
FROntIER: A Framework for Extracting and Organizing Biographical

Facts in Historical Documents

by

Joseph Park

A thesis proposal submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

February 2013

FROntIER: A Framework for Extracting and Organizing
Biographical Facts in Historical Documents

Joseph Park

February 2013

Abstract. The tasks of entity recognition through ontological commitment, fact extraction and
organization in conformance to a target schema, and entity deduplication have all been examined
in recent years, and systems exist that can perform each individual task. A framework combining
all these tasks, however, is still needed to accomplish the goal of automatically extracting and
organizing biographical facts about persons found in historical documents into disambiguated en-
tity records. We propose FROntIER (Fact Recognizer for Ontologies with Inference and Entity
Resolution) as a framework to recognize and extract facts using an ontology and organize facts of
interest by inferring implicit facts using inference rules, a target ontology, and entity resolution.
Our evaluation consists of precision and recall over facts of interest, which include person entities
and their respective attributes, and clustered entities. We also propose a predictive evaluation of
the time and effort required to use FROntIER to extract and organize facts of interest at a deter-
mined level of precision and recall for a corpus consisting of 50,000+ family history books in the
LDS Church’s online collection.

1 Introduction

Historians, genealogists, and others have great interest in extracting facts about persons and
places found in historical documents and organizing these facts into disambiguated entity records.
Figure 1, for example, shows part of a page from The Ely Ancestry [BEV02]. Facts of interest
include those explicitly stated such as William Gerard Lathrop was born in 1812, married Charlotte
Brackett Jennings in 1837, and is the son of Mary Ely. In addition to explicitly stated facts,
implicit facts are also of interest. These include the fact that William Gerard Lathrop has gender
Male, inferred from the stated fact that he is a son, and Maria Jennings has surname Lathrop,
inferred from cultural tradition and the stated fact that her father has the surname Lathrop.
Implicit facts also include disambiguating references to objects: the first and third Mary Ely
mentioned are the same person, but not the same person as the second Mary Ely mentioned.

Figure 1: An Excerpt from Page 419 of The Ely Ancestry.

Automating the process of extracting stated facts, inferring implicit facts, and resolving
object references is a difficult task. Sarawagi [Sar08] surveys much of the work of the last decade
or so that has been done in automated information extraction of facts from unstructured and
semi-structured text. For inferring implicit facts, work dates back to Aristotle and is typified
nowadays by the work in description logics [BCM+03], which describes research on methods for
defining first-order logics, proving soundness and decidability, and inferring facts from existing
facts. To help disambiguate object references—solve the record linkage or entity resolution
problem—researchers often resort to the use of statistical methods, which include machine learning
algorithms [Chr12]. Though much has been accomplished and still more can be done to thoroughly
examine these issues, what is lacking most is tying them together into a unified, synergistic
whole—a framework.

In answer to this lack of a unifying framework, we propose FROntIER (Fact Recognizer
for Ontologies with Inference and Entity Resolution) as a framework to automatically extract and
organize facts from historical documents into disambiguated entity records. FROntIER makes use
of extraction ontologies [ECJ+99, ELL11] to automatically extract stated facts of interest using
regular expression patterns and dictionaries. Once stated facts of interested have been recognized
and properly associated with an extraction ontology, FROntIER disambiguates objects, infers

1

additional facts about these objects, and organizes the objects and facts about these objects with
respect to a target ontology. FROntIER’s extraction ontologies allow users to model text and
layout as it appears in historical documents, while FROntIER’s target ontologies model knowledge
of interest to be gleaned by historians—facts both directly and indirectly stated. To see the
difference, compare the target ontology in Figure 2, which is an ontological view of biographical
facts of a person, against the extraction ontology in Figure 3, which models how explicitly stated
biographical facts appear in The Ely Ancestry. FROntIER uses pattern-based extractors to
identify the existence of objects and their interrelationships according to the particular layout
in the text document, and uses logic rules to organize extracted facts in a target ontology.
FROntIER, for example, extracts the stated “son of” and “dau. of” facts into the Son-Person and
Daughter-Person relationship sets in Figure 3 and then uses the inference rules “if Son, then male”
and “if Daughter, then female” to populate the Person-Gender relationship set in Figure 2.
Inference and organization also include entity resolution, which proceeds based on extracted and
inferred facts. The first-mentioned Mary Ely in Figure 1, for example, is the grandmother of the
second-mentioned Mary Ely, and therefore cannot be the same Mary Ely.

