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Abstract

Automatically recognizing which HTML documents on the Web contain objects that are “of
interest” for a user is non-trivial. As a step toward solving this problem for information filtering
in which a user expresses a long-term need for information with a specific profile, we propose
an approach based on ontological descriptions. The HTML documents we consider include
semistructured HTML documents, HTML tables, and HTML forms. Given the keywords and
values and kinds of values recognized by an ontological specification in an HTML document, we
apply several heuristics: (1) a density heuristic that measures the percent of the document that
appears to apply to the application ontology, (2) an expected-value heuristic that compares
the number and kind of values found in the document to the number and kind expected by
the application ontology, and (3) a grouping heuristic that considers whether the values of the
document appear to be grouped as application-ontology records. Then, based on machine-
learned rules over these heuristic measurements, we determine whether an HTML document
contains objects of interest with respect to an application ontology. Our experimental results
show that we have been able to achieve about 95% for both recall and precision.
Keywords: Information filtering, application-ontology filtering, conceptual-model-based fil-
tering, ontology specification, machine-learned classification, information retrieval.
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1 Introduction

The World Wide Web contains abundant repositories of information in HTML documents—indeed,

it contains so much that locating information entities that are “of interest” for a user becomes a

huge challenge. Even sorting through a tiny subset of HTML documents for particular objects of

interest is overwhelming. How can we automatically select just those documents that have the

needed information for a user?

In this paper, we focus on the specialized subproblem called information filtering (IF ). IF

attempts to solve the problem of information gathering for long-term needs of a particular user

or user group. Typically, a user (or user group) needs information satisfying a particular query

specification or profile. The filter checks a document set (e.g. new documents that come on line

on the Web) and returns those that satisfy the query profile.

Search engines are not precise enough to filter documents on the Web. In order to find relevant

Web documents that contain information of interest, users issue queries composed of keywords

that express their interests. To evaluate the relevance of an HTML document to a user query,

search engines mainly apply keyword-based techniques to filter the document set based on common

terms that appear in both the user query and the Web page. The user query and the Web page,

however, are typically constructed independently. As research in [1] shows, however, people use

the same terms for the same concepts with a probability of less than 0.20. This fact helps explain

the imprecision in results returned by search engines.

More general information retrieval (IR) techniques [2] typically do not solve the IF problem

well either. Although IF and IR are two sides of the same coin [3], IR systems are usually designed

to facilitate retrieving information units quickly for relatively short-term information needs of a

diverse large group of users, whereas IF systems are commonly designed to personalize interests

of a particular user or a group of users to support the users’ long-term needs. Nevertheless, some

IR techniques may prove useful for IF. IR approaches like [4] and [5] that exploit semantics in

document content by embedding semantic mark-ups in meta languages could potentially help

solve the IF problem. Semantic annotation to mark up Web content, however, is still only being

explored and there are no encouraging results that are good enough to be practical [6, 7].

Other researchers have attempted to more directly solve the filtering problem. SIFT [8] uses

both a Boolean model and a VSM model for IF. Both models, however, rely on keywords, which

results in the same problem search engines encounter. In other systems [9, 10, 11], instead of

explicitly expressing user profiles, learning based techniques are applied to determine the informa-

tion needs of users based on user input documents. These IF systems transform the contents of a

set of documents to a concrete user query. The transformation is typically based on AI techniques,

but the inherit complexity of the transformation problem makes it difficult to solve the learning

task efficiently.
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In this paper, we present an approach to IF that applies an application ontology to explicitly

specify user interests. We base our approach on application ontologies [12], which are conceptual-

model snippets [13, 14] of standard ontologies [15, 16], and we apply techniques from data extrac-

tion [12, 17, 18], information retrieval [2, 19], and machine learning [20]. By exploiting the content

of HTML documents and using ontological specification in application ontologies, we construct

automated processes to filter document sets to satisfy a user’s information needs.

We call documents that contain items of interest relevant documents and documents that do

not contain items of interest irrelevant documents. For the automated processes to filter applica-

tion objects in Web documents, we must be careful not to discard relevant documents and not to

accept irrelevant documents. In order to measure the performance of the automated processes, we

use popular metrics available in information retrieval systems. A process that discards too many

relevant documents has poor recall—the ratio of the number of relevant documents accepted to

the total number of relevant documents. A process that accepts too many irrelevant documents

has poor precision—the ratio of the number of relevant documents accepted to the total num-

ber of documents accepted. The harmonic mean of the precision and recall, which is called an

F-measure, is a standard way to combine precision and recall. We wish to have an automated

recognition process that has a high F-measure, i.e. that has both high recall and high precision.

This paper presents our contribution to IF as follows. Section 2 contains some preliminaries

and provides an example to which we refer throughout the paper to illustrate our ideas. Section 3

describes application ontologies, on which we base our IF work. Section 4 presents the high-level

architecture of the IF framework we have built to recognize relevant HTML documents for applica-

tion ontologies. Given an application ontology and a set of HTML documents, Section 5 explains

how we automatically obtain threshold statistics for determining document relevance using a set

of heuristics including: (1) a density heuristic, (2) an expected-values heuristic, and (3) a grouping

heuristic. Section 6 provides an empirical evaluation of our approach including our experimental

results, which—for the two applications we tried (car advertisements and obituaries)—each have

an F-measure of 95%. Section 7 describes related work and more particularly compares it with

our approach. Section 8 gives concluding remarks and our plans for future work.

2 Preliminaries

Before giving details of our approach, we first need to discuss our assumption about HTML

documents, application ontologies, and the filtering task.

2.1 HTML Documents

The HTML documents on the Web we consider include semistructured HTML documents such

as the lists of ads in Figure 1, HTML tables such as the one in Figure 2, and HTML forms such
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as the one in Figure 3(a), which when filled-in and processed, yields a table or a semistructured

list such as the one in Figure 3(b).

We assume that the HTML documents are data-rich and narrow in ontological breadth [12].

A document is data rich if it has a number of identifiable constants such as dates, names, account

numbers, ID numbers, part numbers, times, currency values, and so forth. A document is narrow

in ontological breath if we can describe its application domain with a relatively small ontological

model. The documents in Figures 1–3 are all data rich and narrow in ontological breadth.

When evaluating the relevancy of HTML documents to a particular application, we want

to exploit the contents rather than HTML tags and layout features. Thus, even though the

designers of the HTML documents express content in various ways, we recognize the documents

as relevant to the application mainly based on three patterns: multiple-record documents, single-

record documents, and application forms, which we distinguish by the contents with respect to

the application. The documents in Figures 1, 2, 3(b) are all multiple-record documents because

they contain similar descriptions of several different items. Figure 4 shows a car ad linked from

Honda Accord EX in Figure 2, which we call a single-record document because it declares the

various features of only one item—the Honda Accord EX for sale. In addition to single- and

multiple-record documents, Figure 3(a) is an application form. When considering a form, we may

have, in addition to the labeled form fields, (1) selection lists with possible values of interests, and

(2) the results returned, if we can automatically fill in and submit the form using default values

as discussed in [23, 24].

2.2 Filtering Task

Real-world applications require that the recognition of document relevancy be flexible, robust, and

scalable. Even if we can manually construct rules to automate this recognition, the automation

depends largely on how knowledgeable a human expert is, who makes the automatic rules for the

particular application domain. Especially when porting to a new application domain, existing

recognition rules may no longer be appropriate. To resolve these challenges, in our approach

we construct automatic recognition rules via machine learning. We reformulate the problem of

recognizing relevant HTML documents for an application into a classification task: given a set

of HTML documents consisting of semistructured HTML documents, HTML tables, and HTML

forms, we attempt to assign each HTML document a concept class, which is either relevant or

irrelevant, with respect to a particular application. Using car ads as an example, we want to

classify the multiple-record document in Figure 1(a) as being relevant whereas we want to classify

the multiple-record document in Figure 1(b) as being irrelevant.

