
Extracting Information from Heterogeneous Information
Sources Using Ontologically Specified Target Views

Joachim Biskup
Fachbereich Informatik

Universität Dortmund
44227 Dortmund, Germany

{biskup@ls6.informatik.uni-dortmund.de}
David W. Embley∗

Department of Computer Science
Brigham Young University

Provo, Utah 84602, U.S.A.
{embley@cs.byu.edu}

Abstract

Being deluged by exploding volumes of structured and unstructured data contained
in databases, data warehouses, and the global Internet, people have an increasing need
for critical information that is expertly extracted and integrated in personalized views.
Allowing for the collective efforts of many data and knowledge workers, we offer in
this paper a framework for addressing the issues involved. In our proposed framework
we assume that a target view is specified ontologically and independently of any of
the sources, and we model both the target and all the sources in the same modeling
language. Then, for a given target and source we generate a target-to-source mapping,
that has the necessary properties to enable us to load target facts from source facts. The
mapping generator raises specific issues for a user’s consideration, but is endowed with
defaults to allow it to run to completion with or without user input. The framework is
based on a formal foundation, and we are able to prove that when a source has a valid
interpretation, the generated mapping produces a valid interpretation for the part of
the target loaded from the source.

1 Introduction

As the amount of information continues to explode and find its way into more and more

repositories, we are faced with an ever increasing challenge to extract and integrate this

∗Research for this paper was done mainly during a sabbatical leave at Dortmund University.

1

information and make it useful for end-users. In light of these circumstances, we must

search for ways to ease the extraction and integration process. Fully automated techniques

may not be possible, but we should seek to automate as much as is possible, and we should

seek for synergistic solutions that significantly aid extractors and integrators and yet demand

as little as possible from them.

In light of the importance of this problem it is not surprising that much thought and

effort has been expended in trying to resolve the issues involved. Many researchers have ad-

dressed this problem from several different vantage points, and the body of literature on this

topic is large. Database researchers working on multidatabases one or two decades ago en-

countered many of these issues. This work is summarized in [EP90] with details provided in

[LMR90, SL90]. The work in database schema integration also addresses these issues and has

a longstanding research history. Much of this work was surveyed in 1986 [BLN86], but con-

tinuing research has also led to many later results (e.g. [LNE89, BCW90, SP94, GSSC95]).

As the Web has become more prominent, a host of data-extraction work has appeared

(e.g. [DEW97, MMK98, GLdSRN00]) and has been highlighted in several workshops (e.g.

[ABM+97, CM99, SV00]). Beyond extraction, the desire to integrate results has led to a num-

ber of initiatives on integrating heterogeneous data from wrapped data sources [ACHK93,

KLSS95, LRO96, DG97, GKD97, HGMC+97, Coh98, KMA+98], including a theory-based

comparison [Ull97] between two of these initiatives, [HGMC+97] and [KLSS95]. In the con-

text of integration, researchers have studied ways to semi-automate the discovery of semantic

relatedness [SM91, Cas93, GSCS93, SSR94, ON94, KS96, PSU98b, PSU98a, BCV99], which

is the central hard problem in automating information integration. Similar issues arise in

integrating information for data warehouses [CGL+98, CGL+99, GFSS99]. A recent issue

of SIGMOD Record included a special section on semantic interoperability that summarizes

many of the results that have been achieved [BCV99, FPNB99, OS99, SO99, Gal99].

The work presented in this paper differs from previous work in its particular approach

to the general problem. We focus on extracting information from heterogeneous sources for

a particular predefined target view1. Although we do not denigrate the more traditional

approaches to integration (each has its place), we do point out several advantages to the

approach we take. (1) Since a target view limits the scope of integration to a predefined

collection of object and relationship sets, using a target view makes the problem more man-

1In the parlance of [Ull97], the target view acts as a mediator and the position our framework takes is
“global-as-view.”

2

ageable than the general source integration problem. (2) The use of a target view coincides

with the desire of many to integrate information from a variety of sources and present it in a

personalized view for a user—see for example the work on structured maps [DMRA97]. (3)

Since we map each source to the target independently, changes in a particular source affect

only the mapping of that source to the target. Thus, the approach is scalable and can be

applied to an environment such as the Web where scalability is paramount.

We define the target view conceptually, as an ontology [Bun77, Bun79], independent of

any of the sources. Others have suggested ontologies as a means to resolve many of the issues

(see [OS99] and the earlier work cited in [OS99]), and ontologies are not without problems

[OI99], but we believe that they offer one of the best approaches to resolving the issues.

We use OSM [EKW92] as our conceptual model for describing an ontology for our target

view. We also use OSM to model each source. Sources may be heterogeneous (e.g. legacy

database systems, database systems under different models, semistructured text), but once

we wrap a source in OSM, we have uniformity which provides us with a solid foundation

from which to proceed with the work of extracting source information and loading it into the

target view and with the work of integrating data from the various sources. OSM provides

several advantages: (1) it captures conceptually the objects, relationships, constraints, and

textual representations required in the target ontology and the source wrappers, and (2) it

maps directly to a specialized subset of predicate calculus, which we can use for proving

properties about our extraction and integration work. OSM can be seen as a high-level,

graphical abstraction of a specialized subset of predicate calculus with augmentations to

describe type characteristics for atomic tokens.

The work presented here also provides a broad framework into which the complementary

work of others can nicely fit and be brought together. The framework specifies the process,

identifies the issues and works with a user to resolve these issues, automates as much as

possible, provides defaults so that the process can be fully automatic, catalogs the results

including reasonable alternative results, and places confidence values on the results. We do

not repeat the complementary work of others, but instead show where this work fits within

our framework. At the same time, we do introduce some new ideas (1) for improved semantic

matching, (2) for semantic transformations, and (3) for formal foundations. Specifically, for

(1), the ontology we specify allows us to consider database values and context keywords for

improving semantic matching. We describe these ideas here, but do not describe the work

3

of others on using thesauri (e.g. [BCV99, PSU98b]) and on using structure (e.g. [PSU98a])

which we consider to be complementary because they also improve semantic matching and

which we would suggest adapting for use within the framework we present. For (2), the

semantic transformations we present focus on values, including value coercion, value decom-

position and aggregation, object identifiers (OID’s), and generalizations and specializations

of value sets. We also provide more traditional transformations similar to those found in

[SP94], but in terms of OSM, which has a two-component view of the world in terms of

objects and relationships rather than the more prevalent three-component view in terms of

entities, relationships, and attributes. OSM’s two-component view serves to simplify the

catalog of transformations. Finally, for (3), the formalisms we present are consistent with

standard model-theoretic formalisms [AD93]. As such, we are able to build on the foundation

laid by many years of solid theoretical work.

In all of this work and in our own work, the central, difficult issue is “semantic relat-

edness.” Is the intended meaning of sets of objects in various sources or in a source view

and a target view the same? If two related sets of objects do not have exactly the same

meaning, how are they related—is one a generalization of the other, or do they overlap in

some way? The same questions arise for sets of relationships except that the issues can

be even more complex because relationship sets are often derived rather than given. Fur-

thermore, similar questions arise at different levels of granularity: is an individual object or

subobject identified in one source the same as an object or subobject identified in another

source? When we attempt to automate the answers to these semantic questions, we only

have “syntactic material” available to us. In attempting to answer semantic questions from

syntactic clues, we usually assume that if the “expected syntactic properties” are satisfied,

we have discovered a “semantic relationship.” We must admit, however, that no algorithm

can ever decide with complete accuracy about the notion of semantic relatedness—a notion

which is hidden in the mind of humans and subject to successful communication among

them. Instead of giving up, however, we proceed synergistically, using syntactic properties

(including mapping requirements, given and implied constraints, context keywords and data

values—indeed, all available syntactic material) to infer semantic properties. We are modest

enough to believe, however, that when the syntactic clues are “too poor” (e.g. are question-

able, are contradictory, are ambiguous) we ask for human input. When asking, we try to do

so synergistically, using available syntactic clues to explain the issues, to make a best default

4

guess at a solution, and to suggest some alternative solutions.

In light of these challenges, opportunities, and precautions, we provide an overview for

the rest of the paper and characterize the work we present here as follows.

Our primary focus is on generating a mapping that yields a way to extract data from a

source OSM model instance and load it into a target OSM model instance.

• Section 2 defines target-to-source mappings over OSM model instances. The inverse

of a target-to-source mapping leads to a procedure to load source information into a

target scheme.

• Section 3 describes semantic matching for objects and relationships whose scheme dec-
larations exist in both source and target specifications. The section discusses ways to

match target object sets with source object sets and target relationship sets with source

relationship sets. We base our matching on values and keywords, but do not exclude

the possibility of using techniques developed by others. This section also discusses

target-source mismatches in type-compatibility, cardinality-constraint compatibility,

and generalization/specialization compatibility.

• In addition to direct correspondences between target and source object sets and be-
tween target and source relationship sets, target-to-source mappings allow for a variety

of derived data, including missing generalizations and specializations, aggregated and

decomposed values, object identifiers, and query-generated sets of objects and rela-

tionships. Section 4 provides these details.

• Trying to extract and integrate information from heterogeneous sources raises many

issues, which may not be fully resolvable without human input. We isolate these

issues and present them as issue/default/suggestion (IDS) triples. These IDS triples

increase our ability to be focused in our interactions with a user and also provide a

way to proceed in the absence of user input. These IDS issues arise naturally and are

presented throughout our entire discussion.

• Given potential correspondences, as discussed in Sections 3 and 4, we present an al-
gorithm to generate target-to-source mappings in Section 5. The mapping generation

algorithm produces a set of tables that provides a way to record reasons for decisions

5

and confidence measures. This provides for a clear elaboration and assessment of the

process.

• In Section 6 we prove that if the source interpretation is valid, then our procedure
always yields a valid interpretation for the part of the target model instance populated

from the source. Our proof relies on much of the previous discussion. Indeed, although

we do not write the paper in this style, Sections 2 through 5 constitute the “lemmas”

for this proof. In Section 6 we summarize these “lemmas” in a table and provide the

proof as a case analysis.

Our secondary focus is on two additional issues: (1) the issue of how to merge data from

several sources, and (2) the issue of how to obtain OSM model instances for sources.

• Because we use OSM for both target and source modeling, we can provide a formal,

solid way to merge sources. Nevertheless, there are a number of issues left to resolve.

In Section 7 we raise these issues, but we leave their resolution for future work.

• The modeling approach we use provides a way to integrate a variety of heterogeneous
sources, including databases of various types, data captured in exchange formats such

as XML, semistructured data, and data-rich unstructured data, but we must first

convert these sources to OSM model-instance views. In Section 8 we illustrate this

initial conversion process by giving an example, leaving a full resolution to future

work.

Two separate but closely related interests guide our presentation: (1) we introduce and

discuss the steps of our procedure to generate target-to-source mappings, and (2) we prove

that the procedure meets the desired formal postcondition for the target. Both of these

interests require considerable detail, which must all appropriately come together. As a

summary guide to (1), Figure 1 shows a global overview of the process. The grey areas depict

areas to be filled in by the procedure. The paper thoroughly discusses all the components in

Figure 1. As a summary guide to (2), we present in Section 6 a table giving a snapshot of

the various cases that must be considered to prove that for any given source instance with a

valid interpretation, we can produce a populated target instance with a valid interpretation.

6

OSM target scheme:
object sets
relationship sets
types
integrity constraints
expected values
keys
units
...

Available Resources:
coercion routines
unit conversions
confidence-value criteria
...

OSM source scheme:
declared items:

object sets
relationship sets
...

derived items:
...

OSM source

Control IDS’s
 for user-
interaction

Require-
ments
on target-
to-source
mappings

...

 existing information sources ontologically specified target view “meta-knowledge“ of procedure

1. Determine
tentative
direct matches

2. Determine
tentative
derived matches

4. Load
source data

OSM target scheme:

3. Select best
target-to-source
mapping

 Tentative matches between target and source items
... (target item, ... (target item,
 declared derived
 source item) ... source item) ...

Recognition Criteria:
....
Special Consideration
(using IDS’s):
...
Confidence:

Selected Pair:

population:
 ...

populated with
desired values
resulting from the
procedure

Figure 1: Global overview.

7

2 Target-to-Source Mappings—Definitions

Our objective is to obtain a populated target model instance that represents facts found in

one or more sources. We achieve this objective by producing a collection of mappings, one for

each source, and then merging the results of these mappings. Each function in the collection

maps the target model instance to one of the source model instances, such that the inverses of

these mappings determine which source facts become which target facts. To make this work,

the functions must have several restrictive properties and need to correspond semantically to

the meanings intended in the target and sources. The generator that produces these target-

to-source mappings provides a way to satisfy these requirements. The generator also provides

a way to measure the credibility of each of the ordered pairs in the individual mappings and

thus a way to measure the overall credibility for the collection of mappings.

We begin in this section by first describing model instances. We then define mappings

between model instances and begin to enumerate our requirements for these mappings.

2.1 Model-Instance Description

We use OSM [EKW92, Emb98] to represent the target and the sources for our mappings.

An OSM model instance includes a set of object sets and a set of relationship sets. The

union of these two sets in a target model instance constitutes the elements of the domain

for our mappings. The co-domain for any particular source in a target-to-source mapping

also includes a union of the object and relationship sets, but it additionally includes any

needed derived object sets and relationship sets. In addition to providing the elements of

the domains and co-domains for our mappings, OSM provides predicates, with which we can

state the facts of interest, and a restricted set of predicate-calculus formulas, with which we

can state and check the integrity constraints of the various model instances.

Figure 2 shows a graphical representation of the OSM model instance we use as the target

in our sample application for this paper. Each labeled rectangle represents an object set.

Country and Travel Photo : Image, for example, are object sets. The part of the label to

the left of a colon, or the entire label if there is no colon, is the name for the object set. We

elide spaces in an object-set name when we need the name to be an identifier. TravelPhoto,

for example, is the identifier for the name of the object set labeled Travel Photo : Image.

The part of the label to the right of the colon is the type.2 The default type is String if the

2In this paper, “type” denotes only an intensional set of objects (or values).

8

City

Travel Video : Video

Map : Image

Country Map

City Map

Location

Longitude

Latitude

Country

Size : Integer

Population

Nr Hours

Kind Of Money US Exchange Rate : Real

Nr Minutes

Topic

Travel Photo : Image

Caption

Airport

City Photo

describes
classifies

is in

appears in

Video With
City Scene

City

Travel Video : Video

Map : Image

Country Map

City Map

Location

Longitude

Latitude

Country

Size : Integer

Population

Nr Hours

Kind Of Money US Exchange Rate : Real

Nr Minutes

Topic

Travel Photo : Image

Caption

Airport

City Photo

describes
classifies

is in

appears in

Video With
City Scene

Figure 2: Graphical representation of target model instance.

object set is displayable (denoted by a dotted rectangle) and is OID, standing for Object

IDentifier, if the object set is nondisplayable (denoted by a solid rectangle). In Figure 2

Location is nondisplayable, and all other object sets are displayable.

Lines that connect object sets represent relationship sets. Relationship sets may be binary

or n-ary, n > 2. A binary relationship set may have a label with a reading-direction arrow.

In this case the name of the relationship set is an ordered, space-separated, concatenation

consisting of the object-set name on the tail side of the reading-direction arrow, the label

associated with the reading-direction arrow, and the object-set name on the head side of the

reading-direction arrow. City is in Country and Topic classifies Travel Video are relationship

sets in Figure 2. A name for an n-ary relationship set must include the names of all its

associated object sets. Relationship sets without labels have default names: one of has

or is for, between the object set names for binary relationship sets, or a space-separated

concatenation of the associated object-set names in alphabetical order for either binary or

n-ary relationship sets. Latitude Location Longitude, for example, is the default name of

the ternary relationship set in Figure 2. To make diagrams less cluttered, we typically

9

do not specify default has and is for names for binary relationship sets in the graphical

representation, only in the textual representation (which we present next). When we need

relationship-set names to be identifiers, we elide spaces in object-set names and replace the

remaining spaces by an underscore character.