Figure 2: Target Ontology of Desired Biographical Facts.

Figure 3: Extraction Ontology of Stated Biographical Facts of a Person in The Ely Ancestry.

2

The expected contribution of the thesis is the construction of a unified framework for ex-
tracting and organizing facts that will include:

1. Provisions for users to express relationship-based regular-expression extractors and record-
based regular-expression extractors (in addition to the already existing entity-based regular-
expression extractors);

2. Provisions for users to state object existence rules for identifying the existence of objects such
as people;

3. Provisions for users to specify inference rules for obtaining inferred facts; and

4. Provisions for automatic, fact-based entity resolution.

With these framework provisions, FROntIER will be able to extract and organize both
stated and implied facts found in OCRed historical documents. We plan to demonstrate these
expected contributions by showing the precision and recall of extracted facts of interest, inferred
facts of interest, and clustered entities for a sampling of a corpus of 50,000+ online historical books.

2 Related Work

Much work has been done in extracting and organizing facts of interest from documents, but
only few of these efforts focus on both automatic fact extraction and record linkage (e.g. [GX09],
[BGH09],[BBC+10], [BHH+11]). These systems, however, lack strong enough extraction capabili-
ties and the use of inferred facts as well as extracted facts for doing record linkage. Our framework,
FROntIER, strengthens weaknesses in extraction capabilities, adds the ability to infer implied
facts of interest, and enables better attribute-based record linkage.

Much more effort has been spent on improving techniques to solve the individual tasks
of FROntIER. Sarawagi [Sar08] has written a book that surveys current information extraction
techniques. Turmo et al. [TAC06] have surveyed information extraction techniques, focusing
more on statistical methods. Mishra and Kumar [MK11] have surveyed various semantic web
reasoners and languages. For the use of inference, Baader et al. [BCM+03] have written a book on
description logics. For resolving object references, Christen [Chr12] published a book on techniques
for data matching, record linkage, and entity resolution. Herzog [HSW07] has published a book
on deterministic and probabilistic record linkage techniques. Each of these books and surveys
reference many dozens of research papers.

For FROntIER we select, build on, and synergistically combine this prior work, as follows:

• Our framework extends the capabilities of systems developed by the Data Extraction Research
Group at Brigham Young University. Embley et al. [ECJ+99] developed a system, OntoES,
for ontology-driven extraction with the aid of regular expression based recognizers over HTML
pages. Liddle et al. [LHE03] built a development environment for the construction of on-
tologies called Ontology Editor. Wessman et al. [WLE05] further refined these systems by
adding wrappers and facades to facilitate the development of ontologies and the organization
of data.

• For the framework, we add the ability to infer implied facts by adding the Jena reasoner1.
Our framework allows for the construction of inference rules that follow the syntax for Jena

1http://jena.apache.org/

3

rules, and we use the constructed inference rules with the Jena reasoner over extracted facts
to organize facts with respect to a target ontology. Our framework also allows for user-defined
predicates for use in inference rules by extending the built-ins framework provided by Jena.

• We include Duke2, an off-the-shelf entity resolution tool, in our framework to aid in resolving
entities. We generate owl:sameAs relationships between entities found in equivalence classes
output by Duke.

3 Thesis Statement

FROntIER is an effective framework for ontology-based extraction of biographical facts of persons
in historical documents, organizing facts with respect to a target ontology, and performing entity
resolution to produce disambiguated entity records.

4 Project Description

The FROntIER framework has two key components: (1) extraction ontologies and (2) organization
rules. We discuss the details of each in the subsections below, explaining how each will be built in
order to complete the FROntIER framework.

As an overview, however, we first explain how the components fit together to comprise the
FROntIER framework. Our target application is historical documents, which are OCRed pages
in PDF format, and the input in FROntIER. FROntIER first invokes OntoES, our Ontology
Extraction System [ECJ+99], which extracts information from pages of text documents and popu-
lates an ontology with recognized objects, object properties, and relationships among objects and
object properties. The output of OntoES is an XML document containing these objects and re-
lationships, which is converted into RDF3 triples (in an OWL4 ontology) to be processed by the
Jena reasoner. Organization rules transform RDF triples into triples that conform to a target on-
tology and also disambiguate entities, producing owl:sameAs relationships to denote that entities
are coreferent.

