Automating the Extraction of Data Behind Web Forms

A Thesis Proposal
Presented to the
Department of Computer Science
Brigham Y oung University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

by
Sa Ho Yau
June 22, 2000

I Introduction

With the growing trend of using databases and forms to provide information
through Web pages, a significant portion of the information on the Web can now only be
obtained if auser fillsin aform-like Web page which acts as an interface between the
user and the serving database. From the server point of view, this paradigm provides
better information management and a greater variety of ways to display information.
From the user point of view, this paradigm increases flexibility and control over what
dataisretrieved and displayed. From aWeb crawler’s point of view, however, this
paradigm makes it difficult to extract the data behind the form interface automatically.
This automation is desirable (1) when we wish to have automated agents search for
particular items of information, (2) when we wish to wrap a site for higher level query,

and (3) when we wish to extract and integrate information from different sites.

There are many ways to design Web forms, and dealing with al the possibilities
isnot easy. Web form layouts have different combinations of form fields such asradio
buttons, checkboxes, selection lists, and text boxes. Figures 1 and 2 show two typical
Web form layouts for automobile classified advertisements. These two formsinclude
selection lists and text boxes. Besides having various form fields, some Web pages lead
to other forms for further inquiry. When a user entersazip codein Figure 2, Figure 3is
returned for further processing. Occasionally, returned Web documents include both

retrieved data and aform for further processing.

Besides data and forms for further processing, returned pages might return error
messages. In case of unsuccessful retrieval, some error messages are easy to recognize

automatically, such asthe HTTP error message in Figure 4. Other error messages

M mads haey |2y fdernudoctis =
Lisaon |y Locemar =
Prics Bom | ™| [Uriad Statas Do =

Tear |."\.l|.|_' I
IH‘FFI

ot lomn

Al L
it Ly
B Toinm
Wpsdm Oy

=

Figure 1: Typica Web form from an automobile advertisement Web site

l AutoTrader @& =

Yous caf I8 walting. HH B
Far

=n=
Find Your

Car Now!
Sewch e magert emsd cw m
FvRS iy e [hh KR T W P

U & rdllows heiegs, epcdaled daky

S i
Srgana

] Eamei Vaw [P Dol
SR - |_ ! e
[n\. = j m I::.T.-..l:l l.'r:.l. T am,
= ITe™s and
MEW Y AavaTirsder s AUCTIONE Bomwcyrisds

dmrg s ey ol By AT it Litd b1

Hod Siire Weich Sall Your Car Frem | Wand o Coigdns
Coar Vodd Warm? Simd B o o b | BRI B O

ey . e

= | oY sammaiba | Lomn Raies?

|&
'

| | i [BT v e e - I;.--r_-

Figure 2: Web form from a different car advertisement Web site

are difficult to recognize automatically, such as the embedded error messages within the
page on which the form appeared in Figure 5. Users can usually understand these

embedded messages, but automated understanding is difficult.

Sometimes all the data behind aform can be retrieved with asingle query. At
other times, the data must be obtained piecemeal using multiple queries with different
form field settings. When datais obtained piecemeal, we may retrieve duplicate
information. We would like to eliminate duplicate information, leaving only a clean set

of retrieved data.

[
L RiTes
AutoTrader @D
Your car Is walting.
—_ Ussid Cars For Sale
Fored Frar
Car Mo
— Thaes A i raedsd [awmwd i | &0 kiodsis Tl i ml ant R R
Ewe'iFre Frore paii I o e |__
Niwm Car Infc
Wik |-m-\. Enzpliimnos "'l ok g v b i
Finarca Arsd
[T Lie-ntes] witha | Xl rilmg 'l e e
Spzumy & lnin Rty &F ierel by wace IE:
Fimed & Doaimr
s B * T A R R e BN @ S EEY b T LH S T | ei edled B = |
Hep |
Varrm This will progest your right Fesl
1 ._..- PETE gileds 2 ik imor 1=z &
. =
) o - L

Figure 3: Resulting form after the form in Figure 2 is submitted

0T T &34 Ko Faund - Biccaoli isdsned Explem

Aghem hi e i ol 8 . O Pty b e sl

i.I The paps cannot be found

Fles pages pi 5% kaikirag for maght Gares pews remiavnd, faad iis
agavey ghgreysd. oF 15 sempueanldyp ai plabie

