ie: license number, obituary, hiography) in the space provided below.

Figure 19: An incorrect positive response for obituaries (partial)

(Figure 20(b), for the obituaries application. The motorcycle document contains data for Year,
Make, Mileage, Price, and PhoneNr. The bibliography document contains data such as the
person’s name, birth and death dates, and relationships including his father and his daughter.
Both documents include concepts that largely overlap those specified in the application ontologies.
It is difficult for the learners to recognize that documents with significant overlap do not apply to
the application ontologies.

The final incorrect response is a negative response for the document in Figure 21 for the
obituaries application. The learner classified this document as irrelevant because the density
measures obtained based on the entire document text component were not high enough to reach
the thresholds defined in the single-record tree for obituaries. The reason is that a large amount
of irrelevant data appears in the document. In order to catch this incorrect negative response,
instead of evaluating the document text component that appears in the entire document, we can
evaluate a subpart of the document text component that contains the information of interest. For
example, we can select the text in Figure 21 that describes exactly the singleton obituary for Bill
Gilley. To see what would happen if we were to select only the applicable part of the document,
we manually revised the document and discarded the irrelevant text. The classification model
built for obituaries gave a positive prediction for the revised document. Automatically selecting
potentially relevant subcomponents of a document is challenging, and we have not yet resolved

the issues and implemented a solution.

Ontologically Filtering Web Pages 33

AUTONOBILES : EOTORCYCLES

> 99 SUZUEI DSR0 First date

$1100; *97 Yamaha RT100, $300; "85 Honda 70CC ad ran:

3 wheeler, $400; 410-282-1482 Jan 23 2000
Mark ad [

4 WHEELERS First date

06 HONDA 200, $2300; ° 94 Polaris 400, $2100; ad ram:

0% Famaha Blaster, $2300; ' 87 Yamaha Banshee, Jan 23 2000
$2000; 795 Ewasaki Mojave 250, $1900; °&7

Majawe 110, $1200; "97 Kasea B0, $700; "85 Mark ad
Honda 70CC 3 Wheeler, $400: 410-282-14A2 i

TANAHA SHOWNOBILE First date
540CC Less than 300 miles. First $1500 410- ad ran:
28T-6662 Jan 23 2000
Mark ad [
° 84 HONDA Nighthawk First date
3 11K mi. Exc cond. $2200. 410-343-1443 ad ran:
Jan 22 2000
Mark ad [
’ 81 HONDA CR125, First date
runs exc, reblt trans & mtr. $750/0BO. 410- ad ran:
661-T1893 Jan 22 2000
Mark ad [

&

Findings
Exhibits
History
Visiting
Publications
Resources
Contact
Donations

R
vk

(a) Motorcycles (partial)

Captain John Smith

Home:History: 3mith

This portrait of Captain John Swith
anpearcd on a 1616 map of New
Frgland The imaze iz colorized by
Jamie X¥av from an original ensraving
by Simon de Passe

Virginians know that Captain John
Smith was one of the first American
heroes. But because he was a proud
and boastful man, it is difficult to
know which parts of his life are
fact and which are fiction. What
many people may not know is that
Smith’ s adventures started even
before Jamestown.

Born in 1580 in Willoughby, England, John Smith left home at
age 16 after his father died. He began his travels by joining
volunteers in France who were fighting for Dutch independence
from Spain. Two years later, he set off for the Mediterranean
Sea, working on a merchant ship. In 1600 he joined Austrian
forces to fight the Turks in the “Long War.” A valiant soldier,
he was promoted to Captain while fighting in Hungary. He was
fighting in Transylvania two years later in 1602. There he was
wounded in battle, captured, and sold as a slave to a Turk.
This Turk then sent Smith as a gift to his sweetheart in
Istanbul. According to Smith, this girl fell in love with him
and sent him to her brother to get training for Turkish
imperial service. Smith reportedly escaped by murdering the
brother and returned to Transylvania by fleeing through Russia
and Poland. After being released from service and receiving a
large reward, he traveled all through Furcpe and Morthern
Africa. He returned to England in the winter of 1604-05.