4.1 Extraction Ontologies

An extraction ontology is a linguistically grounded conceptual model. Figure 3 is an example
of the conceptual model component of an extraction ontology. Figure 4 illustrates some of the
linguistic grounding for the conceptualization in Figure 3. As extraction ontologies constitute the
first key component of FROntIER, we briefly explain their details and say what we must develop
as part of the thesis to complete the extraction ontology component of the FROntIER framework.

In a conceptual model diagram (e.g. Figures 2 and 3), each box represents an object
set, or class of objects. Object sets can either be lexical (represented with dashed lines) or
non-lexical (represented with solid lines). Lexical object sets contain strings whereas non-lexical
object sets contain surrogates that denote real-world objects. Line segments connecting object
sets denote relationship sets, which are usually binary, meaning they only connect two concepts
together, but can also be n-ary (n > 2). For example, the line segments connecting the Person,

2http://code.google.com/p/duke/
3http://www.w3.org/RDF/
4http://www.w3.org/TR/owl2-overview/

4

MarriageDate, and Spouse object sets in Figure 3, which are intersected by a diamond shape,
denote a ternary relationship set. Relationship sets can be functional, optional, or both as
well as nonfunctional and mandatory. Arrowheads on the range side of relationship sets denote
functional relationship sets and unfilled circles on the domain side denote optional participation
of objects in relationships. An unfilled triangle denotes generalization/specialization with the
generalization, or object set that represents the hypernym, connected to the apex of the triangle
and the specializations, or object set that represents the hyponyms, connected to the base.
The set of specializations of a generalization may be disjoint (represented by a ‘+’ symbol as
are Son and Daughter in Figure 3) or complete (represented by a ‘∪’ symbol) or both disjoint
and complete, constituting a partition. A black triangle denotes aggregation with the holonym
object set connected to the apex of the triangle and the meronym object sets connected to the base.

Lexical Object Sets:
Name

external representation: \b{FirstName}\s{LastName}\b
external representation: \b{FirstName}\s[A-Z]\w+\b

left context: \d{1,2}\.\s
...

Residence
external representation: \b{City},\s{State}\b
...

BirthDate
external representation: \b{Month}\.?\s*(1\d|2\d|30|31|\d)[.,]?\s*\b[1][6-9]\d\d\b

left context: b\.\s
right context: [.,]
exclusion: \b(February|Feb\.?)\s*(30|31)\b|...

external representation: \b[1][6-9]\d\d\b
left context: b\.\s
right context: [.,]

...
Non-lexical Object Sets:

Person
object existence rule: {Name}
...

Son
object existence rule: {Person}[.,]?.{0,50}\s[sS]on\b
...

Relationship Sets:
Person-BirthDate

external representation: ˆ\d{1,3}\.\s{Person},\sb\.\s{BirthDate}[.,]
...

Son-Person
external representation: {Son}[.,]?.{0,50}\s[sS]on\s+of\s.*?\s{Person}
...

Person-MarriageDate-Spouse
external representation: {Person}[.,]?.{0,50};\s*m[.,]\s{MarriageDate}[,]?\s*{Spouse}
...

Ontology Snippets:
ChildRecord

external representation: ˆ(\d{1,3})\.\s+([A-Z]\w+\s[A-Z]\w+)
(,\sb\.\s([1][6-9]\d\d))?(,\sd\.\s([1][6-9]\d\d))?\.

predicate mappings: Person-ChildNr(x,1); Person-Name(x,2); Child(x);
Person-BirthDate(x,4); Person-DeathDate(x,6)

Figure 4: Example Data Frames for Concepts in the Ontology in Figure 3.