Flunes iry ths falesang

w11 pesi Cpaed the pesye sckdiesd m dhe Eddreis bar, ingie
wire the it = ol oot s

w Jpen B e peiprrmbierer et prrn ene page, and Bn
T dar brdeg b Eres ard o Trabngny poie Pl

& hak shae ':_ sck Burton no e e ling
& 'I.tﬂ_::-_'\-u kah Tor ipforonsbion nn b | nibserresd

HTTF &M - Pl e Foa e
Intwrrek Explarer-

il

W Adal inde vum el le T Gake 5 pdeek el - Bennsl et Faphen M= E

o e o e e e e s e 2 o 2 e R . e e e o e = e o o e B e o e o == e e e e a-

e LT B E e el g e

AutoTrader D

Your car s waliing.

Soarch Rosolts
i Yo Uaad Lavm Foi Bae
Car bdove
Mo Cang Found
Bl Toni
Car Fras

Fars wwTy, b Hrers s=re a3 eeeln thal msiched your s Mases megily
bigrm Car nin Fow gEErcy el by agun or cick kel o Fed b ovieenaton

n..lnl.:f._- e ‘_:‘ Yoo ean't predict
Firel A Dbt the FHI'IJTE.

Ll roas oo So | et bm o | Armianichs | Lo i e in 1 Ercren
Falp ey e o st i fman e deminifiam ey Duad iy

el By waing Bt torven g mesagd B e ol o i Bppman Plesie v d i
R et LELE Ll N e e T |
BEECE A T ek s L

i B

a

& Dun [e =

Figure 5: Error message embedded within a page

All these issues present difficulties for automation. How does a system recognize
aform and form fields within it? How can a system automatically fill in thefields of a
form and submit it? How can a system deal with retrieved data, duplicate information,
possible error messages or error notification pages, and embedded Web formsinside
retrieved documents? In thisthesis, we tackle these problems and make automated Web

form filling possible.

No other system we are aware of attempts to retrieve data behind forms as we do.
Other systems have been built that automaticaly fill in forms and submit them [e.g.
DEW97, EBC96, EC099]. These other systems, however, just act as atool to provide a
user’ s information to supported target sites by automatically filling in compatible Web
forms [EBC96, EC099], or only focus on specific items of interest [DEW97], rather than
on the more general goal of gathering the data available from atarget site to be used for

further data extraction.

[Thesis Statement

Thisthesis proposes a system that automatically extracts data behind a Web form.

The system fillsin HTML forms automatically, retrieves data, and eliminates duplicates.

[Il Methods

Our approach strives to retrieve the data behind aWeb form. The system we
intend to build will recognize aform and form fields within it, automatically fill in and

submit the form, and deal with retrieved data, duplicate information and error messages.

Recognizing aWeb form and itsfieldsisthe first step. A standard HTML Web
form consists of form tags—a start form tag <form> and an end form tag </form> —
within which the form fields reside [Dar99, Sta96]. Form fields may include radio
buttons, check boxes, selection lists, and text boxes. Figure 6 shows the source for an
HTML form for musical instrument classified ads. Thefirst and last lines contain the
enclosing form tags. The <select> tag at the end of the 8th line opens a selection list, and

the </select> tag on the 17th line closesit. There are seven items on the selection list.

Our system will parse a Web document and recognize whether it contains aform
by detecting the presence of formtags. If form tags exist, the system will construct an
array of objects based on the fields of the form. Information to be collected includes

form field names, their types (e.g. radio, checkbox, text), and in some cases, their values.

