
Record-Boundary Discovery in Web Documents

D.W. Embley�

Y.S. Jiang

Y.-K. Ngy

Department of Computer Science

Brigham Young University

Provo, Utah 84602, U.S.A.

fembley,jiang,ngg@cs.byu.edu

Abstract

Extraction of information from unstructured or semistructured Web documents
often requires a recognition and delimitation of records. (By \record" we mean a
group of information relevant to some entity.) Without �rst chunking documents
that contain multiple records according to record boundaries, extraction of record
information will not likely succeed. In this paper we describe a heuristic approach to
discovering record boundaries in Web documents. In our approach, we capture the
structure of a document as a tree of nested HTML tags, locate the subtree containing
the records of interest, identify candidate separator tags within the subtree using �ve
independent heuristics, and select a consensus separator tag based on a combined
heuristic. Our approach is fast (runs linearly for practical cases within the context
of the larger data-extraction problem) and accurate (100% in the experiments we
conducted).

Keywords: data extraction, data structuring, unstructured data, data records,
record boundaries, record-boundary discovery, World-Wide Web, semistructured
data.

�Research funded in part by Novell, Inc.
yContact author: (801) 378-2835 (Phone), (801) 378-7775 (FAX)

1

1 Introduction

The amount of data available electronically on the Web has increased dramatically in recent

years. Users commonly retrieve this data by browsing and keyword searching, which are

intuitive, but present severe limitations [Ape94]. To overcome these limitations, some

researchers have resorted to database techniques. But databases require structured data

and most Web data is unstructured, or at best semistructured [BDFS97], and cannot be

queried using traditional query languages.

To structure Web data for traditional database query languages, one of the most promis-

ing approaches is to build wrappers for Web documents [Ade98, AK97a, AK97b, AM97,

DEW97, ECJ+98, GHR97, HGMC+97, KWD97, HGMC+97, MMK98, Sod97]. In building

wrappers, we often need to divide source documents into chunks of information that corre-

spond to records (i.e., groups of information relevant to some entity). In a Web document

that lists multiple car advertisements, for example, we need to identify each individual ad-

vertisement before we can extract the information from the ad. This record identi�cation

task, by itself, is nontrivial [AK97a, AK97b].

In this paper we propose an approach to discover boundaries of records in a Web docu-

ment. Once found we can separate these records and pass them on for further processing.

Our main contribution here is to provide a set of individual heuristics and a way to combine

these heuristics into a method for discovering record boundaries. We assume that each Web

document we process (1) has multiple records and (2) contains at least one record-separator

tag. We note that it is an entirely di�erent problem to check these assumptions or to solve

similar document classi�cation problems such as to determine if a record spans multiple

Web documents or if a record resides in a single Web document. We leave these issues for

future research [WWW].

This is not the �rst time the problem of separating records in a Web document has been

addressed. [AM97, HGMC+97] detect record boundaries manually. They �rst examine

the documents, �nd the HTML tags that separate the records of interest, and then write

a program to separate the records. [Ade98, AK97a, AK97b, DEW97, KWD97, Sod97]

separate records with some degree of automation. Their approaches focus primarily on

using syntactic clues, such as HTML tags, to identify record boundaries. None of these

approaches is fully automatic.

2

Our approach di�ers markedly from these proposals. We �rst provide a heuristic for

locating groups of records within a Web document1 (Section 3). This heuristic builds a

\tag tree" based on the nested structure of start- and end-tags and locates the subtree that

contains the records of interest. We restrict our search for a separator tag to candidate

tags found in this subtree. We next apply �ve di�erent heuristics, which each individually

attempts to locate a separator tag among the candidate tags (Section 4). We label these �ve

heuristics: OM (ontology matching), SD (standard deviation), IT (identi�able \separator"

tags), HT (highest-count tags), and RP (repeating-tag pattern). Each of these heuristics

returns one or more candidate separator tags with a measure of certainty/uncertainty at-

tached to each candidate. Finally, we provide a way to combine these individual heuristics

to determine a consensus separator tag (Section 5) and hence discover the record bound-

aries. For practical cases and in the context of our overall extraction process, the entire

process is O(n), where n is the size of an input document. We applied this approach in

four di�erent application areas using Web documents obtained from twenty di�erent sites,

which together contained thousands of records (Section 6). The results were uniformly

good, attaining 100% accuracy on all sites we examined.

Before explaining the details of our approach, we begin in Section 2 with a short de-

scription of the larger context in which we use our record-boundary-detection heuristics.

This short description is necessary to provide the context for our record-boundary-discovery

research and to explain what we mean by an ontology and how use it in our work.

2 Context for Record-Boundary Discovery Problem

Figure 1, which we take from [ECJ+98], shows the overall process we use for extracting and

structuring Web data. As depicted in the �gure, the input (upper left) is a Web page, and

the output (lower right) is a populated database. The �gure also shows that an application

ontology is an independent input. For us, an application ontology is a conceptual model

augmented with additional information to describe constants and keywords for the appli-

cation. This ontology describes the application of interest. When we change applications,

for example from car ads, to job ads, to obituaries, to university courses, we change the

ontology, and we apply the process to di�erent Web pages. Signi�cantly, everything else

1We have done all our work with HTML documents, but most of this work should carry over directly
to other document type de�nitions, such as XML.