(b) Captain John Smith (partial)

Figure 20: Two incorrect responses for car ads and obituaries

Ontologically Filtering Web Pages 34

Honored swim instructor Bill Gilley dies

By BILL ZECHMAN
State Comespondent

Local news

Today's Top Stories
Education EcEINNVILLE, Tenn. 74 hidstate ansdcusly swsiting Bonnaran
Gov & Politics - Teenagess are losing summer jobs to

Gromth & Dov longtime swim instructor has oLt weler

died just twa days after the

Bredesen signs lottery bill, expects barch

M new MeMinnville public tisket sales

Business news gyimming pool was dedicated in Hesd-an crash kills 1, injures 2
Nation—World his honor Twuo motorists perish as storm slaps
Entertainment ' tidstate

T — 14% hike in tuition badced by chancellor
n;wsh Bill Gilley, who had headed

elech news :

[—— the Awerican Red Cross We Want To Hear From
UG EWE swimming program for Warren Youl
Williemson &I ; ; Lou:

Ao tmtoll e R County since 1973, died early

Learn Nashville yesterday morning at age T6. The Teun.ess\mm wanis your opinion on
News Columists He had an apparent heart how we oan improve www

e E | 5 Flease take a moment and respond to our
Tl_mcﬂ attack a few minutes before he biief Wizb site sunvey
M i wag due to enter Saint Thomas

Dwright I_-EW15 Hoszpital for an evaluation for E-Mail This Article

Henry Piarrot a pacemaker. Printer-Friendly (text only)
Brad Schmitt Subscribe to The Tennessean

Figure 21: Single-record obituary (partial)

| Combination | Densities | Expected-Values | Grouping |

1 -
2 +

3 -

4 + +
5 + -

6 - +
7 + - -

Table 6: Combination of three kinds of heuristics

6.3.4 Contributions of Heuristics

We evaluated the performance by applying different combinations of heuristics using the test
algorithm in Figure 7. Figure 22 shows the contribution of the three kinds of heuristics (densities,
expected-values, and grouping) to the overall performance in the two applications. The x axis lists
the seven combinations of the three kinds of heuristics. Table 6 shows the seven combinations,
where “4” denotes the heuristic or heuristics in the corresponding column that are in use.

For both applications, Figure 22 shows that the density measures are important (Columns 2,
4, 5, and 7 are the best). When the learners exploited only density heuristics in the algorithm
of Figure 7 to evaluate the test documents for the applications (Column 2), the learners achieved
above 90% for all measures (precision, recall, and F-measure). Using the expected-values heuristic
alone (Column 3), the learners achieved an F-measure of only about 70% for the two applications.
Using the grouping heuristic alone (Column 1), the F-measure obtained by each learner was still
less than 85%. Even when the learners used both the expected-values heuristic and the grouping
heuristic together (Column 6), performance for neither application improved. Figure 22(a) shows
that the learner of the car-ads application achieved the highest F-measure by applying all heuristics
together.

Ontologically Filtering Web Pages

Perfom ance

0.9

038

0.7

06

05

04

03

02

01

OPrecibn
E HMRecall

Com bhatbn ofHeurstcs

(a) Cars ads application

Perfom ance

0.9

08

0.7

06

05

04

03

02

0.1

OPreckebn
E BRecall
]

Com bhaton ofHeurstts

(b) Obituaries application

Figure 22: Performance comparison of heuristics combinations

35

Ontologically Filtering Web Pages 36

We know that the density heuristics are dependent on and sensitive to the specification of
the application ontologies. The other two heuristics, expected values and grouping, are also
mainly determined by the specification of the application ontology. Thus, when porting to a
new application domain, as long as the application ontologies are well defined, our empirical
evaluation shows that our approach should be able to recognize relevant HTML documents with
high precision, recall, and F-measure. Moreover, as the application ontologies evolve, for example,
more lexicons become available for Make or Color is added as a new object set, the performance

of the approach will most likely to improve as well.

7 Related Work

Many papers about the broad areas of filtering and information retreival have appear in recent
years. (See recent surveys for filtering [31] and information retrieval [32].) Most of these papers
are not relevant to our approach to filtering. The papers we do review in this section are those
that are most recent and closest to our work.