Figure 3 shows the textual representation for the target model instance. The textual

representation provides the full specification, but the graphical representation is often better

for exposition. In addition to specifying all object sets, relationship sets, and constraints

in the graphical representation, the textual representation provides the default names for

binary relationship sets, allows the specification of expected values and keywords for object

and relationship sets, and provides units for potential unit-conversions. We specify sample

values and keywords we expect to see in the sources by regular expressions (using Perl-like

syntax). Since an or-separated list is a regular expression, we may specify a simple list of

possible values, such as the sample list of countries in Line 2 of Figure 3. An (i) that precedes

a regular-expression specification, as it does in Line 3, denotes that the regular expression

is case insensitive. In our example, Line 3 actually need not be included, because it is the

default specification for keywords—a case insensitive expression consisting only of the name

of the object or relationship set. To specify tuples in a relationship set, we use angle brackets

with commas to separate the regular expressions. The Country has Population relationship

set starting in Line 6 shows an example. Observe here how we use regular expressions to

be imprecise about the exact population of a country, but at the same time to be more

precise about the values we expect to see than just allowing some arbitrary integer of any

size. For potential unit conversion, we provide units for target values (e.g. square miles for

Size in Line 25. We assume that standard unit-conversion tables are available for all units

of interest.

OSM model instances allow the specification of integrity constraints. Bracketed numbers

and min-max ranges in relationship declarations are participation constraints. Country [1]

has Population [1..*] (Line 6 in Figure 2), for example, declares that country values partici-

pate exactly once in the relationship set and that population values participate at least once,

but have no designated maximum participation. When participation constraints specify that

an object in an object set participates at least once, or more generally, at least a specified

nonzero number of times, we say that the participation is mandatory. A zero-minimum,

on the other hand, lets the participation be optional. In the graphical notation, we denote

10

1. Country
2. values { France | Germany | Italy | USA | United\s*States }
3. keywords (i) { Country }
4. end;
5. Population values { [1-9]\d{0,2}\,\d{3}(\,\d{3})? } end;
6. Country [1] has Population [1..*]
7. values (i) { < USA , [2,3]\d{2}\,d{3}\,\d{3} > < Germany , [6-9]\d\,\d{3},\d{3} > }
8. end;
9. Location : OID keywords (i) { (Center)?\s*Location } end;
10. Country [1] has Location [1];
11. Longitude
12. values { [1-9]\d{0,2}\s*{E | W} }
13. keywords (i) { Longitude | Long\.? }
14. end;
15. Latitude
16. values { [1-9]\d{0,2}\s*{N | S} }
17. keywords (i) { Latitude | Lat\.? }
18. end;
19. Latitude [1..*] Location [1] Longitude [1..*];
20. Latitude, Longitude -> Location;
21. Country Map [1] is for Country [1];
22. Size : Integer
23. values { [1-9]\d{5,9} | [1-9]\d{0,2},\d{3}(,\d{3}) }
24. keywords (i) { (sq | square)\s*((mi | miles) | (km | kilometers)) }
25. units { square miles }
26. end;
27. Country [1] has Size [1..*];
28. Kind Of Money values { DM | Mark | Peso | Pound } end;
29. Country [1] has Kind Of Money [1..*];
30. US Exchange Rate : Real
31. values { \d{1,5}\.\d{1,5} }
32. units { US$ per KindOfMoney }
33. end;
34. US Exchange Rate [1..*] is for Kind Of Money [1]
35. values { < \d{1,5}\.\d{1,5} , DM | Mark | Peso | Pound > }
36. end;
37. Travel Photo : Image keywords (i) { Photo | Picture } end;
38. Travel Photo [1] is for Country [1..*];
39. Caption;
40. Caption [1..*] describes Travel Photo [1];
41. City Photo : Travel Photo;
42. City values { Berlin | New\s*York | Paris } end;
43. City Photo [1] is for City [1..*];
44. City [1] is in Country [1..*]
45. values { < Berlin , Germany >, < New\s*York , USA | United\s*States >, < Paris , France > }
46. end;
47. Airport values { ATL | JFK | FRA } end;
48. Airport [1..*] is for City [1..*]
49. values { < ATL , Atlanta > < JFK , New\s*York >, < FRA , Frankfurt > }
50. end;
51. City Map [1..*] is for City [1..*];
52. Travel Video : Video
53. keywords (i) { Video }
54. end;
55. Travel Video [1..*] is for Country [1..*];
56. Topic keywords (i) { Subject } end;
57. Topic [1..*] classifies Travel Video [1];
58. Nr Hours
59. values (i) { [1-9](h\.? | hr\.? | hrs\.? | hours)? }
60. keywords (i) { Length | hrs\.? | hours }
61. units { hours }
62. end;
63. Nr Hours [1..*] is for Travel Video [1];
64. Nr Minutes
65. values (i) { ([1-5][0-9] | [1-9])(m\.? | min\.? | minutes)? }
66. keywords (i) { Length | min\.? | minutes }
67. units { minutes }
68. end;
69. Nr Minutes [1..*] is for Travel Video [1];
70. Video With City Scene : Travel Video;
71. City [1..*] appears in Video With City Scene [1..*];
72. Map : Image;
73. Country Map, City Map ISA(union) Map;
74. Map [1] has Map Name [1:*];

Figure 3: Textual representation of target model instance.

11

optional participation by the letter “o”, which appears as a small circle on a relationship

set’s connection to an object set. Airports, for example, are optional for cities as designated

by the “o” in Figure 2 next to City for the Airport is for City relationship set.

When objects in an object set S participate at most once in a relationship set R, S is

a key for R. We are thus able to derive functional dependencies (FD’s) from participation

constraints. These derived FD’s appear as directed edges in the graphical notation; thus, for

example, the edge from Country to Population in Figure 2 is directed. We may also directly

declare FD’s for relationship sets, although we normally only declare those that cannot be

specified with participation constraints—those with compound left-hand sides or those whose

set of mentioned object sets is a proper subset of the object sets of a relationship set. The

FD Latitude Longitude → Location in Figure 3 (Line 20) is an example of a specified FD.

A colon denotes an ISA constraint.3 In both Figures 2 and 3 we have Travel Photo :

Image, which declares that a travel photo is an image. A triangle in the graphical notation,

which corresponds to “ISA” in the textual notation (Line 73 in Figure 3), also denotes an

ISA constraint. An ISA constraint requires one set of objects (called a specialization) to be

a subset of another set of objects (called a generalization). The graphical triangle notation

and textual ISA notation also allow us to state additional constraints among object sets.

The “∪” in the triangle in Figure 2 constrains Map to be a union of Country Map and
City Map. Other ISA constraints are “+” for a mutual exclusion among specializations and

“�”, a combination of “∪” and “+”, for a partition. Several (one or more) ISA constraints
may form a collection of ISA constraints, called an ISA hierarchy. Although OSM does not

require an ISA hierarchy to be a tree, for our work here we consider only ISA hierarchies

that are trees.

Observe in Figure 3 (Line 41) that we have City Photo : Travel Photo, declaring the set

of city photos to be a subset (a specialization) of the set of travel photos. In the graphical

notation in Figure 2 City Photo appears as a role. In a populated OSM model instance, a role

of an object set S for a relationship set R denotes the set of objects in the projection on the

S objects of the relations in R. Since referential integrity always holds for populated OSM

model instances, however, this implies the simpler definition that a role for a relationship set

R connected to an object set S denotes the subset of objects of S participating in relations

of R. In our example, the travel photos related to a city are exactly the subset of the

3In keeping with our notion for this paper that “type” merely denotes a set of objects, ISA denotes only
a subset constraint (nothing less or more).

12

Prominent Person

Relationship

Country

Population

Clip : Video

City

International Airport

Photo : Image

Description

Head Of State

Currency

Caption : String(30)

LengthSubject

Flag : Image

Foreign Currency

Rate : Real

City Photo

Multiplying by Rate converts Currency to Foreign Currency

Person

Person has Relationship to Related Person

Related Person
Prominent Person

Relationship

Country

Population

Clip : Video

City

International Airport

Photo : Image

Description

Head Of State

Currency

Caption : String(30)

LengthSubject

Flag : Image

Foreign Currency

Rate : Real

City Photo

Multiplying by Rate converts Currency to Foreign Currency

Person

Person has Relationship to Related Person

Related Person

Figure 4: World Countries—source model instance.

travel photos that are city photos. Moreover, since the role City Photo is a set of objects,

we consider it to be an object set and thus we name the connecting relationship set City

Photo is for City. When roles are present, we use the role name, rather than the connecting

object-set name, in the relationship-set name.

Figures 4, 5, and 6 are the source OSM model instances for our sample application.

Observe in Figure 4 that roles provide convenient a way to resolve the meaning of cyclic

relationship sets, which connect two or more times to the same object set. We require all

but one of the connections to the same object set to have a role. Since the user controls

the target, the target can always satisfy this requirement. For sources, which the user does

not control, we can always derive object sets for any needed roles and thus satisfy this

requirement for sources as well.

13

CountryNr Sq Km : Integer City

City NameCountry Name

Longitude

Latitude

City Map : ImageCountry Map : Image

Several cities may
have the same name.

CountryNr Sq Km : Integer City

City NameCountry Name

Longitude

Latitude

City Map : ImageCountry Map : Image

Several cities may
have the same name.

Figure 5: World Maps—source model instance.

Airport

City

Airline Airport Code

flies to

servesis located in

Airport

City

Airline Airport Code

flies to

servesis located in

Figure 6: World Airports—source model instance.

Source model instances have data, obtained from the database instances they represent.

Figure 7 shows a (partial) sample database instance for the model instance in Figure 4.

For an OSM model-instance database, each object set and each relationship set is a ta-

ble. If we let the names of the object and relationship sets be predicate identifiers, we

immediately obtain the ground facts with respect to the source database. According to

the database instance in Figure 7, some facts for the model instance in Figure 4 are Coun-

try(Canada), Country(Germany), Country Population(USA, 280,000,000), Currency(DM),

and Currency ForeignCurrency Rate(DM, US$, 0.5).

We can express queries over the ground facts to derive other facts, called derived facts. We

call a set of facts derived by a query whose result has a single attribute a derived object set.

14

Country Population Country Population
------- ---------- -------------------
Canada 82,000,000 Germany 82,000,000
Germany 280,000,000 USA 280,000,000
Mexico
USA

Currency ForeignCurrency Rate
-------- --------------- ----
DM DM 0.5
US$ US$ 2.0

Currency ForeignCurrency Rate Length
----------------------------- ------
DM US$ 0.5 1 hr 15 min
US$ DM 2.0 35 min

1 hr 30 min
2 hrs

City InternationalAirport Country InternationalAirport
---- -------------------- ------------------------------
Atlanta FRA Germany FRA
Berlin JFK USA JFK
Frankfurt
London
New York

...

Figure 7: A (partial) sample database instance.

For example, we can produce a role object set Video With City Scene for the connection to

Clip in the City Clip relationship set in Figure 4 by the query ρClip ← V edeoWithCitySceneπClipCity Clip.

We call a set of facts derived by a query whose result has two or more attributes a derived

relationship set. For our application, the attributes must be identifiers of object sets in the

model instance. The name of a derived relationship set is often its default name, which can

be renamed if desired or if necessary to distinguish a derived relationship set from any other

(derived or given) relationship set in the model instance. For Figure 4, for example, the

query πCity Country(Country P hoto 1 ρCityPhoto ← PhotoCity CityP hoto) produces a derived

relationship set between City and Country.

We can write the integrity constraints over the ground facts as predicate-calculus formu-

las. (See [EKW92] or [Emb98] for a complete explanation.) For example,

∀x∀y(Country P opulation(x, y)⇒ Country(x) ∧ P opulation(y))

15

is a referential-integrity constraint,

∀x(CityP hoto(x)⇒ P hoto(x))

is a subset constraint, and

∀x(Country(x)⇒ ∃1yCountry P opulation(x, y))

is a participation constraint, where “∃1P (x)” denotes that “there exists exactly 1 x such

that P holds.”

A populated model instanceM with its predicates and closed predicate-calculus formulas,

as defined here, constitutes an interpretation for M . If all the closed formulas hold for the

interpretation, the interpretation is a model in model theory [AD93]. Because we are already

using the term “model” in several ways, we choose to call a model, in the model-theoretic

sense, a valid interpretation.

2.2 Target-to-Source Mappings

We seek a way to produce a valid interpretation for a given target model instance based on

an (assumed) valid interpretation for a source model instance. In this subsection we define

what we mean by a mapping whose inverse can provide the basis for transforming source

facts into target facts. In later sections we provide a way to produce these mappings so that

the target facts obtained constitute a valid interpretation for the target.

Each function f , in the set of mappings we seek, maps an OSM target model instance t

to an OSM source model instance s. The domain of f consists of the union of the object-set

names and the relationship-set names in t. The co-domain of f consists of the union of the

object-set names in s, the relationship-set names in s, and the names of any needed derived

object sets and relationship sets in s. We need a derived object set or a derived relationship

set if and only if the execution of the target-to-source mapping generator produces a derived

object set or a derived relationship set for s. Our initial requirements for f follow.

Req. 1 f must be a (partial) injective function.

Req. 2 If 〈a, b〉 is an ordered pair of f , a and b must both be object sets or

both be relationship sets.

16

Req. 3 If 〈a, b〉 is an ordered pair of f and a and b are relationship sets, a

and b must have the same arity.

Req. 4 Referential-integrity guarantee: If 〈a, b〉 is an ordered pair of f , a

and b are relationship sets, a is the hyperedge {a1, ... an}, and b is the hyperedge

{b1, ..., bn}, then if g is the restriction of f to {a1, ... an}, the range of g must

be {b′1, ..., b′n} where bi ⊆ b′i, 1 ≤ i ≤ n. Here, bi ⊆ b′i if bi = b′i, if bi ISA

b′i, or if there exist object sets c1, ..., ck such that bi ISA c1 ISA ... ISA ck ISA

b′i, for k ≥ 1.

Normally, a function f will be partial4, although it certainly may be total. Thus, we are

usually seeking to obtain n partial functions for n sources such that the preimages of these

partial functions cover the target domain. Sometimes we may not even be able to cover the

target domain, in which case we will be unable to populate some part of the target model

instance. As a general notion of where we are headed, consider as an example the ordered

pairs 〈Caption, Caption〉, 〈T ravel P hoto, P hoto〉, and 〈Caption describes T ravel P hoto,

Caption P hoto〉, which may be part of a function f mapping the target in Figure 2 to the

source in Figure 4. The inverse function f−1 tells us to load Caption facts in the target

from Caption facts in the source, to load T ravelP hoto facts from P hoto facts, and to load

Caption describes Travel Photo facts from Caption Photo facts.

Observe that we have an asymmetry in the domain and co-domain for our function. The

domain allows only object and relationship sets whereas the co-domain, in addition to object

and relationship sets, allows derived object and relationship sets. This asymmetry reflects

our assumption that the target model instance is fixed and atomic. We make this assumption

because the purpose of our application is to populate the target with data, and moreover to

populate the target with data as desired by the user (or client of the user). We thus assume

that the user knows what is wanted in the target model instance5. This assumption has

the consequence that when there are mismatches in a target to source mapping, we make

“changes” in the source, not the target. Since we usually have no authority or ability to

4We do not concern ourselves further with designating these functions as being partial, except to ensure
clarity where necessary.

5In making this assumption, we are not saying that a target model instance can never change, only that
during the time we generate target-to-source mappings, it does not change. A user may decide, for example
as a result of seeing a potential loss of data from a source, that the target should be altered. In this case,
we either backtrack or restart the target-to-source generation algorithm.

17

change any source, these changes must be virtual. Indeed, these virtual changes are precisely

why we need derived object and relationship sets in our sources6.

3 Matching Rules—Existing Object and Relationship

Sets

To produce a proper functional correspondence f between a target t and a particular source

s, we must respectively match object and relationship sets in t with existing or derived

object and relationship sets in s. In addition to the basic requirements enumerated in the

previous section each matching pair 〈a, b〉 in f must satisfy certain syntactic and semantic

requirements. In this section we address the problem of satisfying syntactic requirements by

considering type compatibility and constraint compatibility, and we address the problem of

satisfying semantic requirements by considering context keywords and data values. In the

next section we consider derived object and relationship sets.