3

remains the same: the routines that extract records, parse the ontology, recognize constants

and keywords, and generate the populated database instance do not change. In this way,

we make the process generally applicable to any application domain.

Speci�cally, our approach consists of the following steps. (1) We develop the ontological

model instance for the domain of interest (the Application Ontology in the �gure). (2)

We parse this ontology to generate a database scheme (the Database Description in the

�gure) and to generate rules for matching constants and keywords (the Constant/Keyword

Matching Rules in the �gure). (3) To obtain data from the Web, we invoke a Record Extrac-

tor (see �gure) that separates an unstructured Web document into individual record-size

chunks, cleans them by removing markup-language tags, and presents them as individual

unstructured documents for further processing. (It is the record separation task in this

component that we discuss in this paper.) (4) We invoke recognizers that use the matching

rules generated by the parser to extract from the cleaned individual unstructured docu-

ments the objects and relationships from which we obtain the raw, as-yet-unorganized data

to populate the model instance. The result is the Data-Record Table in the �gure. (5)

Finally, we populate the generated database scheme by using heuristics to determine which

constants populate which records in the database scheme. These heuristics correlate ex-

tracted keywords with extracted constants and use cardinality constraints in the ontology

to determine how to construct records and insert them into the database.

In earlier papers [ECLS98, ECJ+98], we have presented these ideas for extracting and

structuring data from unstructured documents. We noted in these papers, and we reiterate

here that our ontologies are assumed to be narrow in breadth (meaning that the ontology

is small, having no more than a few dozen object and relationship sets in its conceptual

model) and that our target documents are assumed to be rich in data (meaning that there

is an abundance of recognizable constants such as email addresses, phone numbers, names

of automobile makes and models, and so forth). We also presented in those papers results of

experiments we conducted on three di�erent types of unstructured documents taken from

the Web, namely, car ads, job ads, and obituaries. In those experiments, our approach

attained recall ratios in the range of 90% and precision ratios near 95% (except for names in

obituaries, which had precision ratios near 75%). For our �rst paper [ECLS98], we separated

car and job ads by hand, and for our second paper [ECJ+98], we used a preliminary version

of the record-boundary processor, which we describe in this paper.

4

 Application Ontology

 Ontology
 Parser

Constant/Keyword
Matching Rules

Unstructured
Record

Documents

 Constant/Keyword
 Recognizer

 Database-Instance
 Generator

Populated Database

 Database Description

Record-Level
Objects,

Relationships,
and Constraints

Database
Scheme

Web Page

Record Extractor

Data-Record Table
(Descriptor/String/Position)

Object-Relationship
Model Instance

Data Frames

Lexicons

Figure 1: Data extraction and structuring process.

5

3 Heuristics for Locating Groups of Records

Most Web documents are hypertext documents that are written according to a document

type de�nition such as HTML that includes plain text and tags. A tag in a Web document

consists of a pair of opening and closing brackets, i.e., \<" and \>", that enclose a tag

name, sometimes followed by a list of tag attributes, whereas plain text in a Web document

is a sequence of characters not embedded within any tag. We distinguish each tag in a Web

document as either a start-tag or an end-tag. A start-tag is a tag whose name does not

start with a forward slash (i.e., \/"), whereas the name of an end-tag is the name of its

corresponding start-tag preceded by \/". Some start-tags have no corresponding end-tag.

In our processing we discard and thus totally ignore two special tags: (1) comment tags

that start with <! and (2) any end-tag that has no corresponding start-tag.

Tags in a Web document D de�ne discrete regions in D. A region R in D begins

where a start-tag S appears and ends either where the the corresponding end-tag E of

S appears or (if E does not exist) just before the next tag. Between a start-tag and its

corresponding end-tag, other start- and/or end-tags can be nested. Regions, as de�ned

here, do not necessarily correspond to regions over which a tag applies for display purposes.

Our purpose here is not to display a document, but to build a convenient structure for

discovering record boundaries.

Based on this nested structure, we construct a data structure, called tag tree, to represent

a documentD according to the nested regions in D. A node in the tag tree of D identi�es a

region in D. Using the tag tree of D along with the heuristic approaches (to be presented)

in Sections 4 and 5, we attempt to detect the region containing the records of interest in

D.

Figure 2(b) shows a short, sample HTML document and its corresponding tag tree T .

The document in Figure 2(a) has additional plain text as indicated by the ellipses, but all

the HTML tags in the document are present. In the tag tree in Figure 2(b), we use only

the name of the start-tag in a node in T as the label of the node to simplify the drawing

of each node in the �gure. A node also contains the plain text within a tag's region. Since

the tags <html> and </html> embed all of D, <html> is the start-tag of the root node

R of T . Since a <head> tag exists between the <html> and </html> tags in D, a child

node of R is constructed which has <head> as its start-tag. The tag <title> is the only

start-tag embedded between the <head> and </head> tags in D and is thus the only child

6

of node head. The node labeled body is another child node of R, and the descendant nodes

of the node body are as Figure 2(b) shows.