User-profile-based filtering techniques have been extensively investigated in the context of
content-based information filtering research. Most content-based information filtering systems
are intended for unstructured text and typically use sets of keywords to represent user interests.
The Stanford Information Filtering Tool (SIFT) [8] is a well-known content-based text filtering
system for Internet news articles. A user subscribes to a SIFT server with one or more profiles,
each of which includes a query supported either by a Boolean model or vector space model.
Queries in both models are based on keywords. In contrast, our application ontology expresses
information of interest in terms of concepts and relationships, which adds an enriching semantic
description beyond keyword-based profiling. Moreover, the application domain of SIFT is only
text documents, whereas our system works for HTML documents which, in addition to text, could
include HTML tables, forms, and linked sub-documents.

In order to retrieve documents with higher precision, some researchers have resorted to en-
riching documents by adding meta information. WebKB [4], for example, is an ontology-based
knowledge retrieval tool that interprets semantic statements stored in Web documents. Web-
KB allows the addition of meta-information, indexes, and constructed ontologies that subsume
WordNet. With this added information, WebKB can evaluate user queries over the annotated doc-
uments that combine lexical, structural, and knowledge-based techniques to retrieve documents.
Another example, [5], describes OWLIR as an approach to retrieve documents that contain both
free text and semantically enriched markup. The OWLIR framework advocates the interdepen-
dency of search and inference for precise retrieval over semantic content. Both WebKB and the
OWLIR framework are largely dependent on the accuracy of semantic markup for documents

and queries, which is obtained based on information extraction techniques as well as ontologies.

Ontologically Filtering Web Pages 37

Faithfully marking up documents, however, relates to the knowledge acquisition bottleneck faced
in the Al research community of eighties, and there is little practical experience on which to rely
[6, 7]. In contrast to WebKB and the OWLIR framework, we issue queries to filter application ob-
jects on the fly among unstructured Web documents without enriching Web documents by adding
meta-information and without putting documents into repositories and indexing them.

TAP [33] provided a set of simple mechanisms for sites to publish data onto what it perceives
the Semantic Web to be and for applications to consume this data via a query interface called
GetData, a lightweight query represenation language. A set of HTML scrapers dynamically locate
and convert relevant pages in source sites into machine readable data and thus make them available
on the ”Semantic Web.” TAP’s semantic search augments traditional search results with relevant
data aggregated from distributed sources on the semantic Web. In contrast, our approach works
on the current Web without presumption that machine-understandable documents are supported.

With XML being used as a standard format to exchange data on the Web, filtering Web docu-
ments based on both content and structure has become more feasible. The XFilter system [34] and
the YFilter [35] system are examples of XML filtering systems. The XFilter and YFilter engines
use models based respectively on finite state machines and non-deterministic finite automata to
locate and evaluate user profiles. With knowledge of structures and content of XML documents,
users are able to express profiles in XPath [36]. In contrast, our approach is more widely ap-
plicable and scalable becuase it uses a fixed application ontology that works over a dynamic set
of unstructured documents on the Web instead of specifying profiles basing on structures and
metadata of a particular set of XML documents.

Within our research lab, we have used several approches [37, 25, 26] to categorize multiple-
record Web documents. A multiple-record Web document contains multiple unstructured records,
one after another. The work reported in [25] and [26] respectively evaluates a multiple-record
document by applying a statistical multivariate analysis and a logistic regression analysis. In
contrast, we provide an evaluation model based on machine learning techniques. We reported
some of these results in an initial report on our work [37]. In this paper we have expanded
our earlier work (1) by also including single-record documents, forms, and linked subdocuments,
(2) by providing a vastly expanded explanation of problematic pages, and (3) by improving our
heuristics and running new experiments. Specifically, with regard to new heuristics, we improved
our density heuristic by considering every attribute individually in addition to considering them all
collectively. With this new density heuristic we generated new and better filtering rules. Overall,
our results improved as well as our coverage, having added single-record documents, forms, and

documents with linked subdocuments.