5

The linguistic component of an extraction ontology consists of four types of instance recog-
nizers—recognizers for lexical object sets, non-lexical object sets, relationship sets, and designated
ontology snippets. Instance recognizers are embedded in data frames [Emb80]—abstract data
types tied to concepts in an extraction ontology that, in addition to instance recognizers, contain
operators that manipulate data values [EZ10]. Recognizers for the four types of data frames are
similar, but are distinct in some characteristics. We explain each in turn. (Data frames for lexical
object sets have been part of OntoES since its inception [ECJ+99]. Data frames for non-lexical
object sets, relationship sets, and ontology snippets are part of the development work for this thesis.)

Lexical object-set recognizers identify lexical instances in terms of external representa-
tions, context, exclusions, and dictionaries. External representations are regular expressions for
specifying how instances may appear in text. For example, one of the external representations
for BirthDate in Figure 4 is “\b[1][6-9]\d\d\b”, representing years between 1600 and 1999. Left
context is a regular expression that matches text found immediately before an instance pattern,
and likewise, right context is a regular expression that matches text found immediately after an
instance pattern. Examples are “b\.\s” as left context and “[.,]” as right context for BirthDate in
Figure 4 for recognizing values for BirthDate in phrases such as “b. 1836,” in Figure 1. Exclusions
are regular expressions that match external representations; however, recognized exclusions are
not accepted as valid instances. Thus, in Figure 4 dates such as February 30 are invalid instances.
Dictionaries are regular expressions where each entry in the dictionary is delimited by an OR
(‘|’), e.g. for Name in Figure 4 “(Abigail|Mary|William|...)” could be part of the FirstName
dictionary. In general, braces around a name—e.g. {FirstName}—refer to a regular expression
defined elsewhere.

Non-lexical object-set recognizers identify non-lexical objects through object existence
rules. Object existence rules identify text, such as a proper noun, that designates the existence
of an object. An example is a person’s name. In Figure 4 “{Name}” references Name. When a
name is recognized, OntoES generates a Person object and associates it with the recognized name.
Object existence rules for non-lexical specializations identify roles for objects in its generalization.
For example, “{Person}[.,]?.{0,50}\s[sS]on\b” in Figure 4 references Person and establishes the
person recognized in the object-existence rule as a son.

Relationship-set recognizers identify phrases that relate objects. For example, the external
representation for Person-BirthDate in Figure 4 is “ˆ\d{1,3}\.\s{Person},\sb\.\s{BirthDate}[.,]”
and represents a phrase that relates a person to a birth date. To process the rec-
ognizer, OntoES replaces “{Person}” and “{BirthDate}” with strings previously recog-
nized for the Person and BirthDate object sets resulting in a regular expression such as
“ˆ\d{1,3}\.\s(Maria Jennings|William Gerard|...),\sb\.\s(1838|1840|...)[.,]” which OntoES uses,
for example, to relate Maria Jennings to 1838 and William Gerard to 1840—two of the Person-
BirthDate relationships that appear in Figure 1.

Ontology-snippet recognizers identify text patterns that provide instances for several object
and relationship sets. Data frames for ontology snippets consist of external representations and
predicate mappings. External representations are regular expressions with capture groups that
map captured instances to ontology predicates—the object and relationship sets in the ontology.
Variables for the mappings denote non-lexical objects, and integers denote captured lexical objects.
As an example, suppose the ontology-snippet recognizer named ChildRecord in Figure 4 is applied
to the first child list in Figure 1. The recognizer for ChildRecord would identify the patterns

6

“(1). (Mary Ely) (, b. (1836))(, d. (1859)).” and “(2). (Gerard Lathrop) (, b. (1838)).” where
the parenthesized expressions represent captured groups numbered left to right by appearance
of a left parenthesis. Predicate mappings for ChildRecord would generate the following objects
and relationships for the ontology in Figure 3 for Mary Ely, the 5th person mentioned in
Figure 1: Child(Person5); Person-ChildNr(Person5, “1”); Person-Name(Person5, “Mary Ely”);
Person-BirthDate(Person5, “1836”); Person-DeathDate(Person5, “1859”); plus, as im-
plied by referential-integrity and generalization/specialization constraints, Person(Person5),
Name(“Mary Ely”), BirthDate(“1836”), and DeathDate(“1859”).

4.2 Organization Rules

FROntIER uses rules to organize facts in conformance to a target ontology (e.g. Figure 2).
The kind of organization rules that FROntIER uses include canonicalization, inference, and
entity-resolution rules. We briefly explain each kind of rule and say what needs to be developed
as part of the thesis to complete the organization-rules component of FROntIER.