Like a typical machine learning classification task, relevancy testing proceeds in two phases:

training and test. In the training phase, we supervise the machine to train a learner for an
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(a) Car advertisements retrieved from http://
www.elkintribune.com/

(b) Items for sale advertisements retrieved from
http://www.crookstontimes.com

Figure 1: A car-ads Web document and a non-car-ads Web document
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Figure 2: HTML page with table from [21]
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(a) HTML form at [22] (b) Retrieved car ads after filling in the form in
Figure 3(a)

Figure 3: HTML form at [22]

application. During the training phase, the learner builds a classification model (e.g. decision

trees [20]) for the application. In the test phase, given an HTML document, the learner applies

the classification model to predict whether the document is relevant.

3 Application Ontologies

We define an application ontology to be a conceptual-model instance that describes a real-world

application in a narrow, data-rich domain of interest. Each of our application ontologies consists

of two components: (1) an object/relationship-model instance, which describes sets of objects, sets

of relationships among objects, and constraints over object and relationship sets, and (2) for each

object set, a data frame, which defines the potential contents of the object set. A data frame for

an object set defines the lexical appearance of constant objects for the object set and establishes

appropriate keywords that are likely to appear in a document when objects in the object set

are mentioned. Figure 5 shows part of our car-ads application ontology, including object and

relationship sets and cardinality constraints (lines 1-8) and a few lines of the data frames (lines

9-18). The full ontology for car ads is about 600 lines long. Our obituary ontology, which is the

other application ontology we discuss in this paper is about 500 lines long, but it references both

a first-name lexicon and a last-name lexicon, which each contain several thousand names.
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Figure 4: Linked page with additional information [21]
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1. Car [-> object];
2. Car [0:0.975:1] has Year [1:*];
3. Car [0:0.925:1] has Make [1:*];
4. Car [0:0.908:1] has Model [1:*];
5. Car [0:0.45:1] has Mileage [1:*];
6. Car [0:0.8:1] has Price [1:*];
7. Car [0:2.1:*] has Feature [1:*];
8. PhoneNr [1:*] is for Car [0:1.15:*];
9. Year matches [4]

10. constant {extract “\d{2}”;
11. context “\b’[4-9]\d\b”;
12. substitute “̂ ” -> ”19”
13. ...
14. Mileage matches [8]
15. ...
16. keyword “\bmiles\b”, “\bmi\.”, “\bmi\b”,
17. “\bmileage\b”;
18. ...

Figure 5: Car-ads application ontology (partial)

An object set in an application ontology represents a set of objects which may either be lexical

or nonlexical. Data frames with declarations for constants that can potentially populate the

object set represent lexical object sets, and data frames without constant declarations represent

nonlexical object sets. Year (Line 9) and Mileage (Line 14) are lexical object sets whose character

representations have a maximum length of 4 and 8 characters respectively. Make, Model, Price,

Feature, and PhoneNr are the remaining lexical object sets in our car-ads application; Car is the

only nonlexical object set.

We describe the constant lexical objects and the keywords for an object set by regular ex-

pressions using the Perl syntax. When applied to a textual document, the extract clause in a

data frame causes a string matching a regular expression to be extracted, but only if the context

clause also matches the string and its surrounding characters. A substitute clause lets us alter

the extracted string before we store it in an intermediate file, in which we also store the string’s

position in the document and its associated object set name. One of the nonlexical object sets is

designated as the object set of interest—Car for the car-ads ontology. The notation “[-> object]”

in Line 1 designates the object set of interest.

We denote a relationship set by a name that includes its object set names (e.g. Car has Year

and PhoneNr is for Car). The min:max pairs and min:ave:max triples in the relationship-set

name are participation constraints: min designates the minimum number of times an object in

the object set can participate in the relationship set; ave designates the average number of times

an object is expected to participate in the relationship set; and max designates the maximum

number of times an object can participate, with * designating an unknown maximum number of

times. The participation constraint on Car for Car has Feature, for example, specifies that a car
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Figure 6: High-level architecture for recognizing relevant HTML documents for an application

need not have any listed features, that a car has 2.1 features on the average, and that there is no

specified maximum for the number of features listed for a car.

For our car-ads and obituaries application ontologies, we obtained participation constraints as

follows. To make our constraints broadly representative, we selected ten different regions covering

the United States and found one car-ads page and one obituary page from each of these regions.

From each of these pages we selected twelve individual car-ads/obituaries by taking every n/12-th

car-ad/obituary, where n was the total number of car-ads/obituaries on the page. We then simply

counted by hand and obtained minimum, average, and maximum values for each object set in

each relationship set and normalized the values for a single car ad or obituary.

4 Architecture for Web Document Filtering

In Figure 6, we present a high-level architecture of our approach for checking relevancy of HTML

documents for an application. In the architecture, one application Ontology, which specifies

object and relationship sets and data frames for an application, is predefined independently of

HTML documents. Given an HTML document, we use an HTML Parser to parse the document.

For each document, we collect two kinds of text components. One kind is the text that appears

in the whole document, which we call the document text component. The other kind are text

fragments that appear within individual forms in the document, each of which we call a form

text component. A form text component includes the text that labels form fields and values in

selection lists. If the document does not contain any form, the set of form text components is
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empty. Note that the document text component of an HTML document subsumes all the form

text components that appear within the forms as well as the text that is outside the forms in

the document. The Data Extractor applies the application ontology using ontology-based data-

extraction techniques [12] to retrieve data from all the document and form text components in

the document.

Based on the data extracted from a text component, which is either a document text component

or a form text component, we construct a list of heuristics to evaluate the relevancy of the text

component to the application ontology by a Heuristics Processor. Each individual heuristic

processor evaluates the relevancy of a document to the application ontology. We normalize a

measure for each individual heuristic as a confidence measure in the range from 0 to 1. The higher

the confidence value, the more confidently we consider the text component appropriate for the

application ontology for the particular heuristic. As will become evident, in our approach, we

construct heuristics that are tightly dependent on the specification of application ontologies in a

flexible and robust way.

We formalize the evaluation of HTML-document relevancy to an application as follows. An

application ontology O specifies the application. HTML documents are structured objects: a

document consists of a document text component and a set of form text components. More

precisely, a document d is a sequence of text components, written d = [td, tf1 , ..., tfn ], where n is

the number of forms in the document d. Note that d = [td] if the document d does not contain

any form. Given the application ontology O and an HTML document d = [td, tf1 , ..., tfn ], we

use m heuristic rules to compute m confidence measures Htd = (h1, h2, ..., hm) for the document

text component td and use the same m heuristic rules to compute Htfi
= (hi1, hi2, ..., him) for

each form text component tfi
(1 ≤ i ≤ n). Thus we describe the similarity between the HTML

document d and the application ontology O as a heuristic vector dH =< Htd ,Htf1
, ...,Htfn

>

over n+1 m tuples of confidence measures. Since we reformulate the recognition of document

relevancy into a classification problem, we attempt to assign dH to either a concept class cP , which

represents positive (relevant to the application), or cN , which represents negative (irrelevant to

the application).

4.1 Training Phase

In the training phase, we train a learner using a Training Classifier, which for our work is the

popular machine learning algorithm C4.5 [20]. C4.5 is a rule post-pruning decision-tree algorithm.