Figure 7 shows an excerpt of the system’s marked-up printout of itsinternal
representation of the Web form in Figure 6. The internal representation includes the
source URL, the action path where the form is sent for processing, the number of fields
and the details for each field. The fields arewin2_Elem name 0O, win2_Elem name 1,...,
and win2_Elem name_7, which respectively have the names category, manuf, model,
year, condition, sort_by, submit_search. Notice that the default value settings for most of

the fields are blank, which means not restricted. Only the value under sort_by, whichis

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(32)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)

<form action="/cgi-bin'umg/search.cgi" method="POST"
enctype="x-www-form-encoded">

<div align="center"><center><table border="0">

<tr>

</tr>
<tr>

<[tr>
<tr>

</tr>

<td>Category</td>
<td><select
name="category" size="1">
<option selected value="">all categories</option>
<option value="accessories"' >accessories</option>
<option value="acoustic">acoustic (i.e. "violins& quot;)</option>
<option value="drums"'>drums</option>
<option value="guitars'>guitars</option>
<option value="keyboards">keyboards</option>
<option value="studio/stage" >studio/stage</option>
</select> </td>
<td>choose one</td>

<td>M anufacturer</td>
<td><font

face="Comic Sans M S, Verdana, Arial, Helvetica, sans-serif"><input
type="text" size="30" name="manuf"> </td>

<td>example <font

size="3" face="Aria">Gibson</td>

<input type="text" size="30" name="model">

</table>
</center></div><p align="right"><font

face="Comic Sans M S, Verdana, Arial, Helvetica, sans-serif">Sort
resultsin alphabetical order of <select name="sort_by"
Size="1">

<option selected value="1">Category</option>

<option value="2">Manufacturer</option>

</select>

</p>
<div aign="right"><table border="0">

<tr>

<[tr>

<td><input type="reset" value="Clear Form"></td>
<td><input type="submit" name="submit_search" value="SEARCH"></td>

</table>

</div>
</form>

Figure 6: Excerpt of the source code of a Web form

Domain_Path: http://www.usedmusi cgear.com
win2_form_action: /cgi-bin/umg/search.cgi
win2_Elem length 0: 8

win2_Elem_name_O: category
win2_Elem type 0: select-one
win2_Elem value O:
win2_Elem option_length: 7

win2_Elem option_0 O: text: all categories
win2_Elem option 0 1: accessories, text: accessories

win2_Elem option_0 2: acoustic; text: acoustic (i.e. “violins")
win2_Elem option_0_3: drums; text: drums

win2_Elem option_0_4: guitars; text: guitars

win2_Elem option_0_5: keyboards; text: keyboards

win2_Elem option_0_6: studio/stage; text: studio/stage
win2_Elem name 1: manuf
win2_Elem type 1: text
win2_Elem value 1.
win2_Elem name 2: model
win2_Elem type 2: text
win2_Elem value 2:
win2_Elem name 3: year
win2_Elem type 3: text
win2_Elem value 3:
win2_Elem name 4. condition
win2_Elem type 4: text
win2_Elem value 4:
win2_Elem_name 5: sort_by
win2_Elem type 5: select-one
win2_Elem value 5: 1
win2_Elem option_length: 4

win2_Elem option 5 0: 1; text: Category
win2_Elem option 5 1. 2; text: Manufacturer
win2_Elem option 5 2: 3; text: Model
win2_Elem option 5 3: 16; text: Condition

win2_Elem name 6:

win2_Elem type 6: reset
win2_Elem value 6: Clear Form
win2_Elem name 7: submit_search
win2_Elem type 7: submit
win2_Elem value 7: SEARCH

Figure 7: Excerpt of our internal representation of a Web form

aselection list, has a non-blank default, namely 1, which means that the result will be

sorted by category.

Based on the default setting and the standards of the HTML structure, we can

construct the query:

http://www.usedmusicgear .com/cgi-bin/umg/sear ch.cgi?categor y=& manuf=

& model=& year =& condition=& sort_by=1& submit_search=SEARCH

This query fillsin the form automatically and sends it back to the target site for a

response. Figure 8 shows the returned page for this query.

Beercn Raafw

Figure 8: Returned page containing retrieved data based on the search query

We can construct other queries by selecting various combinations of selection-list

values, radio-button settings, and check-box selections. Usually, however, it is not

10

reasonableto fill in text boxes automatically. Our system will allow auser to provide
values for text boxes, but will not require that values be provided. For forms with text
boxes, our system will only submit queries that have no entries for text boxes or that have
user-supplied text-box values. The text boxesin the query that returned the resultsin

Figure 8, for example, were al empty.