We construct the tag tree T of a Web document D as follows. (1) We initialize a stack

and a table indexed by tag names and other needed data structures. (2) We scan through

D to discard \useless" tags and insert all \missing" end tags. A \useless" tag is a tag that

either start with <! or is an end-tag that has no corresponding start-tag. We use the stack,

table, and a linked list to insert missing end-tags in D. All start-tags that are encountered

in this pass through D are pushed onto the stack. Also, each of these start-tags is inserted

into the table along its relative position in D and its location on the stack. The insertion is

at the beginning of a linked list whose head is in the table at the location indexed by start-

tag name. (Note that there can be multiple appearances of the same start-tag in D and

that their relative positions in D and their locations on the stack should be maintained for

inserting missing end-tags in D.) (3) As a �nal step, we scan through D again, which now

has every \missing" end-tag. In this pass, we create T according to an in-order traversal.

(By inserting end-tags, note that we are not preparing the document for display; instead

we are preparing it to help in our search for record boundaries. The updated document

is discarded once the tag tree is built.) Appendix A contains the Tag-Tree Construction

algorithm which provides a more detailed description of this tag-tree construction process.

The Tag-Tree Construction algorithm has time complexityO(n), where n is the length

of the input Web document D. Step 1, the initialization, is O(n), because we scan D to

obtain the start-tags for initializing the table. For an appropriate list representation, adding

a new entry to the table for each new start-tag and linking a new node to an existing linked

list takes a constant amount of time. Since we do not have to consider a tag more than once

after it has been put in the table, inserting a missing end-tag into D for its corresponding

start-tag which appears in the stack is at worst O(t), where t is the number of tags in D.

Hence, Step 2 takes at most O(t). In the construction Step (Step 3) of building the tag tree

T of D, the number of nodes to be constructed in T is proportional to t, and the plain text

we need to insert is proportional to n. Since n > t, the Tag-Tree Construction algorithm

has time complexity O(n).

Given a tag tree T , our �rst task is to locate the subtree of T that contains the records

of interest. It is our conjecture that in a Web document with multiple records of interest,

the subtree of T whose root has the highest fan-out should contain the records. Indeed,

7

<html><head><title>Classi�eds</title></head>
<body bgcolor=\#FFFFFF">
<table><tr><td>
<h1 align=\left">Funeral Notices - </h1> October 1, 1998
<hr>
Lemar K. Adamson
 died on March 20, 1998. Lemar was born on September 5, 1913 ...
...
church. ... BRING'S MEMORIAL CHAPEL, ...

<hr>
Our beloved Brian Fielding Frost, age 41, passed away on March 20, 1998, ...
...
held at ... in the Howard Stake Center,
Wasatch Lawn Mortuary, ...
Wasatch Lawn Memorial Park.

<hr>
Leonard Kenneth Gunther
 passed away on March 19, 1998. ...
...
... at HEATHER MORTUARY, ...
... at 11:00 a.m. at HEATHER MORTUARY, on Thursday, March 19, 1998.

<hr>
</td></tr></table>
All material is copyrighted.
</body>
</html>

(a) A sample Web document

html

head body

title table

tr

td

h1 hr b br b br hr b b b br hr b br b b br hr

(b) The tag tree of the Web document in Figure 2(a)

Figure 2: A sample document and its tag tree

8

we do not consider Web documents that do not satisfy this conjecture. In Figure 2(b), the

subtree rooted at td is the highest-fan-out subtree. Since we can �nd the highest fan-out

subtree by a traversal of the tag tree, this operation is O(t), where t is the number of tags.

Since t is less than n, the size of the document, this operation is bounded by O(n).

We next count the number of appearances of each start-tag in the immediate child

nodes of N , the root node of the highest fan-out subtree, and distinguish each of these

tags as either an irrelevant tag or a candidate tag. An irrelevant tag is a start-tag with

relatively few appearances (< 10% of the total number of tags in the subtree rooted at N).

In Figure 2(b), h1 is an irrelevant tag. All tags that are not irrelevant are called candidate

tags, because these become our candidates for record separators. The candidate tags in

Figure 2(b) are hr, b, and br. This operation is clearly dominated by O(n) since a single

scan of the child nodes of N is su�cient to obtain the candidate tags.

If there is only one candidate tag, we treat it as the record separator. Otherwise,

we apply the heuristic approach described in the next two sections to discover the record

separator.

4 Record-Boundary Discovery: Individual Heuristics

To discover the record separator, we �rst apply �ve heuristics, which individually and

independently, rank the candidate tags. We then apply a consensus heuristic to combine

the rankings of these individual heuristics. This section describes the individual heuristics;

the next section describes the combined heuristic.

The individual heuristics span a broad range of possible techniques for discovering record

boundaries. Our HT (highest-count tags) heuristic simply ranks the candidate tags based

on the number of appearances; the separator tag is likely to rank high on this list when

there are a large number of records. Our IT (identi�able \separator" tags) heuristic uses

a predetermined list of likely HTML separator tags. Both hand-created HTML documents

and tool-generated HTML documents tend to consistently use common separator tags (e.g.,

hr). Our SD (standard deviation) heuristic makes use of the observation that when multiple

records about an entity appear in a document, the records are typically about the same

size. Thus, the candidate tag with the minimum standard deviation based on the size of the

plain text between identical tags tends to be the separator. Our RP (repeating-tag pattern)

heuristic makes use of the observation that divisions between records often include several

9

tags that consistently appear in the same order (e.g., a br followed immediately by an hr).

Our OM (ontology matching) heuristic considers the content of a record. Items that are

in a one-to-one correspondence or are functional with respect to the entity of interest tend

to appear once and only once in a record. If we can recognize these items, we can look for

candidate tags that best separate these items into individual records.