The learning task is to check the suitability of documents for a given application ontology (i.e. to

do binary classification by returning “Y” (yes) when a document is suitable and returning “N” (no)

otherwise). The bias of C4.5 favors the shortest rule, so that if several rules are equally accurate,

a decision tree with the fewest branches is chosen. Actually, the training classifier could use other
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learning algorithms. Indeed, our research group has tried both multivariate statistical analysis [25]

and logistic regression [26] as alternative learning algorithms (although only for multiple-record

documents).

Considering all three patterns (multiple-record documents, single-record documents, and ap-

plication forms), we divide the learning task into three subtasks: (1) suitability of a document

text component that describes multiple records for one application ontology, (2) suitability of a

document text component that represents an individual singleton record for one application on-

tology, and (3) suitability of a form that yields information for one application ontology. C4.5

learns a decision tree for each of the three subtasks.

We use supervised learning in our approach to train the learner. For each application, a human

expert selects a set of HTML documents for the application ontology as Training Documents.

The expert selects training documents for each subtask considering the different kinds of HTML

documents in the real world. For example, for the car-ads application, we selected semistructured

HTML documents as well as HTML tables containing multiple car ads as training documents for

the subtask to train the learner so that the learner can obtain the knowledge it needs to classify

a multiple-record car-ads document. Various design patterns of HTML tables, including the page

in Figure 2 for example, can be considered as training documents.

The human expert provides the learner with Training Data as follows. For each training

document d, the expert creates a training example either for the document text component in d

or for one of the form text components in d, if any.1 A training example, e = (Hx, cy), is a list

of values Hx, one for each heuristic rule, plus a concept class cy, which is either cP for a positive

training example or cN for a negative training example. The training data contains three groups of

training examples, each of which is for one of the three subtasks. For a training document d in the

set of training documents, if it contains a form fi relevant to O, the expert uses the list of heuristic

values Htfi
, which is obtained from the form text component tfi

, to construct a positive training

example (Htfi
, cP ) for the subtask specifying the relevancy of a form to the application ontology

O. Otherwise if the form fi is not relevant to O, the experts builds a negative training example

(Htfi
, cN ) for the subtask. If the document is a single-record document relevant to O, the expert

uses the list of heuristic values Htd , which is obtained based on the document text component

td, to build a positive training example (Htd , cP ) for the subtask specifying the relevancy of a

single-record document relevant to O, or vice versa a negative training example. Similarly, the

expert uses Htd obtained from the document text component of an HTML document to build

a training example for the subtask specifying the relevancy of a multiple-record document with

respect to O.
1Typically, an informational HTML document contains its primary information either directly on the page or

behind one of its forms. The human expert should train the learner by selecting the component that appears to
contain the primary information for the document.
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Input: an HTML document d, an application ontology O,
and a classification model MO (τ1, τ2, τ3).

Output: prediction
Build dH = ∨ Htd

, Htf1
, Htf2

, ..., Htfn

∨ for d
//check the document text component in d
call EvaluateDocText(d, Htd

, MO)
//check the form text components in d
for each Htfi

in dH where 1 ≤ i ≤ n
call EvaluateFormText(d, Htfi

, MO)
Output the prediction for d

Figure 7: Test algorithm to recognize relevant HTML documents

The C4.5 algorithm knows how the heuristic values in the training examples should be op-

tionally combined to best match application ontologies with text components that appear in

documents. Thus the learner builds a Classification Model, which we denote as MO, as the

output of the training phase. The classification model contains three decision trees. One tree τ1

is a set of rules to decide if a document is a single-record document relevant to an application

ontology, which we call a single-record tree. The second decision tree τ2 is a set of rules to decide

if a document is a multiple-record document relevant to an application ontology, which we call

a multiple-record tree. The last decision tree τ3 is a set of rules to decide if an HTML form is

relevant to an application ontology, which we call an application-form tree.

4.2 Test Phase

In the test phase, we use a set of HTML documents, which we call Test Documents, to evaluate

the performance of the learner trained in the training phase for the application ontology O. Given

the classification model built in the training phase, we use the algorithm in Figure 7, which is

the Classifier in Figure 6, to test the relevancy of an HTML document. The input to the test

algorithm is the classification model and an HTML document d from the set of test documents.

The output is a prediction about the relevancy of d to O. The classification model has three

decision trees at its disposal and classifies a document with a positive prediction if the learner

classifies the document as positive based on any one of the three decision trees.2 Figure 8 shows

two subprocedures of the test algorithm that check the relevancy based on the evaluation over

either a document text component or a form text component. In Figure 6, the Test Data consists

of the heuristic vectors computed in the algorithm for the test documents, and the Relevancy

Predictions are the predictions output from the test algorithm for the test documents.
2C4.5 trains the learner to obtain the classification model by applying three sets of training examples indepen-

dently in the training phase. Thus, in the test phase, it is possible that the learner classifies a test document as
both a single-record document and a multiple-record document relevant to the application ontology based on the
document text component in the document. Moreover, it also could predict that one relevant document contains
both relevant forms as well as a singleton record or multiple records for the application. In our approach, however,
in the test phase, we are only interested in a prediction. Thus, we declare a document to be relevant if any one of
the three trees in the classification model returns cP , a positive result.
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sub EvaluateDocText(d, Htd
, MO)

//check a document text component
Evaluate Htd

using τ1 and obtain c1

Evaluate Htd
using τ2 and obtain c2

if either c1 or c2 equals cP

Output cP for the document text component of d
else

Output cN for the document text component of d

sub EvaluateFormText(d, Htfi
, MO)

//check a form text component
Evaluate Htfi

using τ3 in MO and obtain c

Output c for the form text component of fi

Figure 8: Subprocedures of prediction algorithm

Input: an HTML document d, an application ontology O,
a sample size N , and a classification model MO (τ1, τ2, τ3).

Output: prediction
call LocateUsefulLinks(d, MO, N) and output L
Randomly select subsequent links LS from L
for each linked page d′ in LS

Compute Htd′ over the document text component of d′

call EvaluateDocText(d′, Htd′ , MO) and output c′

if c′ equals cP

Retrieve text from d′

Insert the text in d
Compute Htd

over the document text component td of d
if td in d is modified

Evaluate Htd
using τ2 and output c

else
call EvaluateDocText(d, Htd

, MO) and output c
Output c for the document text component of d

Figure 9: Evaluation of the document text component of an HTML document by applying relevant
linked pages
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sub LocateUsefuleLinks(d, MO, N)
Collect all the links L in d
Group L into groups by link-address prefixes
Sort the groups in descending order by sizes
for each group G in the groups

Sample and evaluate N links in G based on MO

If the group of linked document is relevant
Output G and break the loop

if no group is found
Output an empty set

Figure 10: Subprocedure to locate useful links in an HTML document

In the algorithm of Figure 7, the learner classifies an HTML document by exploiting the

two kinds of text components (regular text and form text) that appear in the document based

on the classification model MO. In addition to the text components within the document, the

learner can check available linked pages and pages returned from form filling to further evaluate

the document. The HTML table in Figure 2 contains several links, some of which lead to more

detailed descriptions of the car ads in the document. Figure 4 is one of the linked pages from the

top page in Figure 2. If we can determine that a linked page (e.g. the document in Figure 4)

is relevant to the application, we can use this information to help classify the top page (e.g. the

document in Figure 2). Intuitively, if a top page leads to multiple relevant linked pages, we have

more confidence that the top page contains multiple records that are of interest. Figure 9 shows

the algorithm to evaluate the document text component of a multiple-record HTML document

by exploiting relevant documents in linked pages. Because of the expense of retrieving potentially

many dozens of linked pages, the algorithm does not explore all linked pages from the top-page

HTML document d. Instead, we first call the subprocedure in Figure 10 to locate a group of

potentially useful links from d. Since we believe that the useful links in a multiple-record document

are likely to all be together in a common repository, the procedure to locate the useful links first

groups links in d by (longest) common URL prefix and then sorts the groups of links in descending

order based on the number of links in each group since the number of the links that are of interest

usually is the largest in a relevant multiple-record document. To both discard spurious groups of

links with only one or two members and to avoid processing all the links in a group, we choose

a small threshold N (we chose N = 5 for our algorithms). Then, in the loop of the algorithm in

Figure 10, if the number of the links in a group is less than N , we ignore the evaluation of the

group, and if the number of links is greater than N , we only evaluate N of them. We evaluate the

links in a group by checking the relevancy of the top-level document d with the text of the linked

pages inserted into d.