Canonicalization rules homogenize recognized instance values so that they can be manip-
ulated and compared. For example, values for BirthDate in Figure 3 such as “1836” and “1832”,
which are strings, are canonicalized into an internal data type such as Date. Abbreviated Name
values such as “Sam’l” and “Geo.” can become “Samuel” and “George”, and Residence values such
as “New York City” and “Boonton, N.J.” can be homogenized to a common format to become
“New York, NY” and “Boonton, NJ”. (Although canonicalization has been part of OntoES from
its inception, constructing and executing canonicalization for transforming non-canonicalized
source data to canonicalized target data is new and part of this thesis.)

In order to do inference, we convert target object and relationship instances into RDF
triples so that we can use the Jena reasoner to reason over the triples. To conform with
RDF syntactic requirements, we must normalize our ontologies as we convert them. We
convert lexical object sets into non-lexicals with a Value property and convert n-ary rela-
tionship sets (n > 2) into binary relationships connected to a non-lexical that represents the
n-ary relationship set. As a result, all relationship sets are binary between two RDF classes,
and each lexical object set has a property value associated with its RDF class. Consider
for example, the quaternary relationship set Person-MarriageDate-MarriagePlace-Spouse in
Figure 2. The lexical object sets MarriageDate and MarriagePlace become non-lexicals with
MarriageDateValue and MarriagePlaceValue properties, respectively. Then we create a non-
lexical object set PersonMarriageDateMarriagePlaceSpouse and form binary relationship sets
PersonMarriageDateMarriagePlaceSpouse-Person, PersonMarriageDateMarriagePlaceSpouse-
MarriageDate, PersonMarriageDateMarriagePlaceSpouse-MarriagePlace, and
PersonMarriageDateMarriagePlaceSpouse-Spouse between the newly created non-lexical ob-
ject set and the four non-lexical object sets involved in the quaternary relationship set.

In FROntIER inference rules specify schema mappings between a source ontology and a
target ontology. Figure 5 shows several sets of rules in the Jena syntax. Each rule set corresponds
to a particular source-to-target transformation. For example, the first rule set in Figure 5 copies
the Person instances in the ontology in Figure 3 to Person instances in Figure 2. This kind of
rule performs a direct schema mapping. The second rule set in Figure 5, which also perform a
direct schema mapping, copies BirthDate instances as well as Person-BirthDate instances in the

7

1 [(?x rdf:type source:Person) -> (?x rdf:type target:Person)]

2 [(?x rdf:type source:BirthDate),(?x source:BirthDateValue ?bv)

-> (?x rdf:type target:BirthDate),(?x target:BirthDateValue ?bv)]

[(?x source:Person-BirthDate ?y) -> (?x target:Person-BirthDate ?y)]

3 [(?x rdf:type source:Spouse) -> (?x rdf:type target:Spouse)]

[(?x rdf:type source:MarriageDate),(?x source:MarriageDateValue ?mv)

-> (?x rdf:type target:MarriageDate),(?x target:MarriageDateValue ?mv)]

[(?x rdf:type source:PersonMarriageDateSpouse)

-> (?x rdf:type target:PersonMarriageDateMarriagePlaceSpouse)]

[(?x source:PersonMarriageDateSpouse-Person ?y)

-> (?x target:PersonMarriageDateMarriagePlaceSpouse-Person ?y)]

[(?x source:PersonMarriageDateSpouse-MarriageDate ?y)

-> (?x target:PersonMarriageDateMarriagePlaceSpouse-MarriageDate ?y)]

[(?x source:PersonMarriageDateSpouse-Spouse ?y)

-> (?x target:PersonMarriageDateMarriagePlaceSpouse-Spouse ?y)]

4 [(?n source:NameValue ?nv),(?n rdf:type source:Name),

regex(?nv, ‘\b([A-Z][a-z]+)\b\s\b([A-Z][a-z]+)\b’, ?x, ?y),makeTemp(?gx),makeTemp(?gy)