Ontologically Filtering Web Pages 38

8 Conclusions and Future Work

We presented an approach for filtering HTML documents by application ontologies. Once an
application ontology is created, we can use a machine learning algorithm over a set of heuristics to
produce a classification model that accurately recognizes which documents apply to the ontology.
Results for the tests we conducted showed that the recognition F-measure, precision, and recall
were above 95% for both a car-ads application and an obituaries application. We also showed
that we can further improve performance by considering linked pages and documents retrieved by
submitting default forms.

Our approach is robust, flexible, and scalable. The heuristics, learning algorithms, and training
documents used in the approach are extensible. If new heuristics appear useful, we can imme-
diately use them without having to change our fundamental approach. The performance of a
learner can be incrementally improved by adding more training documents. When porting to a
new application domain, our approach is able to achieve high precision and recall if the application
ontology represents the application domain well. As the application ontology evolves, the learner
is likely to improve its performance as well.

Our future work can expand in several different directions. (1) We can test our approach on
more applications. (2) We can investigate ways to enhance the heuristics. (3) We can do a deeper
level analysis of an HTML document and check relevancy based on an appropriate subpart of the
document rather than the entire document. (4) We can apply a meta-learning strategy to train
the learners over several different classifiers including C4.5 as described in this paper, multivariate

analysis [25], and logistic regression [26].

References

[1] G.Furnas, T. Landauer, L. Gomez, and S. Dumais. The vocabulary problem in human-system
communications. Communications of the ACM, 30(1):964-971, March 1987.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, Menlo
Park, California, 1999.

[3] N.J. Belkin and B.W. Croft. Information filtering and information retrieval: Two sides of
the same coin. Communications of the ACM, 35(12):29-38, December 1992.

[4] P. Martin and P. Eklund. Embedding knowledge in web documents. Computer Networks,
31(11-16):1403-1419, 1999.

[5] U.Shah, T. Finin, A. Joshi, R.S. Cost, and J. Mayfield. Information retrieval on the semantic
web. In Proceedings of the Eleventh International Conference on Information and Knowledge
Management (CIKM 2002), pages 461-468, McLean, Virginia, November 2002.

[6] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, K.S. McCurley,
S. Rajagopalan, A. Tomkins, J.A. Tomlin, and J.Y. Zien. A case for automated large scale
semantic annotations. Journal of Web Semantics, 1(1):115-132, December 2003.

Ontologically Filtering Web Pages 39

[7]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff. Semantic annotation,
indexing, and retrieval. Journal of Web Sematics, 2(1):49-79, December 2004.

T.W. Yan and H. Garcia-Molina. The SIFT information dissemination system. ACM Trans-
actions on Database Systems, 24(4):529-565, December 1999.

J. Aslam, K. Pelekhov, and D. Rus. Using star clusters for filtering. In Proceedings of the
Ninth International Conference on Information and Knowledge Management (CIKM 2000),
pages 306-313, McLean, Virginia, November 2000.

J. Callan. Learning while filtering documents. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 98),
pages 224-231, Melbourne, Australia, August 1998.

J. Mostafa, S. Mukhopadhyay, W. Lam, and M. Palakal. A multilevel approach to intelligent
information filtering: Model, system and evaluation. ACM Transactions on Information
Systems, 15(4):368-399, 1997.

D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng, and R.D.
Smith. Conceptual-model-based data extraction from multiple-record web pages. Data &
Knowledge Engineering, 31(3):227-251, November 1999.

V.C. Storey, D. Dey, H. Ullrich, and S. Sundaresan. An ontology-based expert system for
database design. Data & Knowledge Engineering, 28(1):31-46, October 1998.

Y. Wand. A proposal for a formal model of objects. In W. Kim and F.H. Lochovsky, editors,
Object-Oriented Concepts, Databases, and Applications, pages 537-559. ACM Press, New
York, 1989.

M.A. Bunge. Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture of the World.
Reidel, Boston, Massachusetts, 1977.

M.A. Bunge. Treatise on Basic Philosophy: Vol. 4: Ontology II: A World of Systems. Reidel,
Boston, Massachusetts, 1979.