4.1 HT: Highest-Count Tags

For the highest-count-tags heuristic, we construct an ordered list of candidate tags sorted in

descending order by number of appearances in the highest-fan-out subtree. This operation

is O(c log c) where c is the number of candidate tags. Since c is small (usually less than a

dozen or so for practical cases, where c is not pathologically large) and is also much smaller

than the document size n (c << n), we consider the cost of this operation to be negligible.

Thus, for practical cases we ignore this cost in our overall estimation of the running time.

4.2 IT: Identi�able \Separator" Tags

Some Web documents are generated by using authoring tools (such as Microsoft Front-

Page), and their formats (i.e., layouts) are regular. Furthermore, even in hand-generated

documents, authors tend to use regular layouts. Thus, for documents with multiple records,

there tends to be a few tags that consistently separate these records. By looking at these

documents and keeping track of separator tags and how often authors use these tags to sep-

arate records, we can create an ordered list of the most commonly used tags that separate

records of interest in Web documents.

To create our ordered separator tag list, we looked at one hundred Web documents in

two application areas (obituaries and car advertisement) from ten di�erent Web sites. Our

current list is as follows:

hr td tr a table p br h4 h1 strong b i

We simply rank the candidate tags according to this list and discard any candidate tags

that are not in this list. Thus, for our example document in Figure 2 we rank hr �rst, br

second, and b third. We use the obvious O(cl) algorithm to rank the candidates according

to this list. Since both the number of candidate tags c and the length of our tag list l is

small compared to the size of a document, the cost of this operation is negligible.

10

4.3 SD: Standard Deviation

For this heuristic, we compute the standard deviation of the interval (in terms of the number

of characters) between each candidate separator. For the sample document in Figure 2, we

calculate the number of characters between each occurrence of hr, between each occurrence

of b, and between each occurrence of br. We then rank the tags with the smallest standard

deviation �rst.

We can obtain the text counts for calculating the standard deviations by a linear scan

of the text in the nodes of the highest-fan-out subtree, an O(n) operation. Sorting the

resulting standard deviations is O(c log c), where c is the number of candidate tags. As

before, we consider this sort to be negligible for practical cases.

4.4 RP: Repeating-Tag Pattern

We base our heuristic for a repeating-tag pattern on the idea that record boundaries often

have consistent patterns of two or more adjacent tags. Some tag may consistently appear

before or after the record separators. In Figure 2, for example, we have the combinations

<hr> and
<hr>.

We apply our RP heuristic to the highest-fan-out subtree of Web document with c

candidate tags as follows. We count the number of occurrences of all (up to c2) pairs of

candidate tags that have no intervening plain text. If a pair <a> occurs at a record

boundary and <a> is the record separator, the count for this pair should be about the same

as the count of the number of occurrences of <a> alone. Of course, it is possible that some

(or even all) counts for pairs are zero or close to zero. We only consider pairs whose count

is greater than 10% of the lowest-count candidate tag. For each considered pair <a>,

we calculate the absolute value of the di�erence between the count for the pair and the

count for <a> alone and also the absolute value of the di�erence between the count for the

pair and the count for alone. We then rank the candidate tags in ascending order on

this absolute value. Since a particular candidate tag may appear more than once in this

ranking, we discard all but the best ranking for the tags in the list. We note that the list

may be empty, in which case our RP heuristic simply does not supply an answer.

To analyze the running time for the RP heuristic, we �rst observe that we can create a

tag-pair table indexed by all pairs of candidate tags in O(c2) time, where c is the number

of candidate tags. Next we observe that we can make a single pass through the tags in

11

the highest-fan-out subtree and obtain all the counts we need, an operation bounded by

O(n), where n is the size of the Web document. Taking the absolute value for each tag of

a pair and checking it for possible consideration requires a pass through the table of pairs,

an O(c2) operation. Since there are up to 2c2 tags indexing the tag-pair table, sorting each

of these tags in ascending order on their absolute value and removing duplicates may take

as much as O(c2 log c2). For the overall cost, we note that in practical cases c is small and

c << n. We thus treat all the operations based on c as negligible and obtain O(n) as the

estimated cost for the RP heuristic.

4.5 OM: Ontology-Matching

We may expect one or more �elds of a record to appear once and only once in the record. We

call such �elds record-identifying �elds. For each record-identifying �eld, if we can locate a

value for the �eld or even just an indication that the value exists, we can count the number

of such occurrences. Then, if we take the average number of occurrences for several record-

identifying �elds in a Web document D, we have a good chance of correctly estimating the

number of records in D. With this estimate, we can rank the candidate separators by how

closely their number of appearances corresponds to the estimated number of records.

As an example, the death date for an obituary is a record-identifying �eld because there

should be one and only one death date in each record. As an indication that this �eld exists,

we use a keyword set that includes \died on" and \passed away on" (see Figure 2(a)) to

indicate the existence of the �eld. We do not use the date itself because there may be

many other �elds in the record such as birth date and funeral date that are also dates.

Although date values themselves are not record-identifying indicators for obituaries, the

keywords that distinguish among the various dates are excellent indicators for the existence

of record-identifying �elds. We note that a record-identifying �eld is not the same as a key

for a record, but rather is a �eld that is likely to occur once and only once for each record.

A death date, for example, occurs once in every obituary, but a death date is not a key

that identi�es deceased persons in a genealogical database.