3.1 Type Compatibility

We require the following basic restriction for type compatibility.

Req. 5 Let f be a mapping from a target t to a source s. If 〈a, b〉 is an
ordered pair of f for object sets a and b and the type of object set a is type(a)

and the type of object b is type(b), there must exist an agreed-on (possibly trivial)

conversion function c such that c converts values of type(b) to values of type(a).

Requirement 5 ensures that we can extract values from a source object set and load them

into a corresponding target object set. This requirement holds for both displayable and

nondisplayable types. We first consider only displayable types and then extend the discussion

to nondisplayable types.

Displayable Types

To aid in satisfying Requirement 5 for displayable types, our mapping generator requires

a type hierarchy as auxiliary input. The type hierarchy is a partial ordering based on

6These virtual changes are in the spirit of previous theoretical work on scheme inclusion and transla-
tion schemes. (See, for example, [AABM82, Bis98, Hul86, MR98].) In this work researchers investigated
conditions for one scheme (here, the source model instance) to be appropriate to support another scheme
(here, the target model instance). In this context, “support” essentially means that the source scheme can
be mapped by queries (here, derived object and relationship sets) to structures corresponding to the target
scheme, or, equivalently, that queries from the target scheme can be posed against the source scheme.

18

VideoString

Image

Vector Drawing

RealString(n)

IntegerString(n-1)

Positive...

{1..100}Char

VideoString

Image

Vector Drawing

RealString(n)

IntegerString(n-1)

Positive...

{1..100}Char

Figure 8: Sample type hierarchy.

semantic domain inclusion; that is, it is based semantically on ISA so that, for example,

Integer ⊆ Real, independently of how the sets Integer and Real are represented in an

implementation. For the mapping generator described in this paper, we assume (1) that the

hierarchy is a tree (or a forest of trees), (2) that it includes (at least) all types found in both

target and source model instances, and (3) that default coercion routines exist (or can be

created when needed) in both directions for each ISA edge in the type hierarchy. Figure 8

shows a possible type hierarchy for our sample application.

Given an ordered pair 〈a, b〉 of object sets for a target-to-source mapping with type(a) and

type(b) both in the established type hierarchy for displayable types, there are four possible

subset/superset relationships: (1) type(a) = type(b), (2) type(a) ⊃ type(b), (3) type(a) ⊂
type(b), and (4) type(a) �∼ type(b), where �∼ denotes that none of (1) through (3) is satisfied.
Each of these cases leads to different possibilities, which we now discuss.

Case 1, type(a) = type(b). Initially, this case appears to be straightforward because we

can trivially satisfy Requirement 5. Since the types are the same, we can simply load the

values in the source object set into the target object set. However, making the types the

same does not imply that the semantics are the same. Just because Airport in Figure 2 and

Head Of State in Figure 4 are both typed as String does not mean that airports and the

19

names of government leaders are semantically the same. This, of course, is the main issue

we address in Section 3.4.

Besides these obvious semantic differences, it is also possible for the types to be the same

and for the semantics to be “the same,” but for which it is still incorrect to simply copy

source values as target values [SSR94]. Consider, for example, Size in Figure 2 and Nr Sq Km

in Figure 5, which are both integers, and assume that the units are square miles and square

kilometers respectively. Whenever the types involve units, the units need to be checked.

In general, we provide a way for the user to check assumptions and make alterations

when necessary through specific statements and questions directed to the user. We denote

these requests for user insights, clarifications, or qualifications by IDS i. In general, an IDS

consist of three statements: (1) a statement that explains the issue, I, (2) a statement that

explains the default action, D, and (3) a suggestion, S, about what to do to resolve the issue.

We note that the wording of IDS’s can be adjusted to suit the taste of various user groups.

Here we provide the wording in terms of the vocabulary and ideas presented in this paper.

For Case 1, when the target specifies units, we issue the following IDS.

IDS 1 Issue: The target type has units and may need a unit-conversion rou-

tine for transforming source values to target values. Default: If no conversion

routine is specified, no unit conversion will take place. Suggestion: If a unit-

conversion routine is required, please specify which conversion routine to use.

We assume that all standard unit conversions are readily available, so that the user only

needs to select one. We also point out that whenever we need to load a target object set

that has units, we pose this question, not just when the types are the same. In a sense, once

the coercion is performed, the types are the same, and the question of unit conversion for

identical types still remains.

Besides units, another way for the types to be the same and for the semantics to be “the

same,” but for which simply copying source values as target values may not give expected

results is to have values in formats that are different than what is wanted or expected. The

date “01/02/2000”, for example, may be “January 2, 2000” or “1 February 2000”. For

extraction from a single source, this may not present much of a problem because the values

should, at least, be consistent among themselves. When we extract values for an object set

from several sources, however, we may obtain values that represent the same object but are

not equal (synonyms) or values that represent different objects but are equal (homonyms).

20

Some work has been done on normalizing values (e.g. [HB97]), and we may be able to adopt

or adapt this work, but this is not an issue we resolve in this paper.

Besides units and value normalization, there are still more difficulties in some application

areas. Scientific work involves granularity of results, scientific ontologies, and a host of other

concerns [FPNB99]. [SO99] contains an interesting discussion of some military issues and

includes as an example altitude, which for spacecraft is the distance above the center of the

earth, but which for aircraft is the distance above the surface of the earth. Many of these

issues are currently under investigation, but, for the most part, they remain open research

issues.

Case 2, type(a) ⊃ type(b). For any ISA relationship (direct or indirect) in our partial

ordering on types, we can always naturally coerce a specialization value in a source to a

generalization value in a target because an object in a specialization semantically is an

object in the generalization. In our type hierarchy in Figure 8, for example, we can coerce

a Char to be a String(2) by appending a space, and we can coerce an Image to be a Video

by having every frame be the same image.

The more interesting question for Case 2, however, is will the results be what a user

expects? Presumably, a user expects a value with greater discriminating power among the

objects than the source provides. A Real distinguishes more number objects than does an

Integer, and a Video provides more viewing possibilities than an Image. For some applica-

tions this may matter, and for others this may not matter. Thus, when Case 2 arises, we

issue the following IDS.

IDS 2 Issue: The target type has greater discriminating power than the

source type. Default: Coercion routines will add arbitrary additional discrim-

inating information to source values. Suggestion: If this is not acceptable, a

different source object set, most likely in a different source, should be found.

Case 3, type(a) ⊂ type(b). The coercion for this case, when loading from source to target,

may or may not be natural. We can truncate strings, round off reals to integers, and choose

an arbitrary frame from a video to create an image. The coerced value in the target represents

an equivalence class of values in the source. A truncated string stands for the original string

(but also for all other strings padded to the original length), the integer rounded from a real

approximates the real (but also all others that round to the same integer), and an image

from a video is a representative of the many possible frames that could have been chosen.

21

Since a user may know a better way to choose a representative for an equivalence class, we

provide the following IDS.

IDS 3 Issue: The target type has weaker discriminating power than the

source type. Default: The default coercion routines select some representa-

tive value from among the many possible values. Suggestion: You may wish to

specify a your own coercion routine.

Case 4, type(a) �∼ type(b). Coercion for Case 4 may make no sense for an application;

for example, converting from Vector Drawing to Char. Often, however, such a conversion

may indeed be wanted. For example, we often convert a page of text stored as an Image to

a String by means of optical-character recognition, or convert a Char representing a digit to

an Integer.

For this case, we may be able to use the default coercion routines by converting a source

value from type(b) to a common ancestor of type(a) and type(b) and then converting from

the common ancestor to a target value of type(a). This, however, may not yield the desired

result. The Integer 2, for example, converted in this way to String(5) might be “2.000”

rather than the expected “ 2”.

Since a user will most likely either want to reject the pair 〈a, b〉 as a possible pair in the
target-to-source mapping or provide or choose a tailor-made conversion routine, we issue the

following IDS.

IDS 4 Issue: There is a mismatch between the type of the target object set,

<target object-set name>, whose type is <type(a)>, and the type of the source

object set, <source object-set name>, whose type is <type(b)>. Default: If

there is no common ancestor type in the type hierarchy, the pair is rejected;

otherwise the system uses the default conversion routines from <source object-

set name> to the common ancestor <common ancestor type> and then from

<common ancestor type> to <target object-set name>. Suggestion: If you

want to load <target object-set name> values from <source object-set name>,

you may wish to specify a conversion routine; otherwise, reject the pair.

To make the task easier, some common conversion routines can be provided, such as con-

verting back and forth between length-bounded strings and numbers.

22

Nondisplayable Types.

For an ordered pair 〈a, b〉 in a target-to-source mapping with at least one nondisplayable
object set, either a and b are both nondisplayable or one is and the other is not. The later

two cases, where either a is displayable and b is not or a is not displayable and b is, may

require derived object sets for their resolution (if indeed there is a resolution). We therefore

discuss these cases, along with other cases requiring derivations, in Section 4.

When both a and b are nondisplayable, we satisfy Requirement 5 because type(a) =

type(b) = OID. Nevertheless, we may still have to exercise some caution for a single target-

to-source mapping, and we can encounter extremely difficult object-identity problems when

we have multiple target-to-source mappings that include the pair 〈a, b〉. We do not address
these multiple-source, object-identity problems, but do address OID conversion for a single

source.

The OID’s in the source and target may have different representations, but, because they

are OID’s, we can be sure that they are in a one-to-one correspondence with the objects they

represent and that the specific values chosen have no particular meaning other than to stand

for the objects they represent. Since we can always form a one-to-one correspondence using

any reasonable chosen representation for target OID’s, we can always convert source OID

values to target OID values. (We are assuming, of course, a sufficiently large set of target

OID values.) This conversion is useful even if the representations are the same because the

target then has control not only over the choice of representation but also over the choice of

value. We can thus satisfy the following requirement

Req. 6 The agreed-on (possibly trivial) conversion function(s) that convert

values for nondisplayable types must ensure that objects have the same OID only

if they represent the same real-world object.

We would like to be able to satisfy the stronger if-and-only-if requirement, but, as stated

earlier, we do not resolve the object-identity problem here. We can satisfy the weaker

requirement by assigning a different target OID to every encountered object unless we know

that the objects are the same because they are identical object instances from the same

source.

23

3.2 Relationship-Set Constraint Compatibility

Constraint requirements for relationship sets fall into two basic categories: (1) type require-

ments needed to satisfy referential-integrity constraints and (2) predicate-calculus constraints

specified for relationship sets in the target model instance. We discuss each in turn.

Type Requirements

Requirement 4, for referential integrity, does not require matching relationship sets in a

target-to-source mapping to have matching object sets; it only requires the object sets of a

relationship set in the source to be ISA subsets of matching object sets. For nondisplayable

object sets, translation is straightforward. For displayable types, however, the requirement

leaves open the possibility of a type incompatibility and thus the possible necessity to coerce

the values in some of the connecting object sets before loading the relations of a source

relationship set into a target relationship set.

Let 〈r, r′〉 be an ordered pair of relationship sets in a target-to-source mapping f . Let

a be an object set connected to r and a′ be an object set connected to r′. Let 〈a, a′′〉 be
in f and assume, as stated in Requirement 4 that there are one or more ISA’s connecting

a′ and a′′ so that a′ ⊆ a′′. The types of a, a′, and a′′ can all be different. As a concrete

example, let type(a) be String, type(a′) be Integer, and type(a′′) be Real. From our discussion

in Section 3.1, we may assume that the type incompatibility between a and a′′ has been

resolved, e.g. that we have a routine to convert the reals in a′′ to strings before loading them

into a. If we naively load r from r′, however, we will load integers where we are expecting

strings. As a resolution, we should first convert the integers in a′ to strings.

In general, since a′ ⊆ a′′, there is a default coercion (possibly a sequence of default

coercions) from a′ to a′′. Thus, it is reasonable to assume that a composition of these

coercions plus the final coercion that converts values of a′′ to values of a provides a reasonable

way to convert a′ values to a values. Other alternatives, including in particular, a direct

conversion are also possible. Thus, when the type of a differs from the type of a′, we issue

the following IDS.

IDS 5 Issue: To load the target relationship set <target relationship set>

from the source relationship set <source relationship set>, the type of source

object set <connected source object set> must coerce to the type of target object

set <connected target object set>. Default: The type of <connected source

object set> will be coerced first to <type of superset object set>, the type of the

24

superset to which <connected target object set> maps, and then to <type of the

connected target object set>. Suggestion: If desired, you may specify a more

direct coercion.

Predicate-Calculus Constraints

Predicate-calculus constraints derived from OSM model instances, and more partic-

ularly OSM participation and FD constraints, commonly impose certain restrictions on

the relations in a relationship set. For a pair of relationship sets in a target-to-source

mapping 〈a, b〉, the constraints can impose four possible implication relationships. Let

constr(r) denote the constraints of r, which are closed predicated-calculus formulas7 derived

from OSM model instances8 as explained in Section 2. Then, the relationships9 are: (1)

constr(a) ⇔ constr(b), (2) (constr(a) ⇐ constr(b)) ∧ (constr(a) �⇒ constr(b)), (3)

(constr(a) �⇐ constr(b)) ∧ (constr(a) ⇒ constr(b)), and (4) (constr(a) �⇐ constr(b)) ∧
(constr(a) �⇒ constr(b)).

Case 1 constr(a) ⇔ constr(b). Case 1 here causes similar problems to Case 1 for object

sets. Even when the types match, the structure matches, and the constraints match, we do

not know that the semantics match. We discuss semantic matching in Section 3.4.

Case 2 (constr(a) ⇐ constr(b)) ∧ (constr(a) �⇒ constr(b)). For this case the

constraints on the target relationship set are less restrictive than the constraints on the source

relationship set. Assume, as an example, that the optional constraint on the relationship

set between City and City Map in Figure 5 were mandatory. Then the constraints on this

relationship set would be stronger than the constraints on the relationship set between City

and City Map in Figure 2. In this case, the user who designed the target may be expecting

more information than the source can provide—maps that include more than one city, for

7As a technical aside, we observe that although the notation here succinctly captures the essence of what
we want to say, the constraints, predicates, and values are for two different populated model instances.
Thus, we must in some way convert these model instances and their values into a common symbol system
before investigating implications [MR98]. It is therefore implied that we match and convert source predicate
symbols to target predicate symbols and that we convert source value symbols to target value symbols by
running them through the coercion routines we have established before we apply the implications.

8While it is easy to state these implication with respect to an unrestricted set of predicate-calculus
statements, we are really only interested in the predicate-calculus statements implied by OSM. Indeed, we
are even more restrictive since we do not allow all the constraints available in OSM. (See [EKW92, Emb98] for
a complete description of constraints implied by OSM model instances.) In particular, we restrict ourselves to
referential integrity constraints, subset constraints, intersection and union constraints, min-max participation
constraints, and functional dependencies.

9Observe, by the way, that these four relationships have interesting correspondences to the four cases
discussed for displayable types.

25

our example. We thus issue the following IDS.

IDS 6 Issue: The constraints on the target relationship set, <target re-

lationship set>, which are less restrictive than on the source relationship set,

<source relationship set>, suggest that the target may be expecting more facts

than the source can provide. Default: All source relationships will be trans-

formed to target relationships. Suggestion: Since you may have been expecting

additional facts, which cannot be provided by the source, you may wish to find

another source that can provide these facts.

Case 3, (constr(a) �⇐ constr(b)) ∧ (constr(a) ⇒ constr(b)). For this case the

constraints on the target relationship set are more restrictive than the constraints on the

source relationship set. There are two possible consequences: (1) we may not be able to

load all facts without violating a target constraint, and (2) even if we load all facts we

may have insufficient data to satisfy a target constraint. An interaction between these two

consequences is also possible so that if we fail to load all facts because we violate a constraint,

we may have insufficient data to satisfy some other constraint.