-> (?gx rdf:type target:GivenName),(?gx target:GivenNameValue ?x),

(?n target:Name-GivenName ?gx),(?gy rdf:type target:GivenName),

(?gy target:GivenNameValue ?y),(?n target:Name-GivenName ?gy)]

5 [(?x source:Person-Name ?n),(?n source: NameValue ?nv), isMale(?nv),makeTemp(?gender)

-> (?x target:Person-Gender ?gender),(?gender rdf:type target:Gender),

(?gender target:GenderValue ‘Male’ˆˆxsd:string)]

Figure 5: Example Inference Rules for Organizing Facts with Respect to a Target Ontology.

ontology in Figure 3 to BirthDate instances and Person-BirthDate instances in Figure 2. Observe
that the original lexical BirthDate instance is now a BirthDateValue instance and a property of a
BirthDate object instance. More complicated schema mappings are possible such as the third rule
set in Figure 5 which copies instances in the ternary relationship set Person-MarriageDate-Spouse
in Figure 3 to Person-MarriageDate-MarriagePlace-Spouse instances in Figure 2. Notice that
there is no MarriagePlace object instance associated with the quaternary relationship set. No
marriage place is given, nor can it be inferred.

Our inference rules are constrained to the set of constructs supported by the Jena
framework. Conveniently, the Jena framework defines a set of built-in predicates that is extendible.
The fourth rule set in Figure 5 splits a name into given name components. The predicates ‘regex’
and ‘makeTemp’ are built-ins for splitting a string and assigning variables to its captured groups
and for generating a unique identifier for an object, respectively. For extending the set of built-ins,
the Jena framework allows the implementation of a builtin interface, and we implement this
interface for each user-defined built-in. For example, the fifth rule set in Figure 5 infers the gender
of a person as male; the user-defined built-in ‘isMale’ refers to a predefined statistical table to
determine whether a name is for a male [Sch12].

FROntIER’s entity-resolution rules use facts for entities in populated target ontologies as
input and generate owl:sameAs relationships as output. FROntIER can use any off-the-shelf or
specially developed fact-based entity resolver. We do not plan to study entity resolution techniques

8

as part of this thesis. Instead, we plan to use Duke5, an off-the-shelf entity resolver.

In order to use Duke, we convert the RDF triples output by Jena into a comma-separated
value file (which can be viewed as a table of entity records). Currently, the conversion from
RDF triples to comma-separated value file is hand-specified—once for each target ontology
within a domain. For the target ontology in Figure 2, we produce RDF as follows: convert
non-lexicals with a Value property into table attributes such as BirthDate with a BirthDateValue
property into the attribute BirthDate; collapse the aggregate Name into GivenName1, Given-
Name2, etc. up to the maximum observed number of given names and a Surname; convert
the quaternary relationship set Person-MarriageDate-MarriagePlace-Spouse into MarriageDate,
MarriagePlace, and Spouse attributes; calculate the maximum observed cardinality for Person-
MarriageDate-MarriagePlace-Spouse instances and Person-Child instances to produce the
attributes MarriageDate1 , MarriagePlace1, Spouse1, Child1, etc. up to the maximum number
of instances for each, respectively; generate the attributes Father and Mother for Child-Person
instances (the inverse of Person-Child); and convert non-lexicals without a Value property into at-
tributes with lexical values such as converting Child1 into Child1GivenName1, Child1GivenName2,
and Child1Surname.

Person,GivenName1,GivenName2,Surname,BirthDate,DeathDate,BirthPlace,DeathPlace,Gender,

MarriageDate1,MarriagePlace1,Spouse1GivenName1,Spouse1GivenName2,Spouse1Surname,

Child1GivenName1,Child1GivenName2,Child1Surname,FatherGivenName1,FatherGivenName2,

FatherSurname,MotherGivenName1,MotherGivenName2,MotherSurname,

Person 2,Mary,,Ely,,,,,Female,,,Gerard,,Lathrop,Abigail,Huntington,Lathrop,,,,,,,

Person 5,Mary,Ely,McKenzie,1836,1859,,,Female,,,,,,,,,Donald,,McKenzie,Abigail,Huntington,Lathrop,