A given application ontology contains the information needed to determine the record-

identifying �elds. All object sets whose objects have a one-to-one correspondence with the

entity of interest designate record-identifying �elds as well as all object sets whose objects

are functionally dependent on the entity of interest. We are selective in choosing which

12

record-identifying �elds to consider in our ontology-matching heuristic. First, we limit the

number of �elds to be at least 3 and no more than 20% of the number of sets of objects in

the ontology. We want at least 3, so that we can obtain a reasonable average (if we do not

have at least 3 record-identifying �elds, we do not use our ontology-matching heuristic).

We also set an upper bound because we want to use only a few of the \best" record-

identifying �elds. We order the potential record-identifying �elds from \best" to \worst"

by �rst considering �elds that are in a one-to-one correspondence with the entity of interest

and then considering those that are functionally dependent on the entity of interest. Then,

within these groups we consider keyword indicators �rst followed by identi�able values,

except that we do not consider identi�able values that share a common type (e.g., dates in

the obituary example).

To apply our ontology-matching heuristic, we �rst count the number of appearances

of each record-identifying �eld in a Web document D and calculate the average number

of appearances of all the record-identifying �elds in D. We then consider the number of

appearances of each candidate tag and rank these tags in order by how close they come to

the average.

We check for the existence of a keyword or constant value by matching a regular expres-

sion with the plain text in the highest-fan-out subtree. Since this matching process is at

best O(pr), where p is the size of the plain text and r is the number of regular expressions,

the running time of the ontology-matching heuristic is not linear. We observe, however,

that in the overall data-extraction process in Figure 1 we must run the regular expressions

over all the plain text in the highest-fan-out subtree. We further observe that if we integrate

processes, we can run the regular-expression matching process before separating records at

no additional cost. This is because the entries in the Data-Record Table (see Figure 1) are

ordered by position in the document. Once we discover the separator tag, we can use the

position of the separator tags in the document to partition the Data-Record Table into sets

of entries that are in a one-to-one correspondence with the records, and use these sets of

entries for further downstream processing by the Database-Instance Generator. Therefore,

we claim that the contribution of the ontology-matching heuristic within the overall process

is no more than the contribution given the Data-Record Table. Since the Data-Record Table

contains all recognized keywords and values, along with their associated object sets and

their positions within the plain text of the document, a single scan through the table allows

13

us to obtain the counts we need. Thus, the ontology-matching heuristic is O(d), where d

is the number of lines in the Data-Record Table for the plain text in the highest-fan-out

subtree. Although d may be large, for practical cases it is not typically larger than n,

the document size; thus, we assume O(d) < O(n). We note that we must also sort the

candidate tags, which is an O(c log c) operation, where c is the number of candidate tags,

but as before, this operation is negligible.

5 Record-Boundary Discovery: Combined Heuristics

Each heuristic presented in Section 4 is independent of the others but works well only

for some particular Web documents. We therefore consider combining these individual,

independent heuristics to improve our chances of locating a correct record separator in

a Web document. To determine the best combination of the �ve heuristics, we adopt

Stanford certainty theory [LS97] to help us make the decision. In Section 5.1 we explain

our adaptation of the Stanford certainty theory. As will be evident in this section, we

will need to have certainty factors for each of our individual heuristics. To obtain these

certainty factors, we conducted some initial experiments. In Section 5.2 we describe these

initial experiments and how we used them to obtain the certainty factors for each of our

heuristics. Given these certainty factors, we present in Section 5.3 the algorithm for our

compound heuristic.

5.1 Certainty Measure

Stanford certainty theory de�nes a con�dence measure and generates some simple rules for

combining independent evidence. If evidence from two independent observations support

the same result, Standard certainty theory gives the following rule to combine the evidence

from these two independent observations. Suppose CF (E1) is the certainty factor associated

with evidence E1 for some observation B and CF (E2) is the certainty factor associated with

evidence E2 for the same observation B, then the new certainty factor CF of B, called the

compound certainty factor of B, is calculated by: CF (E1)+CF (E2)�(CF (E1)�CF (E2)).

By using this rule repeatedly, it is possible to combine the results of evidence from any

number of independent events that are used for determiningB. For example, if the certainty

factors are 88%, 74%, and 66% that a tag T is a record separator in a document, then the

compound certainty factor for T is 98.93%. (The compound certainty factor is computed

14

using the Stanford certainty theory on these three factors as 88% + 74% + 66% - 88% �

74% - 88% � 66% - 74% � 66% + 88% � 74% � 66% = 98.93%.)

5.2 Initial Experiments

In order to determine the certainty factors for the individual heuristics, we considered two

application areas: obituaries and car advertisements. To achieve geographical diversity (and

thus hopefully a reasonable sampling of di�erent kinds of Web documents), we chose ten

on-line newspaper sites (listed in Table 1) located in di�erent regions of the United States.

For each application, we retrieved �ve Web documents from one site. Thus, there were

100 experimental Web documents. After scanning through these documents, we manually

located the correct record separators of the documents. (Note that a Web document may

have more than one record separator.) We then applied each individual heuristic on each

experimentalWeb document and compared the output with the manually determined record

separators.

Table 2 gives the results for obituaries, and Table 3 gives the results for car ads. The

�rst row of Table 2 shows that 83% of the time the OM heuristic ranked a correct record

separator of an experimental Web document as its �rst choice and 17% of the time the

OM heuristic ranked a correct record separator as its second choice. Similarly, for the

other heuristics, we calculated the percentage of Web documents in which a correct record

separator was the �rst, second, third, or fourth choice of the ranking obtained from each of

the heuristics. In these initial experiments, a correct record separator was always among

the four highest ranked choices for all the heuristics.