For the first consequence, consider as an example the functional correspondence between

Country and Kind of Money in the target in Figure 2 versus the many-many correspondence

between Country and Currency in the source in Figure 4. (Assume for our example here

that there are no optional constraints on the relationship set between Currency and Country

in Figure 4.) The user who designed the target may want just one currency for each country,

but the source may provide several. For example, the source may have “German Marks”,

“Deutsche Mark”, “DM”, and “Euro” as currency names for Germany, but the target wants

only one, e.g. the English name of the currency use as cash in souvenir shops (“German

Marks”). In general, for this first consequence of Case 3, we cannot load all source facts, so

the question becomes how to select the desired subset. We thus issue the following IDS.

IDS 7 Issue: The constraints on the target relationship set, <target rela-

tionship set>, may not allow all facts from the source relationship set, <source

relationship set>, to be loaded. Default: The system will load as many facts

from the source as possible (in a convenient system-chosen order) discarding any

fact that violates a target constraint. Suggestion: You may wish to specify a

particular way to select the relationships from the source. Alternatively, you may

wish to loosen the constraints for the <target relationship set> relationship set.

26

For the second consequence, consider as an example the optional participation constraint

on Country for the Country Photo relationship set in Figure 4. When matched with the

corresponding mandatory participation constraint of Travel Photo is for Country in Figure 2,

we see that the target constraint is stronger than the source constraint. The target is insisting

that every country have a travel video, but the source may have none to supply. It may

thus be impossible to satisfy the target constraint. In this case the user should either find a

different source or loosen a target constraint. We thus issue the following IDS.

IDS 8 Issue: The constraints on the target relationship set, <target re-

lationship set>, may require additional facts that the source relationship set,

<source relationship set>, cannot supply or that are not loaded if IDS 7 applies.

Default: The system will recursively discard facts (in a convenient system-

chosen order) from the populated target model instance, namely those that de-

mand additional facts, until all constraints are satisfied. Suggestion: If this is

not what you want, you may wish to find a different source that can supply the

required facts. Alternatively, you may wish to alter the participation constraints

for <target relationship set> in the target model instance to allow one or more

mandatory participation constraints to be optional.

To illustrate the point about recursively discarding facts, consider the following possible

way the system might proceed in a particular case. Suppose the system loads all the target

facts it can from the source in Figure 4 into the model instance in Figure 2. Suppose the

system then discards all empty object and relationship sets, e.g. those such as Country

Map and Country has Location for which the source has no facts, and also discards all

constraints pertaining to these discarded object and relationship sets. Now, to satisfy the

constraints for the populated object and relationship sets, suppose the system repeatedly

checks constraints. If the system detects a violation, then it can also identify those facts

that cause that violation. Accordingly it can discard those facts until no constraints are in

violation. For example, if there is no travel photo for a country c, since country participation

with a travel photo is mandatory, we discard c; discarding c, however, may violate referential

integrity for the other relationship sets attached to Country, Country has Population, for

example; and thus we discard the violating relationship set in Country has Population, which

in turn causes a violation of the mandatory participation constraint on Population, so we

discard the population value. We continue checking and propagating in this way until all

27

constraints are satisfied10. If the system is clever, it discards as few facts as possible, but

guaranteeing that it always discards as few as possible is likely to be exponential in runtime

complexity.

To compound the problems further, we observe that we may simultaneously have both

the first and the second consequence for Case 3. Consider, as an example, the relationship

sets between Country and Country Map in Figures 2 and 5. The participation of Country

is optional in Figure 5 but mandatory in Figure 2, and the relationship set in Figure 2 is

one-one, rather than merely functional in one direction. In this case, we issue both IDS 7

and IDS 8.

Case 4, (constr(a) �⇐ constr(b)) ∧ (constr(a) �⇒ constr(b)). For this case, both target

and source have at least one more restrictive constraint and at least one less restrictive con-

straint. The relationship sets between City and City Map in Figures 2 and 5 are an example.

The optional constraint prevents the implication from the relationship set in Figure 5 to the

relationship set in Figure 2, and the FD prevents the implication in the other direction.

Since Case 4 is a combination of Cases 2 and 3, we use the same IDS’s. We issue IDS 6

and either one or both of IDS 7 and IDS 8. We can use the same reasoning as just explained

to decide whether just one or the other or both of IDS 7 and IDS 8 should be issued. For

the City-City Map example we issue IDS 6 (to warn the user that there are no maps with

more than one city) and IDS 8 (to warn the user that some city may not be loaded because

it has no map).

3.3 ISA Constraint Compatibility

ISA constraints in OSM require specialization object sets to be subsets of generalization

object sets and may also require that a generalization object set be a union of the special-

ization object sets, or that the specialization object sets be disjoint, or both. If the types of

all the object sets in an ISA hierarchy are identical, we can easily satisfy these conditions.

If the types differ, however, we must be more precise about exactly what these conditions

10Discarding facts is safe as long as all constraints under consideration are downwards monotonic, i.e.
each subset of a valid interpretation is again a valid interpretation. However, OSM allows for requirements
that are not downwards monotonic (minimum participation, referential integrity, subset constraint, union
constraint). Thus discarding facts may result in a violation of a constraint that had already been satisfied. In
order to adjust, we can proceed by recursively discarding more facts with the consequence, unfortunately, of
removing otherwise useful data. We observe, however, that the recursion is always guaranteed to terminate
with a valid interpretation, which might be the empty population in the worst case. This claim follows from
the implicational form of the first-order logic formalization of all OSM constraints under consideration.

28

mean. Suppose object set a is a specialization of object set b, but that type(a) �= type(b).

Since a is a specialization of b, OSM requires that we must semantically have a ⊆ b, that is,

each object in a must be an object in b. When the types are different, this merely means

that the same object is represented differently in the two object sets. Hence, to check the

constraint there must be a way to match objects in the two sets. OSM satisfies this by

requiring “semantically correct” injective type conversions11 both from a specialization to a

generalization and from a generalization, appropriately restricted, to a specialization. When

we check ISA-hierarchy constraints such as subset, union, or mutual-exclusion, we are always

checking with respect to the semantics—type conversions are always implicit and used when

needed.

With this in mind, we state the following requirements about ISA hierarchies for our

target-to-source mapping function f .

Req. 7 Let f be a target-to-source mapping. Then the agreed-on (possibly

trivial) conversion functions for the object sets in the range of f must be “com-

patible” with the ISA constraints in the source. That is, if a′ and b′ are in the

range of f and if the ISA constraints in the source imply a′ ⊆ b′, then:

1. The conversion for the specialization, ca′, and the conversion for the gener-

alization, cb′, coincide on common values.

2. The conversion for the generalization, cb′, never equates different values

appearing in different specializations.

Req. 8 Let f be a target-to-source mapping, and let 〈a, a′〉 and 〈b, b′〉 be
object-set ordered pairs in f . If the ISA constraints in the target imply a ⊆ b,

then the ISA constraints in the source must imply a′ ⊆ b′.

Req. 9 Let f be a target-to-source mapping, and let 〈a, a′〉 and 〈b, b′〉 be
object-set ordered pairs in f . If the constraints of the target imply ∀x(x ∈ a ⇒
x �∈ b) and ∀x(x ∈ b ⇒ x �∈ a), then the constraints in the source must imply

∀x(x ∈ a′ ⇒ x �∈ b′) and ∀x(x ∈ b′ ⇒ x �∈ a′).

11By “semantically correct” type conversions we simply mean that the conversions correspond to the user-
intended semantics (e.g. the integers are a subset of the reals with natural coercions in both directions that
are injective when appropriately restricted). If default conversions are not available or not semantically
appropriate for a particular situation, a user must provide the needed type conversions.

29

Req. 10 Let f be a target-to-source mapping, and let 〈a, a′〉 and 〈b1, b′1〉, ...,
〈bn, b′n〉 be ordered pairs in f . If a is the generalization of a union-constrained

ISA in the target such that the ISA constraints in the target imply a = b1 ∪ ...

∪ bn, then the ISA constraints in the source imply a′ = b′1 ∪ ... ∪ b′n.

Requirements 7 through 10 are intended to ensure that a populated ISA hierarchy in the

target model will satisfy the OSM constraints on ISA hierarchies. Requirement 8 together

with Requirement 7(1) and the OSM requirements for types in ISA hierarchies assure us that

all subset constraints in the target hold. Similarly, with the OSM ISA-hierarchy constraints

implicitly in place, Requirement 9 together with Requirement 7 assure us that any mutual-

exclusion constraints hold, and Requirement 10 together with Requirement 7(1) assure us

that any union constraints hold.

3.4 Context Keywords and Data Values

Using context keywords and data values, we now address the problem of semantics. We

attempt to eliminate from consideration nonsensical matches, such as mapping Country in

Figure 2 to Prominent Person in Figure 4, Population to Description, and Country has

Population to Description ProminentPerson. In these examples, all types and constraints

are fully compatible, but we can easily see that the semantics are completely different.

We address semantic issues in two ways. We look for the presence of expected context

keywords, and we look for the presence of expected objects (values) in object sets and ex-

pected relationships (tuples of values) in relationship sets. We declare what we expect, as

explained in Section 2, in the textual representation of the target model instance (see Fig-

ure 3). We check for the presence of keywords in the names of source object and relationship

sets and in any type names or comments in the source pertaining to object sets or relation-

ship sets, and we check for the presence of values and tuples of values in the populated model

instance derived from the source database.

For our supposed match of prominent persons and their descriptions with countries and

their populations, there is very little chance of any keyword or value match. Neither Pop-

ulation nor population, the default keywords, match Description, nor would they be found

in any reasonable type declaration or comment about Description. Moreover, there is no

chance that the Population regular expressions would match any reasonable Description

string. Similar statements can be made about the two relationship sets involved and, for

30

the most part, also about the other object sets. It is reasonable to imagine, however, that a

comment about Prominent Person may include “country”. A comment like “– contains the

name of a well-known person in a country” is certainly reasonable for Prominent Person.

The mere presence of a single keyword or value match would not usually provide enough

evidence to convince us that the there is a semantic match, but many matches of both key-

words and values for a relationship set and its connected object sets would provide evidence

that the semantics match. For example, when we map Country in Figure 2 to Country

in Figure 4, map Population to Population, and map Country has Population to Country

Population, we find expected keywords. Further, when values for both Country and Popu-

lation are checked in Figure 7, we find expected tuples in Country, Population, and Country

Population.

If we have type mismatches, observe that we should first coerce source values to target

types before applying regular expressions. If the Population values in Figure 4, for example,

were of type Integer, we would first need to convert them to String. Observe for this example,

that the typical default conversion of just extracting and concatenating the digits, would not

work for the simple set of regular expressions in Figure 3. Here, our conversion from Integer to

String would need to have commas separating the thousands and millions. Alternatively, the

regular expressions could be significantly improved—for example, to allow optional commas,

to allow for periods or spaces in place of commas, to allow for values rounded to millions or

to millions with a decimal point.

Sorting out what are sometimes subtle differences in meanings, as opposed to sorting out

gross differences as in our country-population/prominent-person example, can be challenging,

even for users. We do not expect a system to be able to resolve subtleties without user input.

The mapping generator can, however, discard gross differences as possibilities and isolate

relevant information for more subtle cases.

One interesting case with likely semantic subtleties is the possibility that multiple re-

lationship sets can span the same object sets. In Figure 6, for example, both Airport is

located in City and Airport serves City connect the object sets Airport and City. It is not

likely that either context keywords or values would be sufficient to positively declare that the

relationship set Airport is for City in Figure 2 matches one but not the other city-airport

relationship set in Figure 6. When a target relationship set may match with any one of

several source relationship sets that span the same object sets and when keyword matches

31

do not uniquely select one of the source relationship sets, we issue the following IDS.

IDS 9 Issue: The target relationship set <target relationship set> can map

to only one of the multiple relationship sets in the source that span the object

sets, <list of object sets>. Default: The system will choose the one with the

highest confidence value or will choose arbitrarily among two or more with the

same highest confidence value. Suggestion: You may instead wish to specify

which one to choose.

The semantic checks we are proposing do not provide absolute assurances, but they do

provide evidence for or against mapping pairs. Used in conjunction with techniques proposed

in [SM91, Cas93, GSCS93, SSR94, ON94, KS96, CA97, PSU98b, PSU98a, BCV99], however,

they can increase or diminish our confidence in proposed results. They also help us deal with

the potential geometric explosion of possible matches based on syntax alone. As we generate

target-to-source mappings, we avoid the geometric explosion by relying on the presence of

some semantic matches, and we record the evidence obtained by these matches to support

or refute possible matching pairs. The user has the final say, of course, but the mapping

generator does its part by removing the tedium of checking all the possibilities, by isolating

and questioning identifiable semantic subtleties, and by finding and pointing out the evidence

to support its proposed mappings.

4 Matching Rules—Derived Object and Relationship

Sets

Although a source may not have object and relationship sets that directly correspond to a

target’s declared object and relationship sets, target facts may nevertheless be derivable from

source facts. We can, for example, form a derived relationship set by joining relationship

sets along a path in a model instance, or form a specialization object set by selecting only

those objects in an object set that satisfy some criteria. In general, we can specify these

object- and relationship-set derivations as queries. Once specified, we can consider these

derived object and relationship sets to be part of the source. We can then generate target-

to-source mapping pairs and use the inverses of these mapping pairs to populate object and

relationship sets in a target.

32

Since we can specify derived object and relationship sets by queries, and since the num-

ber of queries over a model instance is typically unbounded, we are selective in the kinds of

queries our target-to-source generator recognizes and supports. We do not, for example, sup-

port query transformations involving aggregate operators (e.g. derive the average population

of countries for each continent) or query transformations over image content (e.g. derive the

subset of topological maps that have more green than any other color), or a host of other

possible query transformations. The categories of query transformations we do consider are:

(1) generalizations and specializations of object sets, (2) string decompositions and composi-

tions, (3) derivations of nondisplayable object sets for matching displayable/nondisplayable

object sets, and (4) path queries including queries over degenerate paths, consisting of only

one edge. For each of these transformations we must (1) recognize that we need the transfor-

mation, (2) formulate the transformation query, and (3) derive the constraints for the view

generated by the transformation query.

4.1 Generalization/Specialization Derivations

For a target object set, a particular source may have (1) none of the set of desired values,

(2) a proper subset of the desired values, (3) exactly the set of desired values, or (4) a proper

superset of the desired values. We need not consider the first case, except to say that there

should be no source match for the target object set. For the second case, we can either reject

any potential target-to-source matches for the object set (if the user is not satisfied with only

a subset) or we can treat the second case as if it were the third case. The fourth case may

have a resolution in terms of roles, in which case we resolve it as we explain beginning in the

next paragraph. Otherwise, either the extra values in the proper superset may be acceptable

to a user, in which case, we can treat the fourth case as if it were the third case, or if not,

the the values need to be filtered with a user-supplied selection criterion. Since our approach

to recognition in this paper is based on simple context-keyword and sample-value matches,

there is not a good way to recognize the need for a selection criteria. Semantic hypernymy

techniques, such as those discussed in [BCV99] and [CA97], can help with this recognition

problem, but these are beyond the scope of this paper. We therefore do not further discuss

cases that required user-supplied selection criteria.

Roles

Suppose a target has a role r for an object set s in relationship set q and q has a potential

33

match12 with a source relationship set q′. Suppose also that q′ has an object set s′ that has

a potential match with with s or is a specialization of a source object set s′′ that has a

potential match with s, and further that s′ has no role for q′. Then we can generate a role

for the source and match it with r. We can give the new source role the name r, the same

name as the target role name, adding a numeric suffix if needed to make the name unique

in the source. Assuming its name is r, we can then populate it with the values computed by

the expression ρs′ ← rπs′q
′.

As an example, consider the role Video With City Scene in the target in Figure 2. The

target relationship set City appears in Video With City Scene has a potential match with

the source relationship set City Clip, and the target object set Travel Video has a potential

match with the source object set Clip. We thus add Video With City Scene as a role

on Clip in the relationship set City Clip in Figure 4 and populate it by the expression

ρClip ← V ideoWithCityScene πClipCity Clip.