As already mentioned, we also use information on pages returned by automatic form filling

[23, 27].3 Figure 11 shows the algorithm to further evaluate an HTML form by considering a
3We point out that automatic form filling does not always yield results as explained in [23, 27]. Thus, we can
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Input: an HTML form fi, an application ontology O,
and a classification model MO (τ1, τ2, τ3).

Output: prediction
Retrieve a document d′ by filling in and submitting fi

Compute Htd′ over the document text component of d′

call EvaluateDocText(d′, Htd′ , MO) and output c
Output c for the form fi

Figure 11: Evaluation of an HTML form using a retrieved document obtained by form filling

document retrieved by form filling. We can exploit the retrieved documents using two strategies

based on the preference of system users: if system users prefer a better recall ratio, we evaluate

a test document d using the algorithm in Figure 11 if the learner classifies d as irrelevant to the

application ontology based on the form alone; otherwise, if system users prefer a better precision

ratio, we evaluate a test document d using the algorithm in Figure 11 if the learner classifies d as

relevant to the application based on the form alone.

5 Recognition Heuristics

In the high-level architecture of our approach in Figure 6, the heuristics processor computes

heuristic measures over document and form text components that appear in a document. In our

approach, we consider three kinds of heuristics: density heuristics, an expected values heuristic,

and a grouping heuristic. Given an application ontology O, the set of density heuristics measure

the densities of constants and keywords defined in the application ontology O that appear in

a text component td, which is either a document text component or a form text component.

The expected-values heuristic uses the Vector Space Model (VSM) [19], a common information-

retrieval measure of document relevance, to compare the number of constants expected for each

object set, as declared in O, to the number of constants found in td for each object set. The

grouping heuristic measures the occurrence of groups of lexical values found in td with respect to

expected groupings of lexical values implicitly specified in O.

The next three subsections define these heuristics, explain the details about how we provide a

measure for each heuristic, and give examples to show how they work. When reading these sub-

sections, bear in mind that in creating these heuristics, we favored simplicity. More sophisticated

measures can be obtained. For example, for density measures we could account for uncertainty

in constant and keyword matches [28]. For expected values, we could more accurately match

object sets with recognized values by using more sophisticated downstream heuristics [12, 29].

For grouping, we could first compute record boundaries [30] and rearrange record values [29].

However, more sophisticated measures are more costly. We have chosen to experiment with less

costly heuristics, and, as will be shown, our results bear out the seeming correctness of this choice.

only apply this technique when automatic form filling does yield results.
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5.1 Density Heuristics

A text component td parsed from an HTML document d that is relevant to a particular application

ontology O should include many constants and keywords for object sets defined in the ontology.

Based on this observation, we define a set of density heuristics. We compute the density heuristics

with respect to an application ontology and each object set that has keywords or constants specified

in the ontology. In both counts we exclude the characters in HTML tags. We compute the density

of td with respect to an application ontology O as follows:

Density(td, O) = total number of matched characters / total number of characters

where total number of matched characters is the number of characters of the constants and key-

words recognized by O in td, and total number of characters is the total number of characters in

td. Further, we compute the density of td with respect to an object set o in O as follows:

Density(td, o) = total number of matched characters for o / total number of characters

where total number of matched characters for o is the number of characters of the constants and

keywords recognized by regular expressions specified for o in td, and total number of characters is

the same as in the computation of Density(td, O).

We must be careful, of course, not to count characters more than once. For example, in the

phrase “asking only 18K,” a car-ads application ontology might recognize “18K” as potentially

both a price and a mileage. Nevertheless, we should only count the number of characters as three,

not six. Further, we need determine whether we count the value “18K” for a price or for a mileage.

Consider the document text component tda in the multiple-record document da in Figure 1(a).

Recall that the nonlexical object set of the car-ads application ontology is Car, and the lex-

ical object sets are Y ear, Make, Model, Mileage, Price, Feature, and PhoneNr. Some of

the lexical values found in tda include “1989” (Y ear), “$1900” (Price), “100K” (Mileage),

“Auto” (Feature), “Cruise” (Feature), “(336)835-8579” (PhoneNr), “Subaru” (Make), and

“SW” (Model). The keywords “Cars for Sale” for the object set of interest Car, “miles” and

“mileage” for Mileage, and “Call” for PhoneNr appear in da. The total Number of characters

in tda is 1992, whereas the number of matched characters is 696. Hence, the Density(tda , O)

is 0.3493 = 696/1992. For each object set in the car-ads application ontology O, there is also

a density measure. For example, the number of matched characters for Make is 47. Therefore,

Density(tda , Make) is 0.0236 = 47/1992.

When we apply the density heuristics for the car-ads application ontology to the document

text component tdb
of the document db in Figure 1(b), the densities are much lower. Although

no makes, models, or car features appear, there are years, prices, and phone numbers and the

ontology (mistakenly) recognizes “10,000” (in “10,000 SQ. FT.”) and “401K” (the retirement
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plan) as potential mileages. Altogether, 229 characters of 2627 are recognized by the car-ads

ontology. Thus the density to the car-ads application ontology Density(tdb
, O) is 0.0871. There

are also eight other densities, one for each object set. For example, the document text component

of db contains keywords and values for PhoneNr, and the density for PhoneNr is 0.0533. The

density for Car is 0.0 since the document text component does not contain any keywords for the

object set of interest, Car, in the car-ads application ontology.

5.2 Expected-Values Heuristic

We apply the VSM model to measure whether a text td parsed from an HTML document d has

the number of values expected for each lexical object set of an application ontology O. Based on

the lexical object sets and the participation constraints in O, we construct an ontology vector VO.

Based on the same lexical object sets and the number of constants recognized for these object

sets by O in td, we construct a document vector Vtd . We measure the relevance of td to O with

respect to our expected-values heuristic by observing the cosine of the angle between Vtd and VO.

To construct the ontology vector VO, we (1) identify the lexical object-set names (these become

the names of the coefficients of VO) and (2) determine the average participation (i.e. the expected

frequency of occurrence) for each lexical object set with respect to the object set of interest

specified in O (these become the values of the coefficients of VO). For example, the ontology vec-

tor for the car-ads application ontology is < Y ear:0.975, Make:0.925, Model:0.908, Mileage:0.45,

Price:0.8, Feature:2.1, PhoneNr:1.15 >, where these values are the average participation-constraint

values obtained as explained in Section 3. Thus, for a typical single car ad we would expect almost

always to find a year, make, and model, but we only expect to find the mileage about 45% of the

time, the price about 80% of the time. Further, we expect to see a list of features that on the

average have a couple of items in it, and we expect to see a phone number and sometimes more

than one phone number.4

The names of the coefficients of Vtd are the same as the names of the coefficients of VO. We

obtain the value of each coefficient of Vtd by automatically counting the number of appearances

of constant values in td that belong to each lexical object set. Table 1 shows the values of the

coefficients of the document vector for the document text component of the car-ads document

in Figure 1(a), and Table 2 shows the values of the coefficients of the document vector for the

document text component of the non-car-ads document in Figure 1(b).