D.W. Embley, C. Tao, and S.W. Liddle. Automatically extracting ontologically specified
data from HTML tables with unknown structure. In Proceedings of the 21st International
Conference on Conceptual Modeling (ER2002), pages 322-327, Tampere, Finland, October
2002.

D.W. Embley, C. Tao, and S.W. Liddle. Automating the extraction of data from HTML
tables with unknown structure. Data & Knowledge Engineering, 54(1):3-28, July 2005.

G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
New York, 1983.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, Cali-
fornia, 1993.

Homepage for Bob Howard Honda, January 2002. http://www.bobhowardhonda.com.

World Wide Wheels classifieds of cars, May 2003. http://wwwheels.com.

Ontologically Filtering Web Pages 40

23]

[24]

[25]

[26]

[31]

[32]

[33]

[35]

[36]

S.W. Liddle, S.H. Yau, and D.W. Embley. On the automatic extraction of data from the
hidden web. In Proceedings of the International Workshop on Data Semantics in Web Infor-
mation Systems (DASWIS-2001), pages 106-119, Yokohama, Japan, November 2001.

S.W. Liddle, D.T. Scott D.W. Embley, and S.H. Yau. Extracting data behind web forms.
In Proceedings of the Joint Workshop on Conceptual Modeling Approaches for E-business: A
Web Service Perspective (eCOMO 2002), Lecture Notes in Computer Science (LNCS 2784),
pages 402-413, Tampere, Finland, October 2002.

J. Tang. A probabilistic model for binary catogorization of mutliple-record web documents.
Master’s thesis, Brigham Young University, Provo, Utah, March 2001.

Q. Wang and Y. Ng. An ontology-based binary-categorization approach for recognizing
multiple-record web documents using a probabilistic retrieval model. Journal of Information
Retrieval, 6(3-4):295-332, September-December 2003.

S.H. Yau. Automating the extraction of data behind web forms. Master’s thesis, Brigham
Young University, Provo, Utah, December 2001.

D.W. Embley, N. Fuhr, C.-P. Klas, and T. Roelleke. Ontology suitability for uncertain ex-
traction of information from multi-record web documents. In Proceedings of the Workshop
on Agenten, Datenbanken und Information Retrieval (ADI’99), Rostock-Warnemuende, Ger-
many, 1999.

D.W. Embley and L. Xu. Record location and reconfiguration in unstructured multiple-
record web documents. In Proceedings of the Third International Workshop on the Web and
Databases (WebDB2000), pages 123-128, Dallas, Texas, May 2000.

D.W. Embley, Y.S. Jiang, and Y.-K. Ng. Record-boundary discovery in web documents. In
Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data
(SIGMOD’99), pages 467-478, Philadelphia, Pennsylvania, May/June 1999.

A. Paepcke, H. Garcia-Molina, G. Rodriguez-Mula, and J. Cho. Beyond document similarity:
Understanding value-based search and browsing technologies. SIGMOD Record, 29(1):80-92,
2000.

M. Kobayashi and K. Takeda. Information retrieval on the web. ACM Computing Surveys,
32(2):144-173, 2000.

R. Guha, R. McCool, and E. Miller. Semantic search. In The Twelfth International World
Wide Web Conference, pages 700-709, Budapest Hungary, May 2003.

M. Altinel and M.J. Franklin. Efficient filtering of XML documents for selective dissemination
of information. In Proceedings of the 26th International Conference on Very Large Data Bases
(VLDB’00), pages 53-64, Cairo, Egypt, September 2000.

Y. Diao, M. Altinel, M.J. Franklin, H. Zhang, and P. Fischer. Path sharing and predicate
evaluation for high-performance XML filtering. ACM Transactions on Database Systems,
28(4):467-516, December 2003.

J. Clark and S. DeRose. XML path language (XPath) version 1.0, W3C recommendation.
http://www.w3.org/TR/xpath, November 1999.

Ontologically Filtering Web Pages 41

[37] D.W. Embley, Y.-K. Ng, and L. Xu. Recognizing ontology-applicable multiple-record web
documents. In Proceedings of the 20th International Conference on Conceptual Modeling
(ER2001), pages 555-570, Yokohama, Japan, November 2001.