When our system submits aform for processing, seven different results are
possible. (1) The returned page will contain al the data behind the form. (2) The
returned page may contain data, but not show al the data for the query in asingle page.
Instead, there may be a“next” button leading to another page of data, such asthe* See
the next 20 hits’ button in Figure 8. In this case, the system will automatically gather al
the dataon all “next” pagesinto asingle query result. (3) The query might return data,
but only part of the data behind the form because the query isjust one of many possible
combinations of the form fields. (4) The query may return a page that not only contains
data, but also contains the original form. (5) The query may return a page that has
another different form to fill in. (6) The query might return an error message or an error
notification page, stating that certain text fields are required to be filled in, or smply a
message stating that there is no record found for that submitted query. (7) Some other
error cases might involve a server being down, an unexpected failure of a network

connection, or some other HTTP errors.

Despite the fact that we have many possible responses to a query, we proceed in
only one way (except for case 7 where we immediately stop and report any HTTP error.)
We proceed in two phases—a sampling phase and an exhaustive phase. In the sampling
phase, we first submit the form with default settings and then we randomly select form-
field settings and repeatedly submit the form. Altogether we submit the form ntimesin

the sampling phase. We set n so that the probability is less than p percent that new

11

information will be retrieved with additional submissions when no new information has
been retrieved from the n-1 submissions after the first. Welet p be user defined, typically
somewhere around 5 %. If no new information is retrieved after the n-1 submissions
beyond the first, we stop and report the results to the user. If new information is
retrieved, we estimate the total amount of information likely to be returned and the time it
islikely to take to return it. If the totals are above a preset threshold, we report this to the
user and return the results of the sampling plus the estimate about how much data
remains to be retrieved as well as how much timeit islikely to take to retrieveit. If the
totals are below the preset threshold or if the user makes a special request, we enter the
exhaustive phase and submit the form for all remaining form-field settings and return the

results to the user.

When we retrieve data, we must merge this datawith already retrieved data. Our
merge is based on finding duplicate chunks of information [SCa00, Cca00], discarding
these chunks and keeping only the new information. After all processing takes place, we

can send the fully merged data downstream for further analysis and extraction [ECJ99].

12

IV Contribution to Computer Science

Our approach enhances the effectiveness of the data-extraction process by

retrieving data from Web documents that have form interfaces to their data.

13

Delimitations of the Thesis

Thisthesiswill not do the following:

Deal with aWeb form unlessit isin a standard form format.

Automate form filling for required text fields.

Load a database with extracted information (but will send data to downstream
processes that do extract and load the information in a database.)

Check the Web page for applicability with respect to an ontology.

Follow hyperlinks to other pages.

Handle forms that do not support passing parameters viathe URL.

Process pages with multiple forms.

Process forms that span multiple pages.

14

VI

Thesis Outline

Introduction
1.1 TheProblem
1.2 Thesis Organization
Estimated Length: 3 pages
Automated Form Filling
2.1 Input Queriesfor Web Form Document
2.2 Details of Query Submission
Estimated Length: 15 pages
Processing Retrieved Documents
3.1 Strategy for Handling Retrieved Documents
3.2 Duplicate Record Filtering
Estimated Length: 25 pages
Experimental Analysis and Results
Estimated Length: 5 pages
Related Work
Estimated Length: 2 pages
Conclusions and Future Work

Estimated Length: 4 pages

15

VIl Thesis Schedule
A tentative schedule of thisthesisis as follows:
Literature Search and Reading August - September, December 1999

January - February 2000

Chapter 2 June, 2000
Chapter 3 July, 2000
Chapter 1 & 4 August, 2000
Chapter 5& 6 September, 2000

Thesis Revision and Defense October, 2000

16

VIl Bibliography

[CCa00] Wendy R. Chen, Douglas M. Campbell, “A Sentence Boundary Detection
System,” A Master degree of Science thesis, Brigham Y oung University, Provo, Utah,
2000.

Thisthesis devel ops a sentence boundary detection system for Natural Language
Processing tasks. Within the sentence boundary, duplicate data can be detected.
It is punctuation-rule based, highly accurate (accuracy rate of 99.8%), highly
efficient (about 50 pages per second) and easily modifiable.

[Dar99] Rick Darnell, et a., HTML 4 Unleashed, Indianapolis, Ind.: Sams, 1999.