Missing Generalizations

When a source contains the desired set of objects or a user-acceptable subset or superset,

there are two cases of interest. (1) The source contains the desired set of objects in a single

object set. (2) The source contains the desired set of objects in a set of object sets. We can

resolve the first case of these two cases by a direct match, as discussed in Section 3.3. For

the second case, there is a missing source generalization. We discuss this second case here.

The basic idea is to create a new generalization in the source to which the generalization in

the target can map. This new generalization has the same name as the target generalization

to which it corresponds (with a numeric suffix if needed to make the name unique in the

source). We then make the new generalization a union generalization of the set of object

sets that holds the objects of interest. If we can also prove from source constraints that the

specializations that form the union generalization are mutually exclusive, we can strengthen

the union constraint to be a partition constraint. In addition to creating the union and

providing the proper constraints, we may also need to coerce values so that they have the

proper types for the created source ISA hierarchy.

As an example, the object set Map in Figure 2 does not correspond to any object set in

12When we say “potential match,” we mean that we are considering an ordered pair in the target-to-source
mapping we are building, not that the ordered pair is in the target-to-source mapping. As we build, the set
of matches we consider need not satisfy requirements for target-to-source mappings such as being injective.
It is only at the end of the process that we restrict the set of potentially matching ordered pairs to a set that
satisfies the requirements.

34

the source in Figure 5, but its target specializations, Country Map and City Map in Figure 2

do correspond respectively to the source object sets with the same names in Figure 5. Hence,

we can generate a virtual source object set for Figure 5 that is the union generalization of

Country Map and City Map.

4.2 Composite Strings

Conceptual modelers do not always choose to represent values at the same level of atomicity.

In our sample application, for example, the target (Figure 2) has the length of a travel

video decomposed into the number of hours and the number of minutes, whereas a source

(Figure 4) models it only as length. There are two cases to consider: (1) the composite is in

the source and (2) the composite is in the target.

Composite in Source.

We can consider a source object set to be composite if regular expressions for two or

more target object-set values decompose source values. We can obtain further supporting

evidence for the decomposition if context keywords for the source object set are present in

all the target object sets whose regular expressions decompose source values. The first and

third values in the source object set Length in Figure 7, for example, can be decomposed by

the regular expressions in Nr Hours and Nr Minutes in Figure 3, Lines 58–67. Further, the

context keyword Length in these target object sets matches the source object set name.

If we have regular expressions that partition each of the string values in the source, the

system may proceed without user intervention. Otherwise, we issue the following IDS.

IDS 10 Issue: The regular expressions provided for the target object sets,

<list of involved target object sets>, do not appear to partition the source values

in <composite object set>. Default: The system will extract the subcomponents

it recognizes, discard any remaining string components, and fill in null strings for

missing substrings. Suggestion: You may wish to adjust the regular expressions.

Figure 9 shows the values generated for our sample application. The ⊥ denotes a null string.
Figure 10 shows the resulting transformation of the source composite Length and how

it connects to the model instance in Figure 4. We add an object set to the source for each

of the n participating target object sets. We use the name of the target object sets for the

source (with a numeric suffix if necessary to make the name unique in the source). For

35

Length Nr Hours Nr Minutes
1 hr 15 min 1 hr 15 min
15 min ⊥ 15 min
1 hr 30 min 1 hr 30 min
2 hrs 2 hrs ⊥

Figure 9: Generated Length NrHours NrMinutes relationship set.

our example, we add Nr Hours and Nr Minutes to the source. We next add an n + 1-ary

relationship set connecting the source object set to be decomposed and the n new source

object sets. The participation constraints on this relationship set are 1 for the source object

set to be decomposed and 1:* for the new source object sets13.

We can populate this view with the query εLength, NrHours, NrMinutesLength, whose result

is the relation in Figure 9. Here, we introduce the value-extraction operator ε. The ε operator

has the form εA1,...,Anr, where r is a single-attribute relation, and A1 through An are a set

of attribute names. The result is a relation whose scheme is A1...An and whose tuples are

formed by extracting substrings from each value v of r. For each i (1 ≤ i ≤ n), if Ai names

the attribute of r, the Ai component is v, and if Ai names an attribute with an associated

routine that extracts a substring ai from v, the Ai component of the tuple is ai, otherwise

the Ai component is ⊥.
Composite in Target.

We can consider a target object set to be composite14 if the regular expression for its value

recognizes a concatenation of values from two or more source object sets. We can obtain

further supporting evidence for the composition if keywords declared in the composite target

object set appear in some or all of the source object sets to be concatenated. As an example,

if Location in Figure 2 were displayable and Latitude and Longitude were not present, then

Location would be a composite of Latitude and Longitude in Figure 5.

Once a composite target object set is recognized and its constituent source object sets

have been identified, the system faces the problem of how to construct the composite values.

13It is reasonable to consider adding an FD whose composite left-hand-side consists of all the new object
sets and whose right-hand-side is the original source object set, but only if we can guarantee that the regular
expressions are such that they never discard any string components. Since this may be difficult (potentially
impossible) to prove, we do not add the FD.

14Note that since the target is under the control of the user, the target composite object sets can always
be decomposed. We are assuming, however, that the target model instance is fixed and that the user does
not wish to decompose object sets that are composites of source object sets.

36

Length

Nr Minutes

Nr Hours

Clip : Video

Length

Nr Minutes

Nr Hours

Clip : Video

Figure 10: Generated Nr Hours and Nr Minutes for Length for the source in Figure 4.

A priori, it does not know which of the values in the object sets to concatenate together,

in which order to concatenate the values, and whether the concatenated values require a

separator. We therefore issue the following IDS.

IDS 11 Issue: Each value in <target object set> is to be constructed by

concatenating one value from each of the following object sets: <list of source

object sets>. The system can only guess which values should be concatenated

together, in which order they should be concatenated, and what characters (if

any) should separate the values. Default: As its best guess, the system finds

any minimal path connecting all the identified source object sets (or groups of

disjoint minimal paths connecting all the identified source object sets in case the

object sets are in disconnected components), joins over the (possibly degenerate)

path, and projects on the object sets to form a relation. Then, using a convenient

order the system concatenates values in each tuple in the generated relation with

a space between each value. Suggestion: If there are multiple minimal paths or

if the minimal path does not properly join values to be concatenated, specify the

path. Unless it does not matter, specify the order for concatenation. If a string

other than a blank character should separate the concatenated values, specify it.

For our Location example, we would want to join over the relationship sets Country Lat-

itude and Country Longitude and project on Latitude and Longitude to obtain the pairs

to concatenate, and we would want to order the pairs with Longitude first, with a space

separating the two values. Since the path length between Longitude and Latitude is just as

short through City and since the system might concatenate the pairs with Latitude first, we

should specify our choices. The separating space provided by the default is acceptable.

37

Location

Latitude

Country

Longitude

Location

Latitude

Country

Longitude

Figure 11: Generated Location view for source in Figure 5.

Given the list of source object sets to be concatenated, a join path among them, the order

for concatenation, and a separator character or string, we can generate the source view we

need. For our example, Figure 11 shows the generated view and how it connects to the source

model instance in Figure 5. In general, we (1) create a new object set whose name is the

name of target object set (with a numeric suffix attached to make the name unique within

the source, if necessary), (2) create a new n+1-ary relationship set connecting the n source

object sets and the new object set, (3) give the participation constraint 1 to the connection

between the new relationship set and the new object set, (4) give the participation constraint

0..* to all other connections (or tighter constraints if we can prove that they hold), and (5)

add a functional constraint to the relationship set whose left-hand-side consists of all the

source object sets participating in the concatenation and whose right-hand-side is the newly

derived object set.

We can populate this view in Figure 11 with the query γLocation := Longitude+” ”+Latitude

πLongitude Latitude (Country Longitude 1 Country Latitude). Here, we introduce the con-

catenation operator γ. The γ operator has the form γB := A1+...+Anr where B is a new

attribute not among the attributes of the relation r and each Ai, 1 ≤ i ≤ n, is either an

attribute of r or is a string. The result of the γ operator is r with an additional attribute

B, where each B value on row k is a concatenation of the given strings and the specified

attribute values from row k.

4.3 Displayable/Nondisplayable Object-Set Matches

Earlier, in Section 3.1, we discussed object-set pairs in target-to-source mapping in which

object sets in the pair were either both displayable or both were nondisplayable. Here, we

consider the displayable/nondisplayable mismatches. There are two cases to consider: (1)

the target has a displayable object set that corresponds to a nondisplayable source object set

38

and (2) the target has a nondisplayable object set that either corresponds to a displayable

source object set or corresponds to a source relationship set or derivable source relationship

set.

Nondisplayable Object Set in Source

Based on context keywords, our sample application has several target displayable object

sets that potentially match with nondisplayable object sets in the sources. The target in

Figure 2 includes the displayable object set Airport, which matches the nondisplayable object

set Airport in the source in Figure 6, and the displayable object sets Country and City match

nondisplayable object sets with the same names in Figure 5.

In these cases, we look for a displayable source object set whose values are in a one-to-one

correspondence with the OID’s of the nondisplayable source object set under consideration.

We call displayable object sets whose values are in a one-to-one correspondence with the

OID’s of a nondisplayable object set key object sets. Airport Code, for example, is a key for

Airport in Figure 6, and Country Name is a key for Country in Figure 5. Note, however,

that City in Figure 5 has no key. For these possibilities there are three cases to consider.

Case 1 – one key. If a target displayable object set s has a potential match with a

nondisplayable object set n and the constraints of the source guarantee that a displayable

object set d is a key for n, then, if there is only one such displayable object set d, we can

discard the potential match between s and n and add, if not already present, the potential

match between s and d. The potential mapping from the displayable object set Airport

in Figure 2 to the nondisplayable object set Airport in Figure 6 can be redirected to the

displayable object set Airport Code.

Case 2 – no key. If a target displayable object set s has a potential match with a

nondisplayable object set n but there is no key for n, we can do nothing. In this case, we

reject the potential match of s and n—it makes no sense to load the displayable target object

set with (arbitrary) OID values.

Case 3 – multiple keys. If a target displayable object set s has more than one object-set

key or composite object-set key, the system may need the user’s help. We thus issue the

following IDS statement.

IDS 12 Issue: The target displayable object set <target displayable object

set> appears to match the source nondisplayable object set <source nondisplayable

object set>, but there are several possible keys, <list of keys>. Default: The

39

system will select one, giving preference to keys that have potential matches with

<target displayable object set>, but otherwise will select one arbitrarily. Sugges-

tion: If this is not satisfactory, designate a match between the target displayable

object set and one of the keys.

Nondisplayable Object Set in Target

Suppose we have determined (e.g. through context keyword matching) that a nondis-

playable target object set corresponds to a displayable source object set. Given this corre-

spondence, we can always generate a nondisplayable source object set, populate it with OID’s

that are unique within the source, and place the OID’s in a one-to-one correspondence with

the values in the matching displayable source object set. We can then match the nondis-

playable target object set with this generated nondisplayable source object set instead of with

the displayable source object set. We will have then reduced the nondisplayable/displayable

mismatch to a nondisplayable/nondisplayable match and we can proceed as explained in

Section 3.1.

As an example consider the nondisplayable object set Location in the target in Figure 2

and assume that the source is as in Figure 11, which has a displayable object set Location. To

resolve this nondisplayable/displayable conflict, we generate a new nondisplayable object set

for the source in Figure 11. We give the new object set the name of the target object set to

which we want to establish a correspondence (appended with a numeric suffix if necessary to

make it unique). For our example, we need the numeric suffix and would generate Location2

to make its name different from the displayable object set Location, which already exists

in Figure 11. We then generate a new relationship set connecting the two source object

sets and supply the relationship set with the participation constraint 1 for both connections

to force the values in the two object sets to be in a one-to-one correspondence. Finally,

we populate the generated nondisplayable object set with as many source-unique OID’s as

values in the displayable source object set and populate the generated relationship set to

satisfy the one-to-one correspondence.

When a nondisplayable target object set corresponds to a source relationship set or deriv-

able source relationship set, we generate a nondisplayable source object set that represents

the relationship set. In particular, we populate a new nondisplayable source object set with

unique OID’s in equal number to the number of relationships in the relationship set. We

then generate new source binary relationship sets that connect the new nondisplayable object

40

set to the object sets of the relationship set. These new binary relationship sets all have a

participation constraint of 1 on the side of the new nondisplayable object set. Participation

constraints for the connecting object sets are derivable. If for a participating object set an

FD is derivable using standard FD theory, the maximum participation constraint is 1 and

is otherwise *. If a value in a participating object can be dangling in the join (degenerate

join for only one relationship set), the minimum participation constraint is 0 and is oth-

erwise 1. We can determine if the object can be dangling in the join, by considering the

optional/non-optional participation constraints along the join path. We must also add an

equality constraint declaring that the set of tuples in the original relationship set is identical

to the set of tuples in the join of all the new binary relationship sets connected to the new

nondisplayable object set with a projection on all the connected object sets (i.e. with the

new object set projected out).

The system recognizes that a nondisplayable target object set corresponds to a source

relationship set when the following conditions hold. (1) The nondisplayable target object

set has no corresponding source object set. (2) Each target object set related to the nondis-

playable target object set has a potential match with a source object set. (3) There is a path

in the source connecting these source object sets. If more than one path is possible, we issue

the following IDS.

IDS 13 Issue: The nondisplayable target object set <target object set> can

map to at most one of the following possible paths in the source: <list of paths>.

Default: The default action is to choose arbitrarily among the shortest paths.

Suggestion: You may wish instead to specify which one it should choose, or

reject them all.

Location in our target model instance in Figure 2 is nondisplayable and does not have a

potential match with any object set in the source in Figure 5. However, the related target

object sets Country, Latitude, and Longitude all have potential matches with source object

sets. Let us assume that Country matches with Country Name, not Country, as a result of

the displayable/nondisplayable match resolution discussed earlier. Thus, the default path,

CountryName Country, Country Latitude, Country Longitude is the matching path we want.

Figure 12 shows the transformation that produces Location as a source object set and its

connection to the object sets in Figure 5. The equality expression, which must be added, is

41

Location

Country Name

Longitude

Latitude

Country

Location

Country Name

Longitude

Latitude

Country

Figure 12: Generated Location derivation for source in Figure 5.

∀y∀z∀w(∃x(Country CountryName(x, y)

∧ Country Latitude(x, z) ∧ Country Longitude(x, w))

⇔
∃v(CountryName Location(y, v)

∧ Latitude Location(z, v) ∧ Location Longitude(v, w))).

4.4 Source Paths

In the same sense that views may differ with respect to atomicity of object-set values,

views may also differ with respect to atomicity of relationships. One view may have a

direct relationship between values in two object sets, while another view may model the

same relationship indirectly with intermediate values. A common example is a grandparent

relationship, which may directly relate a grandchild and a grandparent in one view but may

have a parent as an intermediate value in another view. In general, we may have a single

relationship set in one view that semantically corresponds to a path in another view. We

consider only the case in which the path is in the source. (The other case in which the path

is in the target fails for our application because the target has no data and thus cannot

supply the intermediate values.)

We recognize a possible correspondence between a target relationship set and a source

path when the following conditions hold. A target relationship set r has no potential match

to a source relationship set, but all of r’s object sets have potential matches (either to existing

or generated object sets). The matched source object sets must also be connected by one

or more relationship sets. We can be particularly confident about a target relationship set

matching a source path if the regular expressions for target tuples match a relation formed

42

by joining over one (or more) of these paths and projecting on the matched source object

sets.

Our sample application has several examples. The source relationship set City is in

Country in Figure 2 does not directly correspond to any relationship set in any of the

sources (Figures 4, 5, and 6). Consider, however, the path consisting of the relationship sets

Country Photo and City CityPhoto in Figure 4. Country and City in the target (Figure 2)

potentially match with Country and City in the source (Figure 4), and a join/project over

the source path would likely yield a match with the City is in Country regular expressions

provided in the target ontology (Figure 3), e.g. would likely match < Berlin , Germany >,

or < New\s*York , (USA | United\s*States) >, or < Paris , France >. To illustrate

matching with virtual paths and object sets, consider the target path NrHours TravelVideo

in Figure 2 which matches the virtual source path Clip Length, Length NrHours NrMinutes

in Figure 10. To illustrate a degenerate path (a path with only one relationship set), con-

sider the source relationship set USExchangeRate is for KindOfMoney in Figure 2 which

potentially matches the (degenerate) path Currency ForeignCurrency Rate in Figure 4.