We have discussed the creation of a document vector as though correctly detecting and clas-

sifying the lexical values in a text in a document were easy—but it is not easy. We identify

potential lexical values for an object set as explained in Section 3; this can be error-prone, but we

can adjust the regular expressions to improve this initial identification and achieve good results
4It is easy to see that the variance might be useful, as well, but we found that the expected numbers were

sufficient to get good results for the examples we tried.
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Name of Lexical Corresponding Lexical Values Number of
Object Set Found in the Document Lexical Values

Year 1989, 1998, 1994, 1999, ’53, 16
1973, 1977, 95, 1996, . . .

Make Subaru, HONDA, Chevy, Olds, 10
FORD, VW, Buick, Mercury, . . .

Model SW, Elantra, ACCORD, GRAND AM, 12
Cutlass, CONTOUR, JETTA, . . .

Mileage 100K, 27000, 26000, 45K, 34K, 109000 6
Price $1900, $14,000, $8500, $4500, $5300, 11

$11,000, $6995, $4995, $1880, . . .
Feature Auto, Black, 4 door, pb, ps, cruise, 29

am/fm, cassette, stereo, green, . . .
PhoneNr (336)835-8579, (336)526-5444, 15

(336)526-1081, (336)366-4996, . . .

Table 1: Lexical values found in the multiple-record car advertisements in Figure 1(a)

Name of Lexical Corresponding Lexical Values Number of
Object Set Found in the Document Lexical Values

Year 1999, 1998, 60, 401K, 50, 80 6
Make 0
Model 0
Mileage 10,000, 401K 2
Price $17,500, $10,971, $27,850, $19,990, 8

$79,850, $42,990, $129,650, $78,850
Feature 0
PhoneNr 281-2051, 281-4060, 218-281-1128, 281-3631, 11

281-3872, 218-281-5113, 218-281-5113,
800-532-7655, 281-1970, 800-406-5126, 281-1128

Table 2: Lexical values found in the multiple-record Items for Sale document in Figure 1(b)
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[12]. After initial identification, we must decide which of these potential object-set/constant pairs

to accept. In our downstream processes, we use sophisticated heuristics based on keyword prox-

imity, application-ontology cardinalities, record boundaries, and missing-value defaults to best

match object sets with potential constants. For upstream ontology/document matching we use

techniques that are far less sophisticated and thus also far less costly. In our simple upstream

procedures we consider only three cases: (1) when multiple specializations of an object set are

present, a recognized string appears without required accompanying keywords, (2) a recognized

string has no overlap either partially or completely with any other recognized string, and (3)

a recognized string does overlap in some way with at least one other recognized string. If one

object set o is a specialization of another object set described in an application ontology, the

keywords specified for o in the application ontology are mandatory. For example, there are several

dates in an obituaries application: Death Date, Birth Date, Funeral Date, V iew Date, and

Interment Date. All dates are specializations of Date in the obituary application ontology. To

distinguish the multiple kinds of dates in HTML documents, it is necessary to use keywords to

sort out the difference. For Case 1, we reject a recognized string if keywords are not present. For

Case 2, we accept the recognized string for an object set even if the sophisticated downstream

processes would reject it. For Case 3, we resolve the overlap simplistically, as follows. There are

three subcases: (1) exact match, (2) subsumption, and (3) partial overlap. (1) If a lexical value

v is recognized as potentially belonging to more than one lexical object set, we use the closest

keyword that appears before or after v to determine which object set to choose; if no applicable

keyword is found, we choose one of the object sets arbitrarily. (2) If a lexical value v is a proper

substring of lexical value w, we retain w and discard v. (3) If lexical value v and lexical value w

appear in a Web document, such that a suffix of v is a prefix of w, we retain v and discard w.

As mentioned, we measure the similarity between an ontology vector VO and a document

vector Vtd by measuring the cosine of the angle between them. In particular, we use the Similarity

Cosine Function defined in [19], which calculates the acute angle Similarity(td, O) = cos θ =

P/N , where P is the inner product of the two vectors, and N is the product of the lengths of

the two vectors. When the distribution of values among the object sets in Vtd closely matches the

expected distribution specified in VO, the angle θ will be close to zero, and cos θ will be close to

one.

Consider the car-ads application ontology O in Figure 5 and the Web document da in Fig-

ure 1(a). The coefficients of VO for O are 0.975, 0.925, 0.908, 0.45, 0.8, 2.1, and 1.15, which are the

expected frequency values of lexical object sets Y ear, Make, Model, Mileage, Price, Feature,

and PhoneNr, respectively for a single ad in the car-ads application ontology. The coefficients

of Vtda
for da are 16, 10, 12, 6, 11, 29, and 15 (see the last column of Table 1), which are the

actual number of appearances of the lexical values in da. We thus compute Similarity(tda , O) to
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be 0.9956. Now consider the car-ads application ontology O again and the Web document db in

Figure 1(b). The coefficients of VO are the same, but the coefficients of Vtdb
for db are 6, 0, 0, 2,

8, 0, and 11 (see the last column of Table 2). We thus compute Similarity(tdb
, O) to be 0.5669.

5.3 Grouping Heuristic

A text td of an HTML document d likely applies to an application ontology if the values in the

text form groups that can be recognized as records for O. As a simple heuristic to determine

whether the recognized values are interleaved in a way that could be considered consistent with

potential records of O, we consider the group of values in a document that should appear at most

once in each record and measure how well they are grouped.

We refer to an object set whose values should appear at most once in a record as a 1-max

lexical object set. Maximum participation constraints in an ontology constrain the values of the

1-max object sets to appear at most once in a record. For example, in the car-ads application

ontology, the 1-maximum on Car in the relationship set Car [0:0.975:1] has Year [1:*] specifies

that Y ear is a 1-max object set. Other 1-max lexical objects in the car-ads ontology are Make,

Model, Mileage, and Price.

Instead of counting the number of 1-max lexical objects in an application ontology O, a more

accurate counting approach is to sum the average values expected for the 1-max objects in O.

Since the average values expected for Y ear, Make, Model, Mileage, and Price in the car-ads

ontology are 0.975, 0.925, 0.908, 0.45, and 0.8, respectively, the anticipated number of lexical

values from these object sets in a car advertisement is 4.058. To obtain an expected group size,

we truncate the decimal value of the sum.

The expected group size n is an estimate of the number of 1-max object-set values we should

encounter in a document within a single record. On the average, each record should have n 1-

max object sets. Thus, if we list all recognized 1-max object-set values in the order they occur

in a document d and divide this sequence into groups of n, each group should have n values

from n different object sets. The closer a document comes to this expectation, the better the

grouping measure should be. For the multiple-record car-ads Web document in Figure 1(a),

Figure 12(a) shows the first four groups of 1-max lexical object-set values extracted from the

document. Similarly, Figure 12(b) shows the first four groups of 1-max lexical object-set values

extracted from the document in Figure 1(b).