Person 8,Mary,,Ely,,,,,Female,,,Gerard,,Lathrop,William,Gerard,Lathrop,,,,,,,

Person 3,Gerard,,Lathrop,,,,,Male,,,,,,Abigail,Huntington,Lathrop,,,,,,,

Person 9,Gerard,,Lathrop,,,,,Male,,,,,,William,Gerard,Lathrop,,,,,,,

Person 7,William,Gerard,Lathrop,1812,1882,,,Male,1837,,Charlotte,Brackett,Jennings,Anna,Margaretta,

Lathrop,Gerard,,Lathrop,Mary,,Ely,

Person 14,William,Gerard,Lathrop,1840,,,,Male,,,,,,,,,William,Gerard,Lathrop,Charlotte,Brackett,Jennings,

Figure 6: Example Comma-separated Value File of Persons in Figure 1.

The Duke entity resolver uses a configuration file to set attribute comparators and parameter
values. We use Jaro-Winkler similarity for comparing name components, Levenshtein edit distance
for places, and exact match comparisons for all other attributes. For parameter values, each
attribute has a low value for when two attribute-value pairs do not match and a high value for
when they do match. Duke combines the values to produce a probability that two entities are the
same. To demonstrate, consider Figure 6 which is a comma-separated-value file of the attributes for
some of the people in Figure 1. Intuitively, names are moderately discriminative so we set a value
of 0.7 if two person’s first given name match and a value of 0.01 if they do not match. Gender is not
so helpful in disambiguating persons when they share the same gender (we set a value of 0.61 if the
genders match) but it is very discriminating if they do not share the same gender (we set a value of
0.01 if the genders do not match). Similarly, we set other parameter values according to expected

5http://code.google.com/p/duke/

9

significance within the domain. After running Duke over the example file, it concludes that the
probability that the first and third Mary Ely are the same entity is 0.995 and the probability that
the two Gerard Lathrops are the same is 0.954. Duke concludes that the second Mary Ely does not
match with the other Mary Elys (probability 0.02 for both, which is low because the second Mary
Ely has the last name McKenzie, and we set the value for a mismatching surname to be 0.01). The
two William Gerard Lathrops also do not match (probability 0.266) because they have different
parents (we set a value of 0.01 for both differing mothers and differing fathers).

5 Validation

We plan to use 50,000+ scanned, OCRed books provided by the LDS Church for our corpus. We
wish to be able to predict how well the FROntIER framework will work on the entire 50,000+
corpus of books. In particular, we wish to estimate the time required and the sophistication
level required to gather all facts from the entire corpus and at what level of accuracy. Applying
standard statistical techniques for sampling [Wei02], we know that if we randomly select 200 pages
from the corpus of books (treated as a corpus of pages), we can estimate these measurements
with 95% confidence to within a 7% margin of error. To estimate the time required to gather all
facts from the entire corpus, we will calculate the time required to build recognizers to extract
from and annotate the 200 randomly selected pages to estimate the time required per page and
calculate an estimate of time required over the entire corpus. To determine the sophistication level
required, we will define a hierarchy of complexity of features for extraction-ontology recognizers and
organization rules based on intuition and the interdependencies between components and analyze
regular-expression recognizers and organization rules with respect to the hierarchy. To estimate
the accuracy of extraction, we focus on evaluating the following: (1) extracted facts of interest,
(2) inferred facts of interest, and (3) clustered entities from entity resolution.

1. For extracted facts, we will construct recognizers for an extraction ontology to extract facts
over the 200 randomly selected pages. We will produce a gold standard of facts by annotating
these pages using a form annotator with fields for stated facts of interest in the form and
calculate precision and recall values between the extracted facts and the gold standard facts.

2. Similarly, for inferred facts, we will construct inference rules to infer implicit facts for a target
ontology. Then, implied facts will be generated using FROntIER over the 200 randomly
selected pages. We will produce a gold standard of implied facts by annotating these pages
using the form annotator with fields for implied facts of interest in the form and calculate
precision and recall values between the implied facts and the gold standard implied facts.

3. FROntIER will generate owl:sameAs relationships for coreferent entities in the 200 randomly
selected pages using its entity resolver and will produce clusters of entities using generated
owl:sameAs relationships. We will produce gold standard owl:sameAs relationships over
coreferent entities in these pages, yielding clusters of same-as entities. We will then calculate
precision and recall values over FROntIER-generated clusters and gold standard clusters. It
is possible that none or very few of the 200 randomly selected pages would have coreferent
entities. If not, then we will additionally find several pages like the page in Figure 1 that do
have coreferent entities and make a separate test to determine whether the attribute-based
entity resolver is behaving as expected.