By comparing the percentages of the two applications in Tables 2 and 3, we can see that

the results are reasonably consistent in both applications. We obtained our certainty factors

by averaging the percentages in Tables 2 and 3. Table 4 shows the resulting certainty factors.

This table asserts that the highest ranking candidate tag chosen by the OM heuristic has

a certainty factor of 84.5%, that the second highest ranking candidate tag has a certainty

factor of 12.5%, and so on for the OM heuristic and also for all other heuristics.

5.3 The Compound Heuristic

For our compound heuristic we had the choice of any combination of two, three, four, or

all �ve of the heuristics. It might seem that choosing, say, the top two or three heuristics

15

On-line Newspaper URL

The Salt Lake Tribune http://www.sltrib.com
The Arizona Daily Star http://www.azstarnet.com
The Houston Chronicle http://www.chron.com
The San Francisco Chronicle http://www.sfgate.com
The Seattle Times http://www.seatimes.com
GoCincinnati.com http://classi�nder.gocinci.net/
The Standard Times http://www.s-t.com/
The Detroit Newspapers http://www.dnps.com
The Connecticut Post http://www.connpost.com
Access Atlanta http://www.accessatlanta.com

Table 1: On-line newspapers for initial experiments

Heuristic ApproachnRanking 1 2 3 4

OM 83% 17% 0% 0%
RP 83% 7% 10% 0%
SD 59% 27% 14% 0%
IT 92% 8% 0% 0%
HT 58% 23% 17% 2%

Table 2: Experimental results for obituaries

Heuristic ApproachnRanking 1 2 3 4

OM 86% 8% 4% 2%
RP 72% 18% 8% 2%
SD 72% 18% 10% 0%
IT 100% 0% 0% 0%
HT 40% 42% 16% 2%

Table 3: Experimental results for car advertisements application

Heuristic ApproachnRanking 1 2 3 4

OM 84.50% 12.50% 2.00% 1.00%
RP 77.50% 12.50% 9.00% 1.00%
SD 65.50% 22.50% 12.00% 0.00%
IT 96.00% 4.00% 0.00% 0.00%
HT 49.00% 32.50% 16.50% 2.00%

Table 4: Certainty factors, as selected by our initial experiments

16

Compound Success Compound Success
Heuristic Rate Heuristic Rate

OR 85.83% OSI 95.00%
OS 88.00% OSH 87.50%
OI 95.00% OIH 95.00%
OH 79.00% RSI 95.00%
RS 79.50% RSH 85.50%
RI 95.00% RIH 95.00%
RH 76.33% SIH 95.00%
SI 95.00% ORSI 100.00%
SH 69.50% ORSH 82.50%
IH 95.00% ORIH 100.00%
ORS 81.50% OSIH 95.00%
ORI 93.33% RSIH 100.00%
ORH 84.83% ORSIH 100.00%

Table 5: Experimental results for all the compound heuristics

and ignoring the rest might produce the best results. Because we did not know what

combination to choose, we continued with our initial experiments and tried all combinations

on the same 100 Web documents. There are
P

5

i=0C(5; i) � 6 (= 26) possible combinations

(minus 6 because we cannot have none and we already have the results for the �ve individual

heuristics).

For each combination, we calculated the compound certainty factor for each candidate

tag in our experimental documents. We then determined the success rate of each combi-

nation. If there are X tags that have the highest compound certainty factors and only Y

of these X tags are correct record separators in a Web document D, then the success for

D, denoted sc(D), is Y=X (i.e., there is Y=X% chance that the correct record separator

in D is chosen). The success rate for a combination is (
P

n

i=1(sc(Di))=n), where Di is the

ith experimental Web document. Table 5 shows the success rates for all combinations.

Note that in Table 5 we use O, R, S, I, and H to represent the OM, RP, SD, IT, and HT

heuristics, respectively. For example, OR denotes the OM and RP combination.

By considering the success rates in Table 5, we see that all the combinations that include

IT have high success rates (over 90%). This is not surprising since it, by itself, was the

best in our initial experiments as Tables 2 and 3 show. We also see, however, that ORSI,

ORIH, RSIH, and ORSIH all have 100% success rate for our experimental documents;

17

these combinations found a correct record separator in all 100 experimental documents. In

deciding among these four best choices, we observed that any one of them could be chosen

as our compound heuristic. Since all �ve heuristics are independent and since they may all

help �nd a correct separator, we decided to choose ORSIH, which include all �ve heuristics.

Thus, our heuristic algorithm for discovering record boundaries in Web documents that

contain multiple records is as follows.

Algorithm. Record-Boundary Discovery Algorithm

Input: A Web document D

Output: The consensus record separator tag of D

1. call Tag-Tree Construction Algorithm (see Appendix A) to create the tag tree T of D

2. count the number of children of each node in T to locate the highest-fan-out subtree HF

3. extract the set of candidate tags CT from HF

4. apply the �ve individual heuristics OM, SD, IT, HT, and RP on CT

5. for each candidate tag C in CT do begin

apply the Stanford certainty theory to the results of all �ve heuristics (ORSIH)

using the certainty factors in Table 4

end

6. choose the candidate tag with the highest compound certainty factor computed in Step 5

as the record separator of D

For example, consider the Web document in Figure 2(a). The results of applying �ve

individual heuristics are as follows.