Sometimes a target relationship set may correspond to several paths in a source. The

target path City is in Country in Figure 2, for example, corresponds not only to Country

Photo, City CityPhoto in Figure 4 as just mentioned, but also to Country Clip, City Clip.

Which path, if any, corresponds semantically with the target relationship set must be de-

termined. When there is only one choice, the target-to-source mapping generator records it

as a possibility, but when there are multiple possible paths, the system issues the following

IDS.

IDS 14 Issue: The target relationship set <target relationship set> can map

to at most one of the following possible paths in the source: <list of paths>.

Default: The default action is to choose arbitrarily among the shortest paths.

Suggestion: You should instead specify which one it should choose, or reject

them all.

As a default the system produces a virtual source relationship set by joining along a

source path and projecting on the matched source object sets. Sometimes we may need to

use a different query to generate the virtual relationship set. We therefore issue the following

IDS.

43

IDS 15 Issue: A derived relationship set in a source can be produced by any

query. Default: The default query joins over the path and projects on the object

sets for the relationship set. It also automatically provides constraints for this

derived relationship set. Suggestion: If you want a different query, you must

specify it. Further, if you provide a query and want the constraints to be tighter

than 0..* participation constraints, you must also specify the constraints.

Consider, for example, the target relationship set USExchangeRate is for KindOfMoney in

Figure 2, which matches with the source relationship set Currency ForeignCurrency Rate

in Figure 4. Here, we must first respond to the IDS 14 and choose to match Kind Of

Money with Currency rather than with ForeignCurrency. But simply projecting on Cur-

rency and Rate does not give us the result we want. Since we need the exchange rate to

be only for US dollars, we should provide the query πCurrency Rate σForeignCurrency = ”US$”

(Currency F oreignCurrency Real) as a replacement for the default query.

The system can compute constraints for the generated virtual source relationship set for

the default query, but for arbitrarily specified user queries, constraint computation may not

be possible. We therefore ask the user to provide constraints if they should be tighter than

0..* participation constraints for every connection. For the default, we can use the functional

constraints on the path to obtain a reduced set of FD’s among the source object sets ac-

cording to standard functional-dependency theory and specify these either as one-maximum

participation constraints when the left-hand-side of an FD is a single object set or otherwise

as FD constraints on the relationship set with *-maximum participation constraints. To

specify the minimum participation constraints, we consider the mandatory/optional speci-

fications of the path in the source. If the mandatory/optional constraints along the path

demand the participation of the objects in a matched object set, the minimum is 1; otherwise

the minimum is 0.

5 Target-to-Source Mapping Generator

We present our proposed target-to-source mapping generator as an algorithm that fills in a

table as it executes. The filled-in table includes the justification for the generated target-to-

source mapping, as well as information about alternative mapping pairs that do not become

part of the selected mapping function. The table also includes information about which IDS

statements are issued as well as the user’s response to these statements.

44

Algorithm: Generate Target-to-Source Mapping
Input:

Target: an OSM model instance (textual representation)
Source: a populated OSM model instance

Available Resources
Type Hierarchy and Default Coercion Routines
Unit Conversion Routines
Confidence-Value Criteria

Output:
A selected “best” target-to-source mapping

Procedure
record direct-match object-set information
record direct-match relationship-set information
generate derived object sets and record information as follows:

generate missing source roles
generate missing source generalizations
resolve composite source object sets
resolve composite target object sets
resolve target-displayable/source-nondisplayable object sets
resolve target-nondisplayable/source-displayable object sets

generate derived relationship sets and record information
for each column in the table

if the confidence value is not -1, “considered but rejected”
then set the confidence value as specified in the confidence-value criteria

select the “best” functional mapping that satisfies Requirements 1 through 10

Algorithm Generate Target-to-Source Mapping fills a table with four sections: (1) Recog-

nition Criteria, which contains information about how the algorithm recognizes a proposed

matching pair, (2) Special Considerations, which contains information about what issues

arise for a proposed matching pair and how these issues are resolved, (3) Confidence, which

contains a confidence value for a proposed matching pair, and (4) Selected Pair, which is

marked only if the proposed matching pair becomes part of the resulting generated functional

mapping. For rows in the first two sections without IDS’s, the generator fills in “x” for “yes”

and leaves a blank for “no”, and for rows with IDS’s it fills in “d” for “yes, default”, “u” for

“yes, user-specified”, and “r” for “no, user-rejected”.

Tables 1 through 6 show the filled-in tables for our sample application. The generator

algorithm fills in one table for each source, Figure 4 about countries, Figure 5 about maps,

and Figure 6 about airports. The tables for both the countries source and the maps source,

45

however, are too large to be shown as a single table. We break the countries source table

into three tables (Tables 1, 2, and 3) and further reduce these three by omitting rows with

no entries in the Special Considerations section of the table, and we break the maps source

table into two tables and also further reduce the first by omitting most of the rows in the

Special Considerations section that have no entries.

Algorithm Generate Target-to-Source Mapping takes as its input (1) a target OSM model

instance like the one shown in Figure 3 and (2) a source populated OSM model instance

like the (partial) one shown in Figure 7. It also takes three auxiliary inputs: (1) a type

hierarchy like the one shown in Figure 8 as well as associated default coercion routines

that, as a minimum, provide coercions in both directions for every ISA in the hierarchy, (2)

unit-conversion routines, and (3) a user-specified criteria for confidence values, in which the

confidence values are nonnegative numbers. For illustration here, the confidence criteria we

select is computed for each proposed match pair by 2 × x + y, where x is the number of

recognition criteria marked plus 1 if either = is marked for an object-set pair or⇔ is marked

for a relationship-set pair and y is the number of type and constraint resolutions (i.e. the

number of “u” and “d” marks in rows for IDS’s 2-8)15.

Algorithm Generate Target-to-Source Mapping proceeds by first doing direct matches

for existing object and relationship sets and then doing derived matches. Although the

algorithm does not iterate, later steps may alter the information recorded in previous steps.

If for example, the algorithm decomposes a source object set (e.g. Length in Figure 4) and

produces matching virtual object sets (e.g. Nr Hours and Nr Minutes in Figure 10), then

as part of filling the column in the table for the decomposed derived source object sets, the

algorithm rejects any proposed match from the target object sets used for naming the new

source object sets to the decomposed source object set (e.g. rejects 〈Nr Hours, Length〉 and
〈Nr Minutes, Length〉). The algorithm rejects an existing column by making the confidence
value -1, “considered but rejected.”

We discussed and illustrated the recognition criteria16 we use for Algorithm Generate

Target-to-Source Mapping as we explained each case in Sections 3 and 4. The recognition

15The study of how to generate confidence values is itself a major research project. Sophisticate techniques
such as the use of the Dempster-Shafer theory of evidence as suggested in [ON94], for example, may be
appropriate. We leave this research for future work.

16We also mentioned in the introduction that additional recognition criteria proposed by others can be
used. It should be clear that we can expand the Recognition Criteria section of our table by adding a row
for each criteria. It should also be clear that we can make our recognition criteria more fine-grained (by
decomposing criteria) or more gross-grained (by aggregating) criteria.

46

Matched Pairs
Criteria 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Recognition Criteria

keyword x x x x x x x x x x x x
value x x x x x x x x
structure x x x x x x x x x x x x

Special Considerations
units (IDS 1) x x
= x x x x x x x x x x x x x
⊃ (IDS 2) d
⊂ (IDS 3) d
�∼ (IDS 4) r

Confidence 8 8 5 6 6 6 6 5 6 8 -1 6 6 6 -1 -1
Selected Pair (Req. 1–10) x x x x x x x x x x x
01. 〈Country, Country〉
02. 〈Population, Population〉
03. 〈Size, Population〉
04. 〈Kind Of Money, Currency〉
05. 〈Kind Of Money, Foreign Currency〉
06. 〈US Exchange Rate, Rate〉
07. 〈Travel Photo, Photo〉
08. 〈Caption, Caption〉
09. 〈City Photo, City Photo〉
10. 〈City, City〉
11. 〈City, City Photo〉
12. 〈Airport, International Airport〉
13. 〈Travel Video, Clip〉
14. 〈Topic, Subject〉
15. 〈Nr Hours, Length〉
16. 〈Nr Minutes, Length〉

Table 1: Direct object-set matches for mapping Figure 2 to Figure 4

47

Matched Pairs
Criteria 01 02 03 04 05 06 07 08 09 10
Recognition Criteria

keyword
value x
structure x x x x x x x x x x

Special Considerations
⇔ x x x x x x
⇐ �⇒ (IDS 6) d
�⇐ ⇒ (IDS 7) d d
�⇐ ⇒ (IDS 8) d d d

Confidence 6 4 4 3 4 3 4 4 4 4
Selected Pair (Req. 1–10) x x x x x x x
01. 〈Country has Population, Country Population〉
02. 〈Country has Size, Country Population〉
03. 〈Country has Kind Of Money, Country Currency〉
04. 〈Travel Photo is for Country, Country Photo〉
05. 〈Caption describes Travel Photo, Caption Photo〉
06. 〈City Photo is for City, CityPhoto City〉
07. 〈Travel Video is for Country, Clip Country〉
08. 〈Topic classifies Travel Video, Clip Subject〉
09. 〈Nr Hours is for Travel Video, Clip Length〉
10. 〈Nr Minutes is for Travel Video, Clip Length〉

Table 2: Direct relationship-set matches for mapping Figure 2 to Figure 4

48

Matched Pairs
Criteria 01 02 03 04 05 06 07 08 09 10 11
Recognition Criteria

keyword x x x
value x x x x x x x x x
structure x x x x x x x x x

Special Considerations
units (IDS 1) x x
= x x x
⇔ x x x
⇐ �⇒ (IDS 6) d
�⇐ ⇒ (IDS 7) d d d
�⇐ �⇒ (IDS 6) d
�⇐ �⇒ (IDS 8) d
partitioning (IDS 10) d
rel-set paths (IDS 14) u r r r
query (IDS 15) d d u d d d d

Confidence 6 4 6 6 6 6 5 5 -1 -1 -1
Selected Pair (Req. 1–10) x x x x x x x x
01. 〈Video With City Scene, ρClip ← V ideoWithCitySceneπClipCity Clip〉
02. 〈City appears in Video With City Scene, ρClip ← V ideoWithCitySceneCity Clip〉
03. 〈Nr Hours, πNrHoursεLength NrHours NrMinutesLength〉
04. 〈Nr Minutes, πNrMinutesεLength NrHours NrMinutesLength〉
05. 〈Nr Hours is for Travel Video,

πClip NrHours(Clip Length 1 εLength NrHours NrMinutesLength)〉
06. 〈Nr Minutes is for Travel Video,

πClip NrMinutes(Clip Length 1 εLength NrHours NrMinutesLength)〉
07. 〈US Exchange Rate is for Kind Of Money,

πCurrency RateσForeignCurrency = ”US$”Currency ForeignCurrency Rate〉
08. 〈City is in Country, πCity Country(ρCityPhoto ← PhotoCity CityPhoto 1 CountryPhoto〉
09. 〈City is in Country,

πCity Country(ρV ideoWithCityScene ← ClipCity V ideoWithCityScene 1 Clip Country)〉
10. 〈Airport is for City,

πCity InternationalAirport(ρCityPhoto ← PhotoCity CityPhoto
1 CountryPhoto 1 Country InternationalAirport〉

11. 〈Airport is for City,
πCity InternationalAirport(ρV ideoWithCityScene ← ClipCity V ideoWithCityScene
1 Clip Country 1 Country InternationalAirport)〉

Table 3: Derived object-set and relationship-set matches for mapping Figure 2 to Figure 4

49

Matched Pairs
Criteria 01 02 03 04 05 06 07 08 09 10 11
Recognition Criteria

keyword x x x x x x x x x x x
value x x x
structure x x x x x x x

Special Considerations
units (IDS 1) x
= x x x x x x x x x
⊃ (IDS 2)
⊂ (IDS 3)
�∼ (IDS 4) r r

Confidence 6 6 4 4 6 6 8 -1 8 -1 8
Selected Pair (Req. 1–10) x x x x x x x
01. 〈Country Map, Country Map〉
02. 〈City Map, City Map〉
03. 〈Map, Country Map〉
04. 〈Map, City Map〉
05. 〈Latitude, Latitude〉
06. 〈Longitude, Longitude〉
07. 〈Country, Country Name〉
08. 〈Country, Country Map〉
09. 〈City, City Name〉
10. 〈City, City Map〉
11. 〈Size, Nr Sq Km〉

Table 4: Direct matches for mapping Figure 2 to Figure 5

criteria for an existing object set s, for example, consists of (1) checking for a source keyword

in an object-set name or object-set type name or a comment associated with the object set,

(2) checking for a source value that matches a target regular expression for s, and (3) checking

to see whether any target relationship set connected to s has a potential match with a source

relationship set according to the criteria for a relationship set. (This last recognition criterion

depends on potential object set matches and is filled in as potential relationship matches,

both existing and derived, are checked.) For criteria (2), the value criteria, we have filled-

in the tables assuming reasonable database values, only some of which are given (i.e. in

Figure 3).

In Sections 3 and 4 we also discussed and illustrated the special considerations we use for

Algorithm Generate Target-to-Source Mapping. As part of this discussion, we enumerated

all the Issue/Default/Suggestion (IDS) statements we use in our algorithm. We use this

50

Matched Pairs
Criteria 01 02 03 04 05 06 07 08
Recognition Criteria

keyword x
value
structure x x x x x x x x

Special Considerations
units (IDS 1)
= x
⊃ (IDS 2)
⊂ (IDS 3)
�∼ (IDS 4)
subset connections (IDS 5)
⇔ x
⇐ �⇒ (IDS 6)
�⇐ ⇒ (IDS 7) d d
�⇐ ⇒ (IDS 8) d d
�⇐ �⇒ (IDS 6) d
�⇐ �⇒ (IDS 7)
�⇐ �⇒ (IDS 8) d
multiple rel sets (IDS 9)
partitioning (IDS 10)
concatenating (IDS 11)
multiple keys (IDS 12)
obj-set paths (IDS 13) d r r
rel-set paths (IDS 14)
query (IDS 15) d d d d

Confidence 6 2 -1 -1 4 4 4 4
Selected Pair (Req. 1–10) x x x x x x
01. 〈Map, ρCountryMap ← MapCountryMap ∪ ρCityMap ← MapCityMap〉
02. 〈Location, πLocationαLocation(Country CountryName 1 Country Latitude

1 Country Longitude)〉
03. 〈Location, πLocationαLocation(Country CountryName 1 Country Latitude

1 City Latitude 1 City Longitude)〉
04. 〈Location, πLocationαLocation(Country CountryName 1 Country Longitude

1 City Longitude 1 City Latitude)〉
05. 〈Country Map is for Country, πCountryName CountryMap(Country CountryMap

1 Country CountryName)〉
06. 〈City Map is for City, πCityMap CityName(City CityMap 1 City CityName)
07. 〈Country Location, πCountryName LocationαLocation(Country CountryName

1 Country Latitude 1 Country Longitude)〉
08. 〈Latitude Location Longitude, πLatitude Location LongitudeαLocation(Country CountryName

1 Country Latitude 1 Country Longitude)〉
Table 5: Derived matches for mapping Figure 2 to Figure 5

51

Matched Pairs
Criteria 01 02 03 04
Recognition Criteria

keyword x x
value x x
structure x x x x

Special Considerations
units (IDS 1)
= x x
⊃ (IDS 2)
⊂ (IDS 3)
�∼ (IDS 4)
subset connections (IDS 5)
⇔ x
⇐ �⇒ (IDS 6)
�⇐ ⇒ (IDS 7)
�⇐ ⇒ (IDS 8) d
�⇐ �⇒ (IDS 6)
�⇐ �⇒ (IDS 7)
�⇐ �⇒ (IDS 8)
multiple rel sets (IDS 9)
partitioning (IDS 10)
concatenating (IDS 11)
multiple keys (IDS 12)
obj-set paths (IDS 13)
rel-set paths (IDS 14) u r
query (IDS 15) d d

Confidence 8 8 4 -1
Selected Pair (Req. 1–10) x x x
01. 〈City, City〉
02. 〈Airport, Airport Code〉
03. 〈Airport is for City, πAirportCode City(Airport AirportCode 1 Airport serves City)〉
04. 〈Airport is for City, πAirportCode City(Airport AirportCode 1 Airport is located in City)〉

Table 6: Matches for mapping Figure 2 to Figure 6

52

enumeration to reference specific IDS statements in the Special Considerations section of

our tables.