10

6 Thesis Schedule

Complete Coding by March 2013

Finish Experiments by April 2013

Finish Writing Thesis by June 2013

Revise and Defend Thesis August 2013

References

[BBC+10] L. Blanco, M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti. Redundancy-driven

web data extraction and integration. In Proceedings of the 13th International Workshop

on the Web and Databases, pages 1–6, New York, NY, USA, June 2010.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The De-

scription Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-

versity Press, 2003.

[BEV02] M.S. Beach, W. Ely, and G.B. Vanderpoel. The Ely Ancestry. The Calumet Press,

1902.

[BGH09] R. Baumgartner, G. Gottlob, and M. Herzog. Scalable web data extraction for online

market intelligence. Proceedings of the VLDB Endowment, 2(2):1512–1523, 2009.

[BHH+11] D. Burdick, M. Hernández, H. Ho, G. Koutrika, R. Krishnamurthy, L. Popa, I.R. Stanoi,

S. Vaithyanathan, and S. Das. Extracting, linking and integrating data from public

sources: A financial case study. IEEE Data Engineering Bulletin, 34(3):60–67, 2011.

[Chr12] P. Christen. Data Matching: Concepts and Techniques for Record Linkage, Entity

Resolution, and Duplicate Detection. Springer, 2012.

[ECJ+99] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.K. Ng, and

R.D. Smith. Conceptual-model-based data extraction from multiple-record web pages.

Data & Knowledge Engineering, 31(3):227–251, 1999.

[ELL11] D.W. Embley, S.W. Liddle, and D.W. Lonsdale. Conceptual modeling foundations for

a web of knowledge. In D.W. Embley and B. Thalheim, editors, Handbook of Concep-

tual Modeling: Theory, Practice, and Research Challenges, chapter 15, pages 477–516.

Springer, 2011.

[Emb80] D.W. Embley. Programming with data frames for everyday data items. In Proceedings

of the AFIPS National Computer Conference, pages 301–305, Anaheim, CA, USA, May

1980.

11

[EZ10] D.W. Embley and A. Zitzelberger. Theoretical foundations for enabling a web of knowl-

edge. In Proceedings of Foundations of Information and Knowledge Systems, pages

211–229, Sofia, Bulgaria, February 2010.

[GX09] J. Gardner and L. Xiong. An integrated framework for de-identifying unstructured

medical data. Data & Knowledge Engineering, 68(12):1441–1451, 2009.

[HSW07] T.N. Herzog, F.J. Scheuren, and W.E. Winkler. Data Quality and Record Linkage

Techniques. Springer, 2007.

[LHE03] S.W. Liddle, K.A. Hewett, and D.W. Embley. An integrated ontology development

environment for data extraction. In Proceedings of 2nd International Conference on

Information Systems Technology and its Applications, pages 21–33, Kharkiv, Ukraine,

June 2003.

[MK11] R.B. Mishra and S. Kumar. Semantic web reasoners and languages. Artificial Intelli-

gence Review, 35(4):339–368, 2011.

[Sar08] S. Sarawagi. Information extraction. Foundations and Trends in Databases, 1(3):261–

377, 2008.

[Sch12] P. Schone. Personal communication, 2012.

[TAC06] J. Turmo, A. Ageno, and N. Català. Adaptive information extraction. ACM Computing

Surveys, 38(2):1–47, 2006.

[Wei02] N.A. Weiss. Introductory Statistics. Addison-Wesley, 2002.

[WLE05] A. Wessman, S.W. Liddle, and D.W. Embley. A generalized framework for an ontology-

based data-extraction system. In Proceedings of 4th International Conference on In-

formation Systems Technology and its Applications, pages 239–253, Palmerston North,

New Zealand, May 2005.

12

	Title Page
	Abstract
	Introduction
	Related Work
	Thesis Statement
	Project Description
	Extraction Ontologies
	Organization Rules

	Validation
	Thesis Schedule