We measure how well the groups match the expectations with a grouping factor (denoted

Grouping), which is calculated as follows:

Grouping(td, O) =
Sum of Distinct Lexical Values in Each Group

Number of Groups× Expected Number of Values in a Group

For example, the number of extracted groups from the document text component tda of da in

Figure 1(a) is 13 (1 group of 2, 5 groups of 3, and 7 groups of 4). Since the number of anticipated
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(a) First four groups of 1-max lexical values ex-
tracted from Figure 1(a)

(b) First four groups of 1-max lexical values ex-
tracted from Figure 1(b)

Figure 12: Groups of 1-max lexical values extracted from HTML documents

lexical values in each group is four, Grouping of tda is

Grouping(tda , O) =
(2 × 1) + (3 × 5) + (4 × 7)

(1 + 5 + 7) × 4
= 0.8653

By way of comparison, the number of extracted groups from the document text component tdb
of

HTML document db in Figure 1(b) is 4 (1 group of 1, 2 groups of 2, and 1 group of 3). Since the

number of anticipated lexical values in each group is four, the Grouping factor for tdb
is 0.5.

6 Empirical Evaluation

We evaluated our approach on two real-world applications: car ads and obituaries. Our goals

were to evaluate system performance over multiple kinds of HTML documents for real-world

applications.

6.1 Applications and HTML documents

Figure 13 shows the graphical versions of the two application ontologies. The car-ads application

in Figure 13(a) is representative of many simple applications, whereas the obituaries application

in Figure 13(b) is representative of more complex applications. Not only does the obituaries
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(b) Obituary application ontology

Figure 13: Graphical versions of application ontologies
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Application Multiple-Record Single-Record Form
(semistructured/table/negative) positive/negative positive/negative

Car Ads 31/112/363 614/636 50/69
Obituaries 68/0/135 62/135 30/32

Table 3: Training data for car ads and obituaries

application have more object sets and relationship sets, but these object and relationship sets are

also more complex. One relationship set is ternary, more than one object set is nonlexical, and

several relationship sets are specializations—for example, both Birth Date and Death Date are

specializations of Date as denoted by “: Date” following the name of these object sets.

For the car-ads application, we collected three sets of HTML documents: semi-structured

HTML documents, HTML tables, and HTML forms. For the obituaries application, we collected

only semistructured and HTML form documents. (Obituaries rarely, if ever, appear as tables

having attributes such as Deceased Name, Age, Death Date, etc.) We divided the documents

for each application into two sets: training documents and test documents. Table 3 shows the

characteristics of the training data for car ads and obituaries obtained from the training docu-

ments. For each application, there were three sets of training examples, one each for single-record

documents, multiple-record documents, and application-forms.

Table 4 shows the distributions of semistructured HTML documents, HTML tables, and HTML

forms in the test documents. For the car-ads application, 10 of the semistructured HTML docu-

ments contained multiple-record car ads, and 10 of them contained single-record car ads. All the

HTML tables contained multiple-record car ads. For the obituaries application, the semistruc-

tured HTML documents contained 20 multiple-record documents and 10 single-record documents.

Among the 20 multiple-record obituary documents, 10 documents contained only partial obituar-

ies. These 10 documents led to linked pages, some of which contained complete obituary records.

The 10 HTML form documents for each application contained application forms but no single-

or multiple-records of interest. The negative documents collected for each application contained

documents with applications similar to those of the application ontologies. For example, we in-

cluded forms to retrieve used auto parts, car reviews, and motorcycle sales to test the learner

trained for car ads, and we included birth and marriage announcements, genealogy records and

forms, and bibliographies to test the learner trained for obituaries. We assumed that if our fil-

tering methodology could sort out differences among closely related applications, it could easily

reject vastly different application documents (e.g. country descriptions, rail and flight schedules,

university home pages, and molecular biology data). Indeed, the system made no mistakes re-

jecting obituaries and obituary like applications for car ads and rejecting car ads and car-ad like

applications for obituaries.
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Application Semistructured HTML Table HTML Form Negative
Car Ads 20 10 10 40

Obituaries 30 0 10 40

Table 4: Test documents for car ads and obituaries

Even though some of the semistructured HTML documents and HTML table documents in Ta-

ble 4 contained additional irrelevant application forms (e.g. user registration forms), we expected

that the learners would produce appropriate predictions based on the document text components

that appear in the documents rather than the irrelevant form text components. For the HTML

form documents, since they did not contain application records, we expected that the learners

would produce the positive predictions using the application-form decision trees based on form

text components that appear within forms.

6.2 Classification Models

Figure 14 and Figure 15 respectively show the classification models the learners built for car ads

and obituaries. Each classification model contains three decision trees for an application ontology

O, which are for multiple-record documents, single-record documents, and application forms.

Within one tree, a node denotes a predicate using heuristics measures. For example, “vsm” and

“grouping” are two measures for a text component td computed based on the heuristics calculations

of expected-values, Similarity(td, O), and grouping, Grouping(td, O). The “density” is a density

measure Density(td, O) of the text component td with respect to the application ontology O—

for either car ads or obituaries. The object-set names “Car” and “Deceased Person” denote the

densities of the keywords specified for the object sets of interest in the two application ontologies.

Other object-set names denote densities of lexical values and keywords for object sets in the two

application ontologies. For example, Make denotes a density Density(td, Make) of the text

component td with respect to the lexical object set Make in the application ontology for car ads.

The parenthetical numbers (x/y) following “Y” and “N” for a decision-tree leaf L give the total

number of training examples x classified for L and the number of incorrect training examples y

classified for L.

Given the decision trees for the two applications in Figure 14 and Figure 15, we can see that

the learners used different combinations of heuristics to check the relevancy. For both applica-

tions, however, the learners largely exploited density heuristics. Figure 14 shows that the learner

trained for the car-ads application applied only the density heuristics to classify application forms.

Figure 15 shows that “vsm”, the expected-values heuristic, was not useful for the learner of the

obituaries application.
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M ake <= 0.12701
|   Car <= 0.006143: N (74.0/7.0)
|   Car > 0.006143
|   |   density <= 0.161905: N (4.0/1.0)
|   |   density > 0.161905:Y (5.0)
M ake > 0.12701:Y (36.0)

(a) Form decision tree

density <= 0.179178
|   vsm <= 0.768438: N (440.0/1.0)
|   vsm > 0.768438
|   |   M ileage <= 0.00666
|   |   | Year <= 0.009579: N (17.0)
|   |   | Year > 0.009579
|   |   |   |   Price <= 0.000641: N (2.0)
|   |   |   |   Price > 0.000641:Y (2.0)
|   |   M ileage > 0.00666:Y (3.0)
density > 0.179178
|   grouping <= 0.604167
|   |   Price <= 0.007174: N (5.0/1.0)
|   |   Price > 0.007174:Y (3.0)
|   grouping > 0.604167:Y (134.0)

(b) Multiple-record tree

Price <= 0.001732
|   Car <= 0.008435: N (545.0/1.0)
|   Car > 0.008435
|   |   Feature <= 0.006432: N (10.0)
|   |   Feature > 0.006432:Y (19.0/3.0)
Price > 0.001732
|   M ake <= 0.001559: N (39.0/3.0)
|   M ake > 0.001559
|   |   vsm <= 0.598958
|   |   |   PhoneNr <= 0.002147: N (31.0/4.0)
|   |   |   PhoneNr > 0.002147:Y (28.0/3.0)
|   |   vsm > 0.598958
|   |   |   grouping <= 0.611111
|   |   |   |   grouping <= 0.519231:Y (50.0/3.0)
|   |   |   |   grouping > 0.519231: N (10.0/2.0)
|   |   |   grouping > 0.611111:Y (518.0/2.0)