We can select the “best” functional mapping that satisfies Requirements 1 through 10 by

a backtracking algorithm that enumerates all maximal mappings (i.e. mappings to which no

more pairs can be added without violating the requirements). Our backtracking algorithm

ignores rejected pairs, but considers all others as possible components of maximal mappings.

We then choose the “best” maximal mapping by summing the confidence values for each

pair to get a confidence value for the mapping and taking the mapping with the largest total

confidence value. If several have the largest confidence value, we can select arbitrarily, and

in this case, we should also draw this circumstance to the attention of the user.

For our example, the marks in the Selected Pair row designate the set of ordered pairs for

each of the three source-to-target mappings. In Table 4, for example, we do not include the

pair in Column 03 (〈Map, Country Map〉) because Requirement 1 constrains the mapping
to be injective and we have in Column 01 (〈Country Map, Country Map〉) with a higher
confidence value. Similarly, we do not include the pair in Column 04 because of the higher

confidence pair in Column 02. Two of the pairs in Table 4 have been rejected, Columns

08 and 09, and two of the pairs in Table 5 have also been rejected, Columns 03 and 04.

We include all the rest to form our target-to-source mapping from the target about travel

(Figure 2) to the source about maps (Figure 5).

6 Formal Properties of Target-to-Source Mappings

In this section we discuss our stated goal of producing a valid interpretation for the target

model given that the source interpretation for a target-to-source mapping is valid. Having

specified the mapping algorithm in Section 5, we can now evaluate to what extent this goal

has indeed been achieved.

In the following we assume that the source input to the algorithm consists of a populated

OSM model instance that satisfies all declared integrity constraints. We then consider the

mapping f obtained as output from our algorithm that generates target-to-source mappings,

along with the corresponding generated target population. To check whether this target

population satisfies the integrity constraints declared in the target input, we proceed in four

steps:

• First, we provide a list of all integrity constraints used in the restricted subset of

53

kind of con-
straint

target
items

source
items

justification for exist-
ing source items

justification for derived
source items

local constraints
for one object set

derived by a query whose result has
a single attribute

displayable type a b Req. 5 (type compatibility)

with IDS 1–4 (type compatibility
and coercions)

for derived role (Section 4.1):
Req. 4 with IDS 5 yield the re-
quired coercion;

for derived generalization (Sec-
tion 4.1): coercion is appropriately
constructible;

for derived component of compos-
ite in source (Section 4.2): by ex-
traction routine with IDS 10, as-
suming that the target type allows
nulls;

for derived composite correspond-
ing to composite in target (Sec-
tion 4.2): by concatenation with
IDS 11;

for derived composite key ob-
ject set corresponding to nondis-
playable source object set (Sec-
tion 4.3): possibly with IDS 12,
similar to derived composite (Sec-
tion 4.2)

nondisplayable type a b Req. 5 (type compatibility);

(Req. 6 is useful too but does not
effect the formal properties)

for derived role (Section 4.1):
Req. 4 with IDS 5 yield the re-
quired coercion;

for derived generalization (Sec-
tion 4.1): coercion appropriately
constructible;

for a derived nondisplayable source
object set corresponding to a dis-
playable source object set (Sec-
tion 4.3): by generating unique
OID’s for displayable objects;

for a derived nondisplayable
source object set corresponding
to a source relationship set (Sec-
tion 4.3): possibly with IDS 13,
by generating unique OID’s for
relationships

local
constraints for one
relationship set

derived by a query whose result has
two or more attributes which must
be identifiers of object sets

arity a b Req. 3 (same arity) in all cases: obvious by
construction

referential integrity a b Req. 4 (appropriate subset con-
straints for related object sets)

with IDS 5

for associated relationship of a de-
rived role (Section 4.1): inherited
from assumed relationship;

for derived relationship using a
source path (Section 4.4) with
IDS 14 and IDS 15: object sets
of target relationship are already
matched

54

minimum participa-
tion (upwards
monotonic)

a b IDS 6 (source constraint equiva-
lent, Case 1, or more restrictive,
Case 2)

or

IDS 8 (source constraint less re-
strictive, Case 3; discard violating
objects): may have an impact on
referential integrity for another re-
lationship, or for subset and union
constraints that are adjusted by
recursion

for associated relationship of a de-
rived role (Section 4.1): inherited
from assumed relationship, and by
the definition of roles;

for derived relationship set using
a source path (Section 4.4) with
IDS 14 and IDS 15: constraints for
view appropriately computed

maximum
participation (down-
wards monotonic)

a b IDS 6 (source constraint equivalent
Case 1, or more restrictive, Case 2)

or

IDS 7 (source constraint less re-
strictive, Case 3; discard some rela-
tionships): may have an impact on
minimum participation for an ob-
ject set involved in the same rela-
tionship (IDS 8) that is adjusted
by recursion

for associated relationship of a de-
rived role (Section 4.1): inherited
from assumed relationship;

for derived relationship set using
a source path (Section 4.4) with
IDS 14 and IDS 15: constraints for
view appropriately computed

functional depen-
dency (downwards
monotonic)

a b IDS 6 (source constraint equivalent
Case 1, or more restrictive, Case 2)

or

IDS 7 (source constraint less re-
strictive, Case 3; discard some rela-
tionships): may have an impact on
minimum participation for an ob-
ject set involved in the same rela-
tionship (IDS 8) that is adjusted
by recursion

for associated relationship of a de-
rived role (Section 4.1): inherited
from assumed relationship;

for derived relationship set using
a source path (Section 4.4) with
IDS 14 and IDS 15: constraints for
view appropriately computed

global ISA con-
straints
subset constraint
(downwards mono-
tonic for a; upwards
monotonic for b)

a ⊆ b a′ ⊆ b′ Req. 7(1) (ISA-compatible coer-
cions) and Req. 8 (corresponding
subset constraint in source)

arise only in the context of a union
constraint

mutual exclusion
constraint (down-
wards monotonic for
a and b)

a1 ∩ a2 =
∅

a′
1 ∩ a′

2 =∅
Req. 7 (ISA-compatible coercions)
and Req. 9 (corresponding mutual
exclusion constraint in source)

for derived partition (Section 4.1):
population generated by the union
constraint, and mutual exclusion is
guaranteed by Req. 9 with Req. 7

union constraint a = a1 ∪
... ∪ an

a′ = a′
1 ∪

... ∪ a′
n

Req. 7(1) (ISA-compatible coer-
cions) and Req. 10 (corresponding
union constraint in source)

for derived union (Section 4.1):
population generated by the union
constraint

Table 7: Justification for valid-interpretation claim

55

OSM as introduced in Section 2 (see Column 1 of Table 7). The items of this list are

grouped into three classes. The first class contains the local constraints that refer to

one individual object set. The second class contains the local constraints that refer

to one individual relationship set. Finally, the third class contains the global ISA

constraints.

• Second, we identify the OSM submodel instance in the target that includes only those

object and relationship sets that map to the source. We argue that the object and

relationship sets that map to a source constitute a proper OSM submodel instance

as follows. (1) Discarding any relationship set always yields a proper OSM submodel

instance. (2) Discarding any object set that has no attached relationship set and

no specialization(s) in an ISA hierarchy also always yields a proper OSM submodel

instance. Observe that once we have discarded an object set in an ISA hierarchy that

has no specializations (and no connected relationship sets), its parent may then also

have no specializations and no connected relationship sets and may also be discarded.

Thus, we can discard object sets in an ISA hierarchy recursively, starting from the

bottom until we (a) wish to stop, (b) discard the entire ISA hierarchy, or (c) encounter

an object set that has a connecting relationship set. Although we may apply the

second rule recursively, we claim that these are the only rules we use to form the OSM

submodel instance whose items all match, and thus the OSM submodel instances we

use are proper. Our claim follows from two observations. (A) By Rule (1), we can

immediately discard all unmatched relationship sets. (B) An unmatched object set

can have no matched connecting relationship sets (Req. 4) and can have no descendant

specializations (direct or indirect) that are matched. For suppose that a descendent

specialization is matched, then by the discussion in Section 4.1 we generate a match

for all missing generalizations. The implication of Observation (B) is that we can

(recursively) discard all unmatched object sets. Hence, once unmatched relationship

sets have been discarded, we can discard any object set that stands alone (not in an ISA

hierarchy), and we can recursively discard unmatched object sets bottom up until we

either discard the entire ISA hierarchy or until we encounter a matched object set. If

we encounter a matched object set in an ISA hierarchy, all its ancestor generalizations

(direct and indirect) are guaranteed to have a match. Thus, we are left with only

matched object sets and matched relationship sets.

56

• Third, we inspect each integrity constraint of the reduced target. Each constraint
refers to a well-determined set of items (object sets or relationship sets) in the target

model (see Column 2 of Table 7). If item a is in the domain of f , then a has an image

b in the source which is different from all other images under f (Req. 1) and of the

same sort (Req. 2). In this case a is populated exactly from b. If all target items

referred to by a target constraint are mapped to some source item (see Column 3 of

Table 7), then we can show that the satisfaction of the target constraint is implied by

the assumed satisfaction of the source constraints. Here we have to distinguish two

subcases: either an image b is directly declared in the source model (see Column 4 of

Table 7), as discussed in Section 3, or b has been derived (see Column 5 of Table 7),

as discussed in Section 4.

• Fourth, we consider the interaction of constraints. Usually, such an interaction will
not occur. But IDS 7 and IDS 8 may require us to discard some part of the target

population tentatively generated from the source population (or to change a target

constraint). The default actions are designed to recursively adjust any violation of a

constraint, and they are guaranteed to terminate successfully.17

Theorem Let t be a target OSM model instance and s be a source OSM model instance.

Let f be a target-to-source mapping from t to s generated by Algorithm Generate Target-to-

Source Mapping, and assume that t is populated from s according to f in accordance with

the default rules in the IDS statements (or in accordance with user-supplied rules that are

consistent with the default rules). Let t′ be the OSM submodel instance whose object sets and

relationship sets all map to s. Then, the generated population of t′ is a valid interpretation.

Proof : Case Analysis. For each case Table 7 summarizes the reasoning for the validity of

the interpretation of the populated OSM submodel instance of the target that has matching

source object and relationship sets. The entries in Table 7 refer to pertinent discussions in

Sections 2 through 5, which we do not repeated here. Relying on this previous discussion,

Steps one through three above outline the required soundness and completeness arguments

necessary to complete the proof.

17This loss of data may be unacceptable. But for the proof, we are assuming that when losing data is
unacceptable, the user chooses to change the target constraints.

57

7 Merging Target-to-Source Mappings

In Section 5 we summarized our approach for finding a mapping from a given target model

to just one source model, and in Section 6 we showed that this mapping produces a valid

interpretation for the OSM submodel instance populated from the single source. Let us now

consider the case that more than one populated source model is available. We only briefly

sketch the challenges and the options to resolve them. The basic challenge is to determine

how the source models and their populations relate to each other. With respect to the various

items under consideration, do they complement or do they overlap or are they conflicting?

These questions about integrating sources have already been studied under several points of

view—a rather general approach and its relationship to other work is reported in [LM98].

In general, all mutual relationships among the sources could have an impact on the

final result of integration. Within the framework presented in this paper, however, we are

assuming a much more focused situation: our clear emphasis is given by the target model,

which can be used to direct the search for a good integration. More specifically, it appears

reasonable to proceed in two steps:

• In a first step, we apply Algorithm Generate Target-to-Source Mapping to map the

target model individually to each of n source models, and we then generate the corre-

sponding target populations Ii, separately for each of the sources, i = 1, ... ,n.

• In a second step, we somehow merge these populations. We can therefore take advan-
tage of the results of the first step: any individual target population Ii is guaranteed

to satisfy the constraints of the target model, and also has a Criteria-Consideration-

Confidence Table generated by our algorithm that can be exploited.

Clearly, in the second step there are still some options left for deciding the basic questions

about complementation, overlap, and conflict of items. For each of the crucial decisions we

should propose an appropriate IDS, requesting user insights, clarifications, or qualifications,

while providing a default. In general, we must deal with the following issues: (1) identify and

process semantic equalities that are hidden by different syntactic representations, (2) take

the union I1 ∪ ... ∪ In of all available data, and (3) discard some of the data if constraints

cannot be satisfied.

semantic equalities: Identifying semantic equalities is necessary in order to detect overlaps

between sources that are not already removed by the effects of duplicate removal when

58

taking the union. Discovering semantically identical objects in different sources by

using only syntactic material, however, can be difficult. Unique identifying lexical

values may or may not exist, and even when such values do exist, they may have

different representations and may be prone to error. Without human intervention, we

may only be able to assert with a certain probability that objects from different sources

are identical.

union: Taking the (set theoretical) union of available data is reasonable in order to get

a best achievable covering of the items under consideration, thereby capturing all

possibilities that one source is complemented by the others. Since the union depends

on object identity, we can only produce a union that is as good as our ability to

discover semantically identical objects. Further, in our framework we are taking the

union of populated OSM submodel instances, which may not all be the same. We must

therefore use the full target, from which each submodel instance is derived, to guide

the formation of the union.

constraints: Once we form the union, we may or may not satisfy the constraints of the

target model instance. Discarding data in the case of a conflict (i.e. if some constraint of

the target model is violated by the equality-reduced union) appears to be indispensable

in order to achieve constraint satisfaction purely automatically. Otherwise, given no

additional semantic input, the algorithm would have to arbitrarily invent spurious

data. Furthermore, some kinds of constraints can never be satisfied by adding data,

for example a 1-maximum cardinality constraint. On the other hand, within our two

step procedure we can always reach satisfaction by discarding data from the union,

because any part of the union that originates from exactly one source does satisfy

all constraints in the OSM submodel instance populated from that source. The hard

problem, however, is to discover how to minimally remove individual facts such that

the constraints are satisfied.

We leave the resolution of these issues within the context of our framework to future research.

8 Source Modeling

Until now, we have considered the sources as given populated OSM model instances. In this

section we briefly explain how to convert populated source data repositories to populated

59

interface Country (
extent Countries
keys Country_Name) : persistent

{
attribute String Country_Name;
attribute Integer Nr_Sq_Km;
attribute String Latitude;
attribute String Longitude;
relationship Set<Country_Map> has_Country_Map

inverse Country_Map::is_for_Country;
};

interface City (
extent Cities) : persistent
-- Several cities may
-- have the same name.

{
attribute String City_Name;
attribute String Latitude;
attribute String Longitude;
attribute Set<Image> City_Map;
relationship Set<City_Map> has_City_Map

inverse City_Map::is_for_City;
};

interface Map_For_Country (
extent Maps_For_Country) : persistent

{
attribute Image Country_Map;
relationship Country is_for_Country

inverse Country::has_Country_Map;
};

interface Map_For_City (
extent Maps_For_City) : persistent

{
attribute Image City_Map;
relationship City is_for_City

inverse City::has_City_Map;
};

Figure 13: Source ODL for ODMG database.

OSM model instances. The basic idea is to model the source directly as it stands when the

source is a structured data repository, and to extract the data into an OSM model instance

when the source is a semistructured or an unstructured data repository. Elsewhere, we have

provided a detailed explanation for this conversion for relational-database sources [EX97] and

for unstructured, data-rich sources [ECJ+99]. Here, we sketch the idea for object-oriented

databases.