This book describes the structures, syntax, functionality and features of HTML
version 4. Examples of the use of HTML areillustrated.

[DEW97] Robert B. Doorenbos, Oren Etzioni, Daniel S. Weld, “A Scalable
Comparison-Shopping Agent for the World-Wide Web,” in Proceedings of the First
International Confence on Autonomous Agents, 1997.

This paper investigates the issues of (1) the extent an agent can understand
information published at Web sites, (2) whether the agent’ s understanding is
sufficient to provide genuinely useful assistance to users, (3) the ability of an
agent to automatically extract information from unfamiliar Web sites, and (4) the
aspects of the Web that facilitate this competence. A case study is presented
using ShopBot, a domain-independent comparison-shopping agent. This paper
also addresses the problems and ways to find and fill in a proper form
automatically.

[EBC96] ebCARD homepage: http://www.patils.con |

This site provides an online form called LiveFORM ™ that users can

automatically fill out using their electronic business card, ebCARD ™, stored on
their computer.

[ECJ99] D.W. Embley, D.M. Campbell, Y.S. Jiang, SW. Liddle, D.W. Lonsdale, Y .-K.
Ng, R.D. Smith, “Conceptual-model-based data extraction from multiple-record Web
pages,” Data & Knowledge Engineering 31 (1999) 227-251.

This paper introduces a conceptual -modeling approach to extract and structure
data. The approach is based on an ontology—a conceptual model instance—that
describes the data of interest, including relationships, lexical appearance, and
context keywords. By parsing the ontology, the system can automatically
produce a database scheme and recognizers for constants and keywords, and then
invoke routines to recognize and extract data from unstructured documents and

17

http://www.patils.com/

structure it according to the generated database scheme. This paper aso
introduces algorithms to discover the record boundary within a Web document.

[EC099] eCode.com homepage: htto://www eCode cony|

This siteis an online identity management service providing its Web form-filling
utility, AutoFiller™ that allows Internet users to instantly populate any online
form (referring to registration forms) with their contact information.

[SCa00] Randy D. Smith, Douglas M. Campbell, “ Copy Detection System for Digital
Documents,” A Master degree of Science thesis, Brigham Y oung University, Provo,
Utah, 2000.

This thesis devel ops a copy detection system that gives overlap information at the
sentence level. The system does not deteriorate in accuracy due to variationsin
document size or genre.

[Sta96] William R. Stanek, Web Publishing Unleashed: HTML, CGI, SGML, VRML,
Java, Indianapolis, IN : Sams.net, 1996.

This book covers most of the popular Web publishing languages and illustrates
the power of those languages with practical examples. It aso shows the similarity
as well asthe differences among those languages on features, structures, and
functionality.

18

http://www.ecode.com/

IX Artifacts

The program that implements the retrieval of data behind Web forms using the
proposed approach will be written in PHP, JavaScript and Java on a Solaris (Intel) server.

19

X Signatures

This proposal, by Sai Ho Yau is accepted in its present form by the Department of
Computer Science of Brigham Y oung University as satisfying the proposal requirement
for the degree of Master of Science.

David W. Embley, Committee Chairman

Stephen W. Liddle, Committee Member

Aurd D. Corndl, Committee Member

J. Kelly Flanagan, Graduate Coordinator

20

	Presented to the
	
	
	
	Figure 7: Excerpt of our internal representation of a Web form

	1.2	Thesis Organization

	2.	Automated Form Filling
	2.1	Input Queries for Web Form Document
	Details of Query Submission
	Estimated Length: 15 pages

	3.	Processing Retrieved Documents
	
	
	
	
	3.1	Strategy for Handling Retrieved Documents
	3.2	Duplicate Record Filtering

	Estimated Length: 25 pages

	4.	Experimental Analysis and Results
	
	
	
	
	
	Estimated Length: 5 pages

	5.	Related Work
	6.	Conclusions and Future Work

	Literature Search and Reading	August - September, December 1999
	January - February 2000
	David W. Embley, Committee Chairman
	Stephen W. Liddle, Committee Member
	Aurel D. Cornell, Committee Member
	J. Kelly Flanagan, Graduate Coordinator