(c) Single-record tree

Figure 14: Classification model for car ads
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Funeral Date <= 0.002303
|   Death Date <= 0.022727
|   |   Deceased Person <= 0.009384: N (34.0/4.0)
|   |   Deceased Person > 0.009384:Y (5.0/1.0)
|   Death Date > 0.022727:Y (5.0)
Funeral Date > 0.002303:Y (18.0/1.0)

(a) Form decision tree

Death Date <= 0.005002
|   Funeral Date <= 0.010844: N (119.0)
|   Funeral Date > 0.010844:Y (9.0/4.0)
Death Date > 0.005002
|   density <= 0.118065: N (7.0)
|   density > 0.118065:Y (68.0/5.0)

(b) Multiple-record tree

grouping <= 0.277778
|   Relative Name <= 0.047308: N (109.0/1.0)
|   Relative Name > 0.047308
|   |   Death Date <= 0.00202: N (4.0/1.0)
|   |   Death Date > 0.00202:Y (4.0)
grouping > 0.277778
|   Deceased Person <= 0.023715
|   |   Birth Date <= 0.036281
|   |   |   Death Date <= 0.001617
|   |   |   |   Funeral Date <= 0.013723: N (7.0/1.0)
|   |   |   |   Funeral Date > 0.013723:Y (3.0)
|   |   |   Death Date > 0.001617
|   |   |   |   IntermentAddress <= 0.022565
|   |   |   |   |   density <= 0.070368
|   |   |   |   |   |   Deceased Person <= 0.006863
|   |   |   |   |   |   |   density <= 0.040834: N (3.0/1.0)
|   |   |   |   |   |   |   density > 0.040834:Y (14.0)
|   |   |   |   |   |   Deceased Person > 0.006863: N (3.0)
|   |   |   |   |   density > 0.070368:Y (36.0)
|   |   |   |   IntermentAddress > 0.022565: N (4.0/1.0)
|   |   Birth Date > 0.036281: N (3.0)
|   Deceased Person > 0.023715: N (7.0)

(c) Single-record tree

Figure 15: Classification model for obituaries
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6.3 Experiments

For each application, we performed two sets of experiments. First, we measured the precision,

recall, and the F-measure of our approach, including an investigation of how sensitive the per-

formance is with respect to the analysis of linked pages and the application of the form-filling

methods in [23, 27]. Second, we conducted studies to evaluate the contributions of heuristics:

Densities, Expected Values, and Grouping. For all the experiments, we evaluated the performance

of the learners on the test documents described in Table 4.

6.3.1 Results

We evaluated the performance of our approach based on three measures: precision, recall, and the

F-measure. Given (1) the number of relevant documents N determined by a human expert, (2) the

number of correct relevant documents C selected by our approach, and (3) the number of incorrect

relevant documents I selected by our approach, we computed the recall ratio as R = C/N , the

precision ratio as P = C/(C + I), and the F-measure as F = 2/(1/R + 1/P ). We report all these

values as percentages in Table 5.

Application Number Number Number Recall Precision F-Measure
Applicable Doc.’s Correct Incorrect % % %

Car Ads 40 39 2 98 95 96
Obituaries 40 38 2 95 95 95

Table 5: Results of the test algorithm in Figure 7

Observe that two negative documents and one relevant document for car ads were classified

incorrectly (two incorrect positive responses and one incorrect negative response), and that two

relevant documents and two negative documents for obituaries were classified incorrectly (two

incorrect negative responses and two incorrect positive responses).

6.3.2 Form Filling and Linked Pages

As explained earlier, in addition to the text components that appear in a document, we can also

exploit auxiliary information such as linked pages or retrieved documents obtained by form filling.

First, we applied a strategy that prefers a better precision ratio. The learner used the algorithm

in Figure 11 to re-evaluate the application forms that the learner classified as positive responses

using the test algorithm in Figure 7. Figure 16(a) shows a form to locate car dealers, which

the algorithm in Figure 7 incorrectly classified as a form for car ads. By applying the methods

to fill in forms, we retrieved the document in Figure 16(b), which contains dealer information

rather than car ads. With this additional information, the learner caught the incorrect positive

response for the document in Figure 16(a) and classified it as negative, irrelevant to the car-ads
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(a) Dealer locator

(b) Retrieved document by filling in form in Figure 16(a)

Figure 16: An incorrect positive response for car ads



Ontologically Filtering Web Pages 30

(a) Car form

(b) Retrieved document by filling in form in Figure 17(a) (partial)

Figure 17: An incorrect negative response for car ads

application. With this strategy the learner improved its precision from 95% to 98%. Second,

we applied a strategy that prefers a better recall ratio. The learner re-evaluated the negative

responses using retrieved documents obtained by applying form filling. Figure 17 shows both a

form in Figure 17(a) that the learner classified as irrelevant using the test algorithm in Figure 7

and the relevant document in Figure 17(b) obtained by filling in the form in Figure 17(a). By

using the algorithm in Figure 11 to re-evaluate the form in Figure 17(a), the learner caught the

incorrect negative response and improved its recall from 98% to 100% for the test set of the car-ads

application in Table 4.

The other auxiliary information we use in our system is information on linked pages. Fig-

ure 18(a) shows a document that contains only partial obituaries. By applying the algorithm in

Figure 9, the learner caught the incorrect negative response by considering the linked pages—

for example, the relevant document in Figure 18(b) for the first link in Figure 18(a). Thus the
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(a) Obituaries that require re-evaluation (partial) (b) A linked page (partial)

Figure 18: An incorrect negative response for obituaries

learner improved its recall measure from 95% to 98%. Note that we included 10 HTML docu-

ments containing only partial obituaries similar to the HTML document in Figure 18(a) in the

test documents. The test result shows that the learner for obituaries missed only one such page

without analyzing linked pages. That means that the partial obituaries usually provided enough

informative information for the learner to classify them as positive, relevant documents.

6.3.3 Other Incorrect Positives and Negatives

Figure 19 shows an incorrect positive response for the obituaries application, a marriage submission

form that contains the keyword “obituary”. The form in Figure 19, however, requires that a user

manually fill the text fields. Thus the full automatic classification procedure cannot catch this

incorrect positive response.

Figure 20 shows an incorrect positive response, a motorcycle-sale page (Figure 20(a)), for

the car-ads application; and an incorrect positive response, a bibliography of an American hero
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Figure 19: An incorrect positive response for obituaries (partial)

(Figure 20(b), for the obituaries application. The motorcycle document contains data for Y ear,

Make, Mileage, Price, and PhoneNr. The bibliography document contains data such as the

person’s name, birth and death dates, and relationships including his father and his daughter.

Both documents include concepts that largely overlap those specified in the application ontologies.

It is difficult for the learners to recognize that documents with significant overlap do not apply to

the application ontologies.

The final incorrect response is a negative response for the document in Figure 21 for the

obituaries application. The learner classified this document as irrelevant because the density

measures obtained based on the entire document text component were not high enough to reach

the thresholds defined in the single-record tree for obituaries. The reason is that a large amount

of irrelevant data appears in the document. In order to catch this incorrect negative response,

instead of evaluating the document text component that appears in the entire document, we can

evaluate a subpart of the document text component that contains the information of interest. For

example, we can select the text in Figure 21 that describes exactly the singleton obituary for Bill

Gilley. To see what would happen if we were to select only the applicable part of the document,

we manually revised the document and discarded the irrelevant text. The classification model

built for obituaries gave a positive prediction for the revised document. Automatically selecting

potentially relevant subcomponents of a document is challenging, and we have not yet resolved

the issues and implemented a solution.
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(a) Motorcycles (partial)

(b) Captain John Smith (partial)

Figure 20: Two incorrect responses for car ads and obituaries
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Figure 21: Single-record obituary (partial)

Combination Densities Expected-Values Grouping
1 +
2 +
3 +
4 + +
5 + +
6 + +
7 + + +

Table 6: Combination of three kinds of heuristics

6.3.4 Contributions of Heuristics

We evaluated the performance by applying different combinations of heuristics using the test

algorithm in Figure 7. Figure 22 shows the contribution of the three kinds of heuristics (densities,

expected-values, and grouping) to the overall performance in the two applications. The x axis lists

the seven combinations of the three kinds of heuristics. Table 6 shows the seven combinations,

where “+” denotes the heuristic or heuristics in the corresponding column that are in use.