OM: [(hr, 1), (br, 2), (b, 3)]

RP: [(hr, 1), (br, 2), (b, 3)]

SD: [(hr, 1), (br, 2), (b, 3)]

IT: [(hr, 1), (br, 2), (b, 3)]

HT: [(b, 1), (br, 2), (hr, 3)]

Combining these �ve individual heuristics together yields the following.

ORSIH: [(hr, 99.96%), (br, 61.37%), (b, 60.42%)]

Thus, hr is chosen as the record separator since 99.96% is the highest percentage among

the three.

18

We argued earlier that the time complexity of constructing the tag tree T of a Web

document D is O(n), where n is the length of D, which is the time complexity of Step 1

in the Record-Boundary Discovery Algorithm. Locating the highest fan-out subtree of T

in Step 2 and creating CT in Step 3 take a constant amount of time. Applying each

individual heuristic in Step 4 takes at most O(n) time, with the understanding that D

is a document found in practice and that the regular-expression matching for the OM

heuristic has already been done for the larger data-extraction problem. Computing the

compound certainty factor for each of the candidate tags in Step 5 using Stanford certainty

theory is O(c), where c is the number of candidate tags, as is choosing the candidate tag

with the highest compound certainty factor. Hence, the entire process for computing the

consensus record separator of D is O(n) for practical cases within the context of the larger

data-extraction problem.

6 Experimental Results

To verify the accuracy of our heuristic approach for record-boundary discovery in Web

documents, we examined four sets of Web documents in four di�erent application areas.

Each set contained �ve Web documents from �ve di�erent Web sites, 100 documents all

together. The twenty Web sites we chose are located in di�erent regions of the United

States. Two of the sets were documents for obituaries and car advertisements. These test

documents, however, were from entirely di�erent sites (compare Table 1 with the site listings

in Table 6 and Table 7). The other two sets were for two entirely di�erent applications,

namely computer job advertisements and university course descriptions (see the site listings

in Table 8 and Table 9).

For each of the 100 Web documents, we applied the �ve individual heuristics presented

in Section 4 and ORSIH, the compound heuristic, selected as our combined heuristic as

explained in Section 5. Tables 6 - 9 shows the results. The numbers in each column are the

rank numbers of the correct record separator obtained by the heuristic approach. For the

Sioux City Journal car ads in Table 7, for example, the OM heuristic ranked the correct

record separator �rst, RP ranked it second, SD also ranked it second, IT ranked it �rst,

HT ranked it fourth, and ORSIH ranked it �rst.

We also calculated the success rates for each heuristic approach on all experimentalWeb

documents. Table 10 shows the results. We note that even though none of the individual

19

On-line Newspaper URL OM RP SD IT HT ORSIH

Alameda Newspaper http://www.adone.com/alameda 1 1 1 1 1 1

Idaho State Journal http://www.journalnet.com 1 1 2 1 2 1

Sacramento Bee http://www.sacbee.com 1 1 1 1 1 1

Tampa Tribune http://www.tampatrib.com 1 1 1 1 1 1

Shoals Timesdaily http://www.timesdaily.com 1 1 1 1 2 1

Table 6: Test set 1 - obituaries

On-line Newspaper URL OM RP SD IT HT ORSIH

Arkansas Democrat- http://www.ardemgaz.com 1 1 1 1 2 1
Gazette

Sioux City Journal http://www.siouxcityjournal.com 1 2 2 1 4 1

Knoxville News http://www.knoxnews.com 1 1 1 1 1 1

Lincoln Journal Star http://www.nebweb.com 1 1 1 1 1 1

Reno Gazette - http://www.nevadanet.com/ 3 3 1 1 3 1
Journal renogazette

Table 7: Test set 2 - car advertisements

On-line Newspaper URL OM RP SD IT HT ORSIH

Baltimore Sun http://www.sunspot.net 1 1 1 1 2 1

Dallas Morning News http://dallasnews.com 1 1 2 1 2 1

Denver Post http://www.denverpost.com 4 1 1 1 4 1

Indianapolis Star/News http://www.starnews.com 1 1 1 1 1 1

Los Angeles Times http://www.latimes.com 2 3 2 1 2 1

Table 8: Test set 3 - computer job advertisements

University URL OM RP SD IT HT ORSIH

Brigham Young University http://www.byu.edu 2 2 1 1 1 1

MIT http://registrar.mit.edu 1 1 1 1 2 1

Kansas State University http://www.ksu.edu 1 1 2 2 2 1

USC http://www.usc.edu 1 1 2 1 1 1

Univ. of Texas - Austin http://www.utexas.edu 1 2 2 1 1 1

Table 9: Test set 4 - university course descriptions

20

Heuristic Approach Success Rate

OM 80%
RP 75%
SD 65%
IT 95%
HT 45%

ORSIH 100%

Table 10: Success rates of individual heuristics and ORSIH for experimentalWeb documents

heuristics had a 100% success rate, the success rate for our combined heuristic approach is

100%.