Given an ODL (Object Definition Language) specification for ODMG [Cat96], such as

the one in Figure 13, we model it with an OSM model instance according to the following

rules.

• Every attribute becomes an object set. If attributes in different interfaces have the
same name and the same type, there is only one object set; otherwise there is an object

60

set for each, with a distinguishing subscript appended for the second object set, the

third object set, and so forth.

• The ODL type provides the type for an object set.

• The interface name becomes a nondisplayable object set except in the special case
when there is only one attribute.

• An interface name that has become a nondisplayable object set functionally determines
each attribute in its interface.

• Keys in an interface functionally determine the nondisplayable object set derived from
the interface name.

• Relationships in an interface become relationship sets.

• In relationships, a bulk type (e.g. Set) specifies a “many” constraint, and the absence
of a bulk type specifies a “one” constraint—these cardinalities determine the FD’s for

the relationship set.

• Optional constraints are added to generated relationship sets if (1) the connection is
for an ODL attribute that appears in more than one interface or (2) the connection

is for a relationship, unless it yields a relationship set that turns out to be the only

relationship set connected to an object set.

• Comments are included as written.

Applying these rules to Figure 13 yields the OSM model instance in Figure 518. Obtaining

the data for the valid interpretation is straightforward. Nondisplayable object sets need

system-generated OID’s, one for each object. Other object sets, including those of type

Image, can be obtained by projection.

9 Conclusion

We have presented a framework for addressing the problems encountered in extracting in-

formation from heterogeneous information sources using ontologically specified target views.

18A more sophisticated set of rules can model more complex ODMG ODL, but this set is sufficient to
illustrate the idea.

61

In this framework, we assume that a user wishes to obtain information with respect to a

particular world view, the target view. This target view is specified independently of any

particular source, and is thus a view that can be used for dynamically changing sources and

for future (as yet nonexisting) sources.

As a fundamental feature of the proposed framework, we model both source views and

the target view using the same conceptual model. This reduces the heterogeneity problem

to same-model mappings and provides for a solid theoretical foundation. The model we use

is OSM, which has a direct correspondence to first-order predicate calculus. The target-to-

source mapping we produce maps target object and relationship sets to source object and

relationship sets or derived source object and relationship sets. The requirements we place

on this mapping (Req. 1 through 10) ensure that it has the properties needed so that we can

properly load a target model instance from a populated source model instance. We proved

that if a source has a valid interpretation, then the generated mapping produces a valid

interpretation for the part of the target loaded from the source.

The target-to-source mapping generator can operate entirely automatically. The results,

however, may not be satisfactory because the mapping generator makes default decisions

about issues that arise. When these issues arise, the mapping generator interacts with a

user through IDS (Issue/Default/Suggestion) statements. These IDS statements explain

the issue involved, say what default action the system will take if the user does not inter-

vene, and provide suggestions about what the user should do. The issues addressed include

units (IDS 1), type compatibility (IDS 2 through 4), subset connections for relationship sets

(IDS 5), stronger and weaker relationship constraints (IDS 6 through 8), multiple (existing)

relationship sets between the same (existing) object sets (IDS 9), aggregate-value decom-

position (IDS 10) and composition (IDS 11), keys for nondisplayable object sets (IDS 12),

nondisplayable object sets matching existing or derived relationship sets (IDS 13), multi-

ple relationship-paths for derived relationship sets (IDS 14), and user-specified queries for

derived relationship sets (IDS 15).

The ontological description for a target OSM model instance enables target-to-source

object-set and relationship-set matching through sample values and expected keywords. We

express these sample object and relationship values and these expected keywords by regular

expressions. As explained in our discussion, we take this approach to show how values and

keywords can be a valuable asset in matching target and source object sets and relationship

62

sets and to show how the matching results can be used to express confidence in the mapping.

We believe, however, that techniques using thesauri for synonyms, hypernyms, and hyponyms

as well as probabilistic structural matching can and should also be used in matching target

and source object and relationship sets. Instead of repeating this work here, we provide a

place for it in our framework and expect to use it, as well as value and keyword matching,

in our work.

In general, our framework shows how to make the process of generating target-to-source

mappings synergistic in the sense that the system (1) does all it can to provide solutions,

(2) requests only specific information from the user, (3) records reasons for the decisions it

makes, and (4) provides a measure of confidence in its results. We provide the system with

the ontological knowledge that enables this level of synergy.

Besides this work, which we discussed in detail, we also briefly explored both upstream

and downstream activities. On the upstream side, we discussed the process of source model-

ing, and we illustrated the process for ODMG object-oriented databases. On the downstream

side, we discussed the process of merging target-to-source mappings for several sources. We

pointed out that merging valid model instances for the same target model instance gives us

a solid foundation from which to address the issues involved.

As for future work, we intend to materialize our framework in a prototype implementation

and explore, in depth, both the upstream modeling activities and the downstream merging

activities. As is often the case for significant research issues, even though progress has been

made, there is still much more to do.

References

[AABM82] P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini. Inclusion and equivalence
between relational database schemata. Theoretical Computer Science, 19:267–
285, 1982.

[ABM+97] S. Abiteboul, P. Buneman, T. Milo, D. Suciu, and J. Widom, editors. Pro-
ceedings of the Workshop on Management of Semistructured Data, Tucson,
Arizona, May 1997.

[ACHK93] Y. Arens, C.Y. Chee, C.-N. Hsu, and C.A. Knoblock. Retrieving and integrat-
ing data from multiple information sources. International Journal of Intelligent
and Cooperative Information Systems, 2(2):127–159, 1993.

[AD93] P. Atzeni and V. DeAntonellis. Relational Database Theory. The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, California, 1993.

63

[BCV99] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-
tured and structured data sources. SIGMOD Record, 28(1):54–59, March 1999.

[BCW90] M. Bouzeghoub and I. Comyn-Wattiau. View integration by semantic unifi-
cation and transformation of data structures. In Proceedings of the 9th Inter-
national Conference on the Entity-Relationship Approach (ER’90), Lausanne,
Switzerland, October 1990.

[Bis98] J. Biskup. Achievements of relational database schema design theory revisited.
In B. Thalheim and L.Libkin, editors, Semantics in Databases, volume LCNS
1358, pages 29–54. Springer Verlag, 1998.

[BLN86] C. Batini, M. Lenzerini, and S.B. Navathe. A comparative analysis of method-
ologies for database schema integration. ACM Computing Surveys, 18(4):323–
364, December 1986.

[Bun77] M.A. Bunge. Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture
of the World. Reidel, Boston, 1977.

[Bun79] M.A. Bunge. Treatise on Basic Philosophy: Vol. 4: Ontology II: A World of
Systems. Reidel, Boston, 1979.

[CA97] S. Castano and V. De Antonellis. Semantic dictionary design for database
interoperability. In Proceedings of 1997 IEEE International Conference on
Data Engineering (ICDE’97), pages 43–54, Birmingham, United Kingdom,
April 1997.

[Cas93] M. Castellanos. A methodology for semantically enriching interoperable
databases. In Proceedings of the 11th British National Conference on Databases
(BNCOD-11), volume 696 of Lecture Notes in Computer Science, pages 58–75,
Keele, UK, July 1993. Springer-Verlag.

[Cat96] R.G.G. Cattell. The Object Database Standard: ODMG-93, Release 1.2. Mor-
gan Kaufmann publishers, Inc., San Francisco, 1996.

[CGL+98] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Source
integration in data warehousing. In Proceedings of the 9th International Work-
shop on Database and Expert Systems Applications (DEXA-98), pages 192–
197. IEEE Computer Society Press, 1998.

[CGL+99] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A
principled approach to data integration and reconciliation in data ware-
housing. In Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW’99), Heidelberg, Germany, June
1999. CEUR Electronic Workshop Proceedings http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-19/.

[CM99] S. Cluet and T. Milo, editors. Proceedings of the ACM SIGMOD Workshop on
the Web and Databases (WebDB’99), Philadelphia, Pennsylvania, June 1999.

[Coh98] W.W. Cohen. Integration of heterogeneous databases without common do-
mains using queries based on textual similarity. In Proceedings of 1998 ACM
SIGMOD International Conference on Management of Data, pages 201–212,
Seattle, Washington, June 1998.

64

[DEW97] R.B. Doorenbos, O. Etzioni, and D.S. Weld. A scalable comparison-shopping
agent for the World-Wide Web. In Proceedings of the First International
Conference on Autonomous Agents, pages 39–48, Marina Del Rey, California,
February 1997.

[DG97] O.M. Duschka and M.R. Genesereth. Infomaster—an information integra-
tion tool. In International Workshop on Intelligent Information Integration,
Freiburg, Germany, September 1997.

[DMRA97] L.M.L. Delcambre, D. Maier, R. Reddy, and L. Anderson. Structured maps:
Modeling explicit semantics over a universe of information. International Jour-
nal on Digital Libraries, 1(1):20–35, April 1997.

[ECJ+99] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K.
Ng, and R.D. Smith. Conceptual-model-based data extraction from multiple-
record Web pages. Data & Knowledge Engineering, 31(3):227–251, November
1999.

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems Anal-
ysis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey,
1992.

[Emb98] D.W. Embley. Object Database Development: Concepts and Principles.
Addison-Wesley, Reading, Massachusetts, 1998.

[EP90] A.K. Elmagarmid and C. Pu. Introduction to the special issue on heteroge-
neous databases. ACM Computing Surveys, 22(3):175–178, September 1990.

[EX97] D.W. Embley and M. Xu. Relational database reverse engineering: A model-
centric, transformational, interactive approach formalized in model theory. In
DEXA’97 Workshop Proceedings, pages 372–377, Toulouse, France, September
1997. IEEE Computer Society Press.

[FPNB99] J. Fowler, B. Perry, M. Nodine, and B. Bargmeyer. Agent-based semantic
interoperability in infosleuth. SIGMOD Record, 28(1):60–67, March 1999.

[Gal99] A. Gal. Semantic interoperability in information services: Experience with
coopware. SIGMOD Record, 28(1):68–75, March 1999.

[GFSS99] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. An extensible framework
for data cleaning. Technical Report RR-3742, INRIA, 1999.

[GKD97] M.R. Genesereth, A.M. Keller, and O.M. Duschka. Infomaster: An informa-
tion integration system. In Proceedings of 1997 ACM SIGMOD International
Conference on Management of Data, pages 539–542, Tucson, Arizona, May
1997.

[GLdSRN00] P.B. Golgher, A.H.F. Laender, A.S. da Silva, and Ribeiro-Neto. An example-
based environment for wrapper generation. In Proceedings of the 2nd Inter-
national Conference on the World-Wide Web and Conceptual Modeling, Salt
Lake City, Utah, October 2000. to appear.

[GSCS93] M. Garcia-Solaco, M. Castellanos, and F. Slator. Discovering interdatabase
resemblance of classes for interoperable databases. In Proceedings of RIDE-
IMS’93 Research Issues in Data Engineering: Interoperability in Multidatabase
Systems, pages 26–33, Vienna, Austria, April 1993.

65

[GSSC95] M. Garcia-Solaco, F. Slator, and M. Castellanos. A structure based schema
integration methodology. In Proceedings of the 11th International Conference
on Data Engineering (ICDE’95), pages 505–512, Taipei, Taiwan, 1995.

[HB97] S. Huffman and C. Baudin. Toward structured retrieval in semi-structured
information spaces. In Proceedings of the 1997 International Joint Conference
on Artificial Intelligence, pages 751–756, 1997.

[HGMC+97] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting
semistructured information from the Web. In Proceedings of the Workshop on
Management of Semistructured Data, Tucson, Arizona, May 1997.

[Hul86] R. Hull. Relative information capacity of simple relational database schemata.
SIAM Journal on Computing, 15(3):856–886, 1986.

[KLSS95] T. Kirk, A.Y. Levy, Y. Sagiv, and D. Srivastava. The information manifold.
In Working Notes of the AAAI Spring Symposium on Information Gathering
from Heterogeneous, Distributed Environments, 1995.

[KMA+98] C. Knoblock, S. Minton, J. Ambite, N. Ashish, J. Margulis, J. Modi, I. Muslea,
A. Philpot, and S. Tejada. Modeling web sources for information integration.
In Proceedings of AAAI 1998, 1998.

[KS96] V. Kashyap and A. Sheth. Semantic and schematic similarities between
database objects: A context-based approach. The VLDB Journal, 5:276–304,
1996.

[LM98] J. Lin and A.O. Mendelzon. Merging databases under constraints. Interna-
tional Journal of Cooperative Information Systems, 7(1):55–76, 1998.

[LMR90] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple au-
tonomous databases. ACM Computing Surveys, 22(3):267–293, September
1990.

[LNE89] J. Larson, S. Navathe, and R. Elmasri. A theory of attribute equivalence
in databases with application to schema integration. IEEE Transactions on
Software Engineering, 15(4), 1989.

[LRO96] A.Y. Levy, A. Rajaraman, and J.J. Ordille. Querying heterogeneous informa-
tion sources using source descriptions. In Proceedings of the Twenty-second
International Conference on Very Large Data Bases, Mumbai (Bombay), In-
dia, 1996.

[MMK98] I. Muslea, S. Minton, and C. Knoblock. STALKER: Learning extraction
rules for semistructured, Web-based information sources. In Proceedings of
AAAI’98: Workshop on AI and Information Integration, Madison, Wisconsin,
July 1998.

[MR98] J.A. Makowsky and E.V. Ravve. Dependency preserving refinements and the
fundamental problem of database design. Data and Knowledge Engineering,
24(3):277–312, 1998.

[OI99] A. Ouksel and A. Iqbal. Ontologies are not the panacea in data integration: A
flexible coordinator to mediate context construction. Distributed and Parallel
Databases, 7:1–29, 1999.

66

[ON94] A.M. Ouksel and C.F. Naiman. Coordinating context building in hetero-
geneous information systems. Journal of Intelligent Information Systems,
3(2):151–183, 1994.

[OS99] A.M. Ouksel and A. Sheth. Semantic interoperability in global information
systems—a brief introduction to the research area and the special section.
SIGMOD Record, 28(1):5–12, March 1999.

[PSU98a] L. Palopoli, D. Saccà, and D. Ursino. Automatic derivation of termino-
logical properties from database schemes. In Database and Expert Systems
Applications—9th International Conference—DEXA’98, pages 90–99, Vienna,
Austria, August 1998.

[PSU98b] L. Palopoli, D. Saccà, and D. Ursino. An automatic technique for detecting
type conflicts in database schemes. In Proceedings of the 1998 ACM CIKM
International Conference on Information and Knowledge Management, pages
306–313, Bethesda, Maryland, November 1998.

[SL90] A.P. Sheth and J.A. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computing Sur-
veys, 22(3):183–236, September 1990.

[SM91] M. Siegel and S. Madnick. A metadata approach to resolving semantic con-
flicts. In Proceedings of the Seventeenth International Conference on Very
Large Databases, September 1991.

[SO99] K. Smith and L. Obrst. Unpacking the semantics of source and usage to
perform semantic reconciliation in large-scale information systems. SIGMOD
Record, 28(1):26–31, March 1999.

[SP94] S. Spaccapietra and C. Parent. View integration: A step forward in solving
structural conflicts. IEEE Transactions on Knowledge and Data Engineering,
6(2):258–274, April 1994.

[SSR94] E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate
interoperability among heterogeneous database systems. ACM Transactions
on Database Systems, 19(2):254–290, 1994.

[SV00] D. Suciu and G. Vossen, editors. Proceedings of the Third International Work-
shop on the Web and Databases (WebDB 2000), Dallas, Texas, May 2000.

[Ull97] Jeffrey D. Ullman. Information integration using logical views. In Foto N.
Afrati and Phokion Kolaitis, editors, Proceedings of the 6th International Con-
ference on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Com-
puter Science, pages 19–40, Delphi, Greece, January 1997. Springer-Verlag.

67