For both applications, Figure 22 shows that the density measures are important (Columns 2,

4, 5, and 7 are the best). When the learners exploited only density heuristics in the algorithm

of Figure 7 to evaluate the test documents for the applications (Column 2), the learners achieved

above 90% for all measures (precision, recall, and F-measure). Using the expected-values heuristic

alone (Column 3), the learners achieved an F-measure of only about 70% for the two applications.

Using the grouping heuristic alone (Column 1), the F-measure obtained by each learner was still

less than 85%. Even when the learners used both the expected-values heuristic and the grouping

heuristic together (Column 6), performance for neither application improved. Figure 22(a) shows

that the learner of the car-ads application achieved the highest F-measure by applying all heuristics

together.



Ontologically Filtering Web Pages 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

Com bination ofHeuristics

Pe
rf
o
rm
a
n
c
e

Precision

Recall

F-m easure

(a) Cars ads application

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

Com bination ofHeuristics

Pe
rf
o
rm
a
n
c
e

Precision

Recall

F-m easure
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Figure 22: Performance comparison of heuristics combinations
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We know that the density heuristics are dependent on and sensitive to the specification of

the application ontologies. The other two heuristics, expected values and grouping, are also

mainly determined by the specification of the application ontology. Thus, when porting to a

new application domain, as long as the application ontologies are well defined, our empirical

evaluation shows that our approach should be able to recognize relevant HTML documents with

high precision, recall, and F-measure. Moreover, as the application ontologies evolve, for example,

more lexicons become available for Make or Color is added as a new object set, the performance

of the approach will most likely to improve as well.

7 Related Work

Many papers about the broad areas of filtering and information retreival have appear in recent

years. (See recent surveys for filtering [31] and information retrieval [32].) Most of these papers

are not relevant to our approach to filtering. The papers we do review in this section are those

that are most recent and closest to our work.

User-profile-based filtering techniques have been extensively investigated in the context of

content-based information filtering research. Most content-based information filtering systems

are intended for unstructured text and typically use sets of keywords to represent user interests.

The Stanford Information Filtering Tool (SIFT) [8] is a well-known content-based text filtering

system for Internet news articles. A user subscribes to a SIFT server with one or more profiles,

each of which includes a query supported either by a Boolean model or vector space model.

Queries in both models are based on keywords. In contrast, our application ontology expresses

information of interest in terms of concepts and relationships, which adds an enriching semantic

description beyond keyword-based profiling. Moreover, the application domain of SIFT is only

text documents, whereas our system works for HTML documents which, in addition to text, could

include HTML tables, forms, and linked sub-documents.

In order to retrieve documents with higher precision, some researchers have resorted to en-

riching documents by adding meta information. WebKB [4], for example, is an ontology-based

knowledge retrieval tool that interprets semantic statements stored in Web documents. Web-

KB allows the addition of meta-information, indexes, and constructed ontologies that subsume

WordNet. With this added information, WebKB can evaluate user queries over the annotated doc-

uments that combine lexical, structural, and knowledge-based techniques to retrieve documents.

Another example, [5], describes OWLIR as an approach to retrieve documents that contain both

free text and semantically enriched markup. The OWLIR framework advocates the interdepen-

dency of search and inference for precise retrieval over semantic content. Both WebKB and the

OWLIR framework are largely dependent on the accuracy of semantic markup for documents

and queries, which is obtained based on information extraction techniques as well as ontologies.
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Faithfully marking up documents, however, relates to the knowledge acquisition bottleneck faced

in the AI research community of eighties, and there is little practical experience on which to rely

[6, 7]. In contrast to WebKB and the OWLIR framework, we issue queries to filter application ob-

jects on the fly among unstructured Web documents without enriching Web documents by adding

meta-information and without putting documents into repositories and indexing them.

TAP [33] provided a set of simple mechanisms for sites to publish data onto what it perceives

the Semantic Web to be and for applications to consume this data via a query interface called

GetData, a lightweight query represenation language. A set of HTML scrapers dynamically locate

and convert relevant pages in source sites into machine readable data and thus make them available

on the ”Semantic Web.” TAP’s semantic search augments traditional search results with relevant

data aggregated from distributed sources on the semantic Web. In contrast, our approach works

on the current Web without presumption that machine-understandable documents are supported.

With XML being used as a standard format to exchange data on the Web, filtering Web docu-

ments based on both content and structure has become more feasible. The XFilter system [34] and

the YFilter [35] system are examples of XML filtering systems. The XFilter and YFilter engines

use models based respectively on finite state machines and non-deterministic finite automata to

locate and evaluate user profiles. With knowledge of structures and content of XML documents,

users are able to express profiles in XPath [36]. In contrast, our approach is more widely ap-

plicable and scalable becuase it uses a fixed application ontology that works over a dynamic set

of unstructured documents on the Web instead of specifying profiles basing on structures and

metadata of a particular set of XML documents.

Within our research lab, we have used several approches [37, 25, 26] to categorize multiple-

record Web documents. A multiple-record Web document contains multiple unstructured records,

one after another. The work reported in [25] and [26] respectively evaluates a multiple-record

document by applying a statistical multivariate analysis and a logistic regression analysis. In

contrast, we provide an evaluation model based on machine learning techniques. We reported

some of these results in an initial report on our work [37]. In this paper we have expanded

our earlier work (1) by also including single-record documents, forms, and linked subdocuments,

(2) by providing a vastly expanded explanation of problematic pages, and (3) by improving our

heuristics and running new experiments. Specifically, with regard to new heuristics, we improved

our density heuristic by considering every attribute individually in addition to considering them all

collectively. With this new density heuristic we generated new and better filtering rules. Overall,

our results improved as well as our coverage, having added single-record documents, forms, and

documents with linked subdocuments.
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8 Conclusions and Future Work

We presented an approach for filtering HTML documents by application ontologies. Once an

application ontology is created, we can use a machine learning algorithm over a set of heuristics to

produce a classification model that accurately recognizes which documents apply to the ontology.

Results for the tests we conducted showed that the recognition F-measure, precision, and recall

were above 95% for both a car-ads application and an obituaries application. We also showed

that we can further improve performance by considering linked pages and documents retrieved by

submitting default forms.

Our approach is robust, flexible, and scalable. The heuristics, learning algorithms, and training

documents used in the approach are extensible. If new heuristics appear useful, we can imme-

diately use them without having to change our fundamental approach. The performance of a

learner can be incrementally improved by adding more training documents. When porting to a

new application domain, our approach is able to achieve high precision and recall if the application

ontology represents the application domain well. As the application ontology evolves, the learner

is likely to improve its performance as well.

Our future work can expand in several different directions. (1) We can test our approach on

more applications. (2) We can investigate ways to enhance the heuristics. (3) We can do a deeper

level analysis of an HTML document and check relevancy based on an appropriate subpart of the

document rather than the entire document. (4) We can apply a meta-learning strategy to train

the learners over several different classifiers including C4.5 as described in this paper, multivariate

analysis [25], and logistic regression [26].
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