7 Concluding Remarks

We have described a heuristic approach to discovering record boundaries in unstructured

Web documents containing multiple records of interest separated by one (or more) tags. In

our approach, we (1) de�ned a tag tree to capture the structure of a raw Web document,

(2) located the subtree containing the records of interest by checking for highest fan-out,

(3) identi�ed candidate tags within the subtree, (4) applied �ve independent heuristics

(OM|ontology matching, SD|standard deviation, IT|identi�able \separator" tags, HT{

highest-count tags, and RP|repeating-tag pattern) to select the best candidates, and (5)

combined these heuristics using an adaptation of Stanford certainty theory to select a

consensus candidate. The process is O(n), where n is the size of a document.

We applied this approach in four di�erent application areas (car ads, job ads, obituaries,

and university courses) using Web documents obtained from twenty di�erent sites. The

experiments we conducted showed that this approach uniformly attained an accuracy of

100%.

21

References

[Ade98] B. Adelberg. Nodose - a tool for semi-automatically extracting structured and

semistructured data from text documents. In Proceedings of the 1998 ACM

SIGMOD International Conference on Management of Data, pages 283{294,

Seattle, Washington, June 1998.

[AK97a] N. Ashish and C. Knoblock. Semi-automatic wrapper generation for internet

information sources. In Proceedings of the CoopIS'97, 1997.

[AK97b] N. Ashish and C. Knoblock. Wrapper generation for semi-structured internet

sources. SIGMOD Record, 26(4):8{15, December 1997.

[AM97] P. Atzeni and G. Mecca. Cut and paste. In Proceedings of the 16th ACM

PODS, pages 144{153, May 1997.

[Ape94] P. M. G. Apers. Identifying internet-related database research. In Proceed-

ings of the 2nd International East-West Database Workshop, pages 183{193,

Klagenfurt, 1994. Springer-Verlag.

[BDFS97] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to

unstructured data. In Proceedings of the International Conference on Database

Theory (ICDT), 1997.

[DEW97] R.B. Doorenbos, O. Etzioni, and D.S. Weld. A scalable comparison-shopping

agent for the world-wide web. In Proceedings of the First International Con-

ference on Autonomous Agents, pages 39{48, Marina Del Rey, California,

February 1997.

[ECJ+98] D.W. Embley, D.M. Campbell, Y.S. Jiang, Y.-K. Ng, R.D. Smith, S.W. Liddle,

and D.W. Quass. A conceptual-modeling approach to extracting data from

the web. In Proceedings of the 17th International Conference on Conceptual

Modeling (ER'98), Singapore, November 1998. (to appear).

[ECLS98] D.W. Embley, D.M. Campbell, S.W. Liddle, and R.D. Smith. Ontology-

based extraction and structuring of information from data-rich unstructured

documents. In Proceedings of the Conference on Information and Knowledge

Management (CIKM'98), Washington D.C., November 1998. (to appear).

22

[GHR97] A. Gupta, V. Harinarayan, and A. Rajaraman. Virtual database technology.

SIGMOD Record, 26(4):57{61, December 1997.

[HGMC+97] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting

semistructured information from the web. In Proceedings of the Workshop on

Management of Semistructured Data, Tucson, Arizona, May 1997.

[KWD97] N. Kushmerick, D.S. Weld, and R. Doorenbos. Wrapper induction for infor-

mation extraction. In Proceedings of the 1997 International Joint Conference

on Arti�cial Intelligence, pages 729{735, 1997.

[LS97] G.F. Luger and W.A. Stubble�eld. Arti�cial Intelligence: Structures and

Strategies for Complex Problem Solving, Third Edition. Addison Wesley Long-

man, Inc., 1997.

[MMK98] I. Muslea, S. Minton, and C. Knoblock. Stakler: Learning extraction rules for

semistructured, web-based information sources. In Proceedings of AAAI'98:

Workshop on AI and Information Integration, Madison, Wisconsin, July 1998.

[Sod97] S. Soderland. Learning to extract text-based information from the world wide

web. In Proceedings of the Third International Conference on Knowledge Dis-

covery and Data Mining, pages 251{254, Newport Beach, California, August

1997.

[WWW] Homepage for BYU data extraction research group. URL: http://osm7.cs.

byu.edu/deg/index.html.

23

Appendix

A Tag-Tree Construction Algorithm

Input: A Web document D

Output: The tag tree T of D

1. Initialization

pass through D to obtain the set of start-tags

initialize TABLE as an array (initially empty) such that an entry of TABLE is labeled

by a start-tag and associated with a linked list of nodes

2. repeat /* Discard useless tags and insert missing end-tags */

locate the next tag G in D

if G is a comment-tag or G is an end-tag with no corresponding start-tag in D, then

eliminate G from D

else if G is a start-tag, then

if G is not in TABLE, then

Create an entry in TABLE with label G and push G onto stack S

Create a node of the form [L, Sp], where L is the location of the next tag in D and

Sp is the location of G on S, and link it to the entry with label G in TABLE

else /* G is an end-tag */

Search for the corresponding start-tag of G in S

Pop each of the tags A on top of G in S and insert the corresponding end-tag of A

at L in D, where L is in node N linked to the entry G in TABLE which points

to A on S

until end-of-�le(D)

3. Scan D from the beginning /* Construct the tag tree T */

repeat

Search for the next start-tag G in D

Create the node N := [G, I, O] in T , where I is the plain text between G and the

next tag in D, and O is the plain text between the corresponding end-tag of G

and the next tag in D

Create all the descendant nodes of N

until end-of-�le(D)

24